TW200408212A - Agile spread waveform generator and photonic oscillator - Google Patents
Agile spread waveform generator and photonic oscillator Download PDFInfo
- Publication number
- TW200408212A TW200408212A TW092113199A TW92113199A TW200408212A TW 200408212 A TW200408212 A TW 200408212A TW 092113199 A TW092113199 A TW 092113199A TW 92113199 A TW92113199 A TW 92113199A TW 200408212 A TW200408212 A TW 200408212A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- frequency
- branch line
- signal
- fiber
- Prior art date
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
200408212 玫、發明說明: 【發日月所屬之技術領域】 粗._關申讀互參考 本申請係美國專利申請序號第10/116829號(建檔於 5 2002年4月5日)之部分延續,且具有其優先權,其全部内容 配合此處之參考。 本申請具有美國臨時申請編號第60/332372號(建檔於 2001 年 11 月 15 日’其標題為 “ Sprea(j Waveform Generator Daniel Yap 和 Keyvan Sayyah),其全部内容配 10 合此處之參考。 本申請係關於專利申請序號第60/332367號,其標題為 Agile RF-Lightwave Waveform Synthesis and an Optical200408212 Mei, Description of invention: [Technical field to which the sun and moon belong] Coarse._guanshen reading cross-reference This application is a partial continuation of US Patent Application Serial No. 10/116829 (filed on April 5, 2002) , And has its priority, the entire contents of which are hereby incorporated by reference. This application has US Provisional Application No. 60/332372 (filed on November 15, 2001 'with the title "Sprea (j Waveform Generator Daniel Yap and Keyvan Sayyah), the entire contents of which are incorporated herein by reference. This application is related to patent application serial number 60/332367, and its title is Agile RF-Lightwave Waveform Synthesis and an Optical
Multi-Tone Amplitude Modulator”(建槽於2001 年 11 月 15 曰) ’以及其對應之專利申請序號第1〇/1168〇1號(建檔於2〇〇2 15 年4月5日),其全部内容配合此處之參考。這些相關申請的 擁有者為本申請之受託人。 本申請同時也相關於專利申請序號第60/33237號,其 才示 4 為 Injection-seeding of a Multi-tone Photonic Oscillator”(建檔於2001年11月15日)及其對應的申請編號 20第10/U6799號(建檔於2002年4月5日),其全部内容配合此 處之參考。這些相關申請的擁有者為本申請之受託人。 本申請同時也相關於專利申請序號第60/332368號,其 寺示超為 Rem〇tely Locatable RF Power Amplification"Multi-Tone Amplitude Modulator" (built in November 15, 2001) and its corresponding patent application No. 10/1168001 (filed in April 5, 2002), which The entire contents are hereby incorporated by reference. The owner of these related applications is the trustee of this application. This application is also related to patent application serial number 60/33237, which is indicated as 4 Injection-seeding of a Multi-tone Photonic "Oscillator" (filed on November 15, 2001) and its corresponding application number 20 No. 10 / U6799 (filed on April 5, 2002), the entire contents of which are hereby incorporated by reference. The owner of these related applications is the trustee of this application. This application is also related to Patent Application Serial No. 60/332368, whose temple name is Remotely Locatable RF Power Amplification
System”(建檔於2001年11月15曰)及其對應的申請編號第 5 200408212 10/116854號(建檔於2002年4月5日),其全部内容配合此處 之參考。這些相關申請的擁有者為本申請之受託人。 技術領域 本發明申請内容係關於一RF光波波形產生器,其能夠 5產生一組展頻跳頻之RF波形。本申請内容更進一步關於利 用光子振盪器而產生多頻調光梳。 本發明背景 一種多頻調跳頻RF光波波形作用如光學傳輸通道之光 波載波。例如,被光學傳輸通道所攜載iRF信號資訊可以 10是一組脈波數碼,它可以利用光波調變器被加入展頻rf光 波載波中。最後RF光波波形可以被傳輸(利用光纖鏈路或自 由空間光學鏈路)至光接收器。電氣形式(頻率轉移並且解調 變)之光接收信號接著可以被傳輸通過RF通道(一天線或無 線鍵路)。 15 如此處所示’該1^7光波載波之產生器包含一耦合至光 學外差式合成器之頻梳產生器。該頻梳為一組被放大調變 至光波載波的RF頻調。RF光波頻梳之產生器最妤是一光子 振盈器’其結構是相關技術所習知。該光學外差式合成器 疋可切換的’並且產生一對相位鎖定之CW光波線(以兩組 不同的光學波長這些光波線之一具有处頻梳被調變至其 t身。在摘_變之後,兩組光波線被組合以產生捷展 載波。光接收信號之中心頻率為外差式節拍,其為光學外 差式合成為所產生的兩組光波線之頻率差量。這些光波線 之波長可以快速地被改變(在單一傳輸脈波内或甚至在傳 6 200408212 輸資料封裝之内,這些光波線之波長可以利用各傳輸脈波 加以改變)以便產生不同節拍頻率。此過程將使合成的多頻 調RF光波載波之中心頻率跳躍。許多習知方法可被使用以 實現光學外差式合成器。 5 捷展頻率之展頻與跳頻之一目的是,使合成的信號不 易被非同調的接收器所檢測。展頻載波之使用是可利用習 見攔截接收器而產生具有低攔截可能性(LPI)之信號。此外 ’如果載波的確切頻率可以變更並且不被攔截器所辨識, 則可以增強UPI之性能。這些技術在LPI雷達以及通訊系統 10 中是有用的。 一般而言,攔截器將使用一組被通道化成為更小頻帶 之寬頻接收器以檢測並識別信號。如果該信號是在接收器 之單一通道内’則它可以被檢測出。但是,如果該信號被 展頻’而那些部份落在許多通道之内,則攔截器將不易區 15別該信號與背景雜訊。一般而言,可以掃瞄攔截接收器之 通逼或使用長的整合時間以感知進入的信號。如果信號頻 率决速地變化而在感知時間内不同的通道之間跳動,則它 將再度呈現如雜訊一般。另外,如果信號頻率隨時間快速 地變化’而雖然那些跳動信號都在被接收之通道内,該信 2〇號將被檢測出值卻不易識別。 展頻的另一目的是,使信號較不易遭受人為之干擾。 +擾务射為之頻率覆蓋範圍可能不如展頻載波之覆蓋範圍 , b外’因為展頻載波包括可以同調地被相加之離 月欠頻调’故信銳功率將更有效率地被使用。此是相對於均 7 勻地寬頻帶之侦發射II。快速切換信_帶同時也較不 易遭受人為之干擾,HI為干擾發射器無法從—信號脈波預 測下一脈波之干擾的頻率。 先前達成LPI性㈣方法係依據使用電氣合成器以產 生波形。一般而言,脈波壓縮數碼被使用以相位調變一組 單-頻賴波亚且展延其頻譜。例如,如果信號脈波為^ sec寬,並且一組100-對—丨脈波壓縮數碼被使用,則得到 1〇〇馳之信號頻寬。詢問式接收ϋ之通道頻寬-般將較此 頻寬更窄。呈現高動態範圍之類比數位轉移器的頻寬一般 為lOOMhz或更低。因此,詢問器通道之頻寬為議驗或 更低。本發明較佳地使用光子之寬頻本f以產生展頻波形 。頻梳之總頻寬可以相當地寬,利用本發明之光子方法 輕易地達成數十GHz之頻寬。除了信號資訊之外,脈波壤 縮數碼可以被調變至多頻調頻梳之上,以便進一步展延栽 波。先前技術之產生梯狀頻率波形的數位合成器,一般具 有低於100MHz之頻寬。此處揭露之可切換光學外差式合成 裔能夠處理超過100GHz之頻率範圍。 此處揭露之捷展頻波形產生器,對於具有多數使用者 之通訊系統也是有用的。各使用者被指定用於多頻調波形 跳頻之-組特定㈣-的樣型。—位使用者可_該使用 者之特定波形樣型的複製而同調地處理所接收之信號,以 區別其信號與其他佔用相同頻率頻帶的信號。此種光波波 形之分碼多工存取(CDMA)與先前方法不同。先前方法係使 用更短於資訊脈波之短光學脈波,其波長與時間位置可依 200408212 各使用者而異。 I[先前 3 先前的技術包含: 1· 一單一頻調、單一迴路光電子振盪器_參閱發行於 5 1998年3月3日之美國專利第5723856號,以及S· Yao及L.System "(filed on November 15, 2001) and its corresponding application number 5 200408212 10/116854 (filed on April 5, 2002), the entire contents of which are hereby incorporated by reference. These related applications The owner of this application is the trustee of this application. TECHNICAL FIELD The present application relates to an RF light wave waveform generator capable of generating a set of spread spectrum frequency hopping RF waveforms. The content of this application further relates to the use of a photon oscillator. A multi-frequency dimming comb is generated. BACKGROUND OF THE INVENTION A multi-frequency hopping RF light wave waveform acts as a light wave carrier of an optical transmission channel. For example, the iRF signal information carried by the optical transmission channel may be a set of pulse wave digital, which Can be added to the spread spectrum rf light wave carrier using a light wave modulator. Finally the RF light wave waveform can be transmitted (using a fiber link or a free space optical link) to the optical receiver. The electrical form (frequency transfer and demodulation) The light-receiving signal can then be transmitted through the RF channel (an antenna or a wireless key). 15 As shown here 'The generator of the 1 ^ 7 light wave carrier includes an optical heterodyne coupling The generator is a frequency comb generator. The frequency comb is a set of RF frequencies that are amplified and modulated to the light wave carrier. The RF light wave frequency comb generator is a photon oscillator. Its structure is known in related technologies. The optical heterodyne synthesizer is switchable and generates a pair of phase-locked CW light waves (with two different sets of optical wavelengths. One of these light waves has a frequency comb that is tuned to its body. After the change, the two sets of light wave lines are combined to produce the Zhan Zhan carrier. The center frequency of the light receiving signal is a heterodyne beat, which is an optical heterodyne synthesis that is the frequency difference between the two sets of light wave lines. These lights The wavelength of the wave line can be changed quickly (within a single transmission pulse or even within the transmission data package of 200408212, the wavelength of these light waves can be changed with each transmission pulse) to produce different beat frequencies. This process will Jump the center frequency of the synthesized multi-frequency RF light wave carrier. Many conventional methods can be used to implement the optical heterodyne synthesizer. 5 One of the purposes of spread spectrum and frequency hopping of the Zhan Zhan frequency is to make the synthesized signal Easily detectable by non-homogeneous receivers. The use of spread spectrum carriers is to generate signals with low interception probability (LPI) using conventional interception receivers. In addition, 'if the exact frequency of the carrier can be changed and not blocked by the interceptor Identification can enhance the performance of UPI. These technologies are useful in LPI radars and communication systems 10. Generally, interceptors will use a set of wideband receivers channelized into smaller frequency bands to detect and identify signals. If the signal is in a single channel of the receiver, then it can be detected. However, if the signal is spread out and those parts fall within many channels, the interceptor will not easily distinguish the signal from the Background noise: In general, you can scan the interceptor receiver or use a long integration time to sense the incoming signal. If the signal frequency changes at a decisive rate and it bounces between different channels in the sensing time, it will again appear as noise. In addition, if the frequency of the signal changes rapidly with time, and although those beating signals are in the channel being received, the value of the signal 20 will be detected but it is not easy to identify. Another purpose of spread spectrum is to make the signal less susceptible to human interference. + The interference coverage may not be as good as that of the spread-spectrum carrier. Outside b, 'because the spread-spectrum carrier includes the undertones that can be added coherently, so Xinrui Power will be used more efficiently. . This is the detection emission II, which is relatively wide and uniform. The fast switching signal_band is also less susceptible to human interference. HI is the interference transmitter cannot predict the frequency of the next pulse wave interference from the signal pulse wave. Previous methods of achieving LPI performance were based on the use of electrical synthesizers to generate waveforms. Generally speaking, pulse compression digital is used to phase-modulate a group of single-frequency Raiboya and spread its spectrum. For example, if the signal pulse is ^ sec wide, and a set of 100-pair-pulse compression numbers are used, a signal bandwidth of 100 is obtained. The channel bandwidth of the interrogation receiver is generally narrower than this bandwidth. The bandwidth of an analog digital transferor that exhibits high dynamic range is generally 10OMhz or less. Therefore, the bandwidth of the interrogator channel is deliberate or lower. The present invention preferably uses the wideband f of the photon to generate a spread spectrum waveform. The total bandwidth of the frequency comb can be quite wide. The photon method of the present invention can easily achieve a bandwidth of tens of GHz. In addition to signal information, pulse wave scaling can be modulated onto a multi-frequency FM comb to further extend the plant wave. The prior art digital synthesizers for generating ladder-shaped frequency waveforms generally have a bandwidth below 100 MHz. The switchable optical heterodyne synthesizer disclosed here is capable of handling frequency ranges exceeding 100 GHz. The Czech spread spectrum waveform generator disclosed here is also useful for communication systems with most users. Each user is designated to use the -group-specific ㈣ pattern for multi-tone waveform hopping. -A user can copy the user's specific waveform pattern and coherently process the received signal to distinguish its signal from other signals occupying the same frequency band. This type of divisional multiplexing (CDMA) of the light wave form is different from the previous method. The previous method used short optical pulses shorter than the information pulses, whose wavelength and time position may vary from 200408212 to each user. I [Previous 3 Prior technologies include: 1. A single-tone, single-loop optoelectronic oscillator—see US Patent No. 5,723,856, issued March 5, 1998, and S. Yao and L.
Maleki ’ 1996年發表於IEEE J· Quantum Electronics,ν·32, η·7,第1141-1149頁之文章。一光子振盪器被彼露(作者將 之稱為光電子振盪器)。這振盪器包含一組單一雷射以及一 組關閉迴路’該關閉迴路包含一調變器、一段光纖、光檢 10測器、一RF放大器以及一電氣濾波器。這振盪器之關閉迴 路與本發明有些相似。但是,這先前技術之目的,是利用 將電氣窄頻帶頻率濾波器合併入迴路中以產生單一頻調。 具有低相位雜訊之頻調藉著使用一段長的光纖而被達成。 在這篇文早中所報告之多頻調的展示利用擴大濾波器之頻 15寬而被達成。但是,那些多頻調之頻率間隔利用將正弦電 氣化號射入調變器而被設定。被射入信號之頻率等於頻調 之間隔。這方法導致所有的振盪器模式(每種模式有一頻調 )同相位地震盪。因此,先前技術震盪器之輸出是一序列脈 波。參閱本文第14(b)圖。 20 2· 一單一頻調、多迴路光電子震盪器-參閱1998年7月7 曰公佈之美國專利第5777778號,以及S. Yao及L. Maleki, 2000年發表於IEEE J· Quantum Electronics,ν·36,η·1,第 79-84頁之文章。使用多數光纖迴路之光電子振盪器被彼露 ,作為時間延遲通道。一組光纖迴路具有一長度且作為儲 9 存一媒體以增力姻叫值。另—組光__長度非常短 (-般:,、二2至2公尺),並且操作以將頻調分散因而職波器 可以被基人迴路以選擇_組單頻調。兩組迴路的長度,以 及RF濾波器的通過頻帶,都可以被改變以調整被產生之單 頻調的頻率。這種方式不使用多數光學迴路以得到多頻調 ,因為它使用第二迴路以確保僅單—賴將被產生。 3· ΜΤΗζ之頻寬、具有光學波長參考之可調整之rf頻 梳產生器-參閱S · B ennett等人1999年發表之文章,ph〇t〇nics Technoi· Letters,ν〇1· u,N〇 5,第 55i_553 頁。本文說明 之多綱RF光波輸產生,是使用在_組放大的再循環光 纖迴路中之雷射級載波的連續相位調變概念。光波載波 疋由單一輸入雷射所提供,該雷射之光學cw波形被射入一 組封閉光纖迴路中,其包含由外部处產生器所驅動之光學 相位調變器。這產生一光學頻梳,其利用被施加至相位調 變裔之RF頻率而決定一頻率間隔且利用輸入雷射之波長而 決定絕對頻率。該迴路同時也包含被分離幫浦雷射所抽吸 之錦^(Er)摻雜光纖放大器區段。於再循環迴路中之光學放大 為的作用是,增加在頻梳產生器之輸出的頻梳數目。可能 期望在不同的頻梳之間具有某些互相的相位鎖定,因為它 們是利用外部RF產生器所加入之相位調變而予以定義。 4· 一種利用光學外差以產生^^信號的技術。參閱第! 圖。藉由此技術,RF光波合成器所產生之兩組雷射波長的 光學輪出被組合至光檢測器上。在一種簡單之情況中,RF 光波合成器包含兩組雷射,其各產生單一波長,亦即,單 200408212 一頻譜線。當它們組合的輸出被光檢測器轉移成電氣信號( 光電流)時,該電氣信號在兩組雷射線之總和以及差額之間 具有頻率分量。一般而言,光檢測器同時也作用如同低通 頻率濾波器,如此僅產生外差式差量頻率。為了產生外差 5 式輸出’兩組雷射線必須鎖定在一起,如此它們的浮動會 同調。可以採用習知的相關技術中之各種方式以達成此鎖 定。光學外差同時也可與外部光學調變器結合,以進行頻 率轉移(頻率轉化)。第1圖展示本功能。RF光波合成器之雙 線光波輸出被供應至光學強度調變器,使用Mach-Zehnder 10 干涉儀之一般調變器。一組RF輸入信號同時也被供應至調 變器’其施加強度調變至光波信號上。調變器之轉移功能 導致頻率總額與差額項之產生。光檢測器之輸出為具頻率 成分之另一組RF信號,該頻率成分為在RF輸入〇RF頻率之 間以及在兩組雷射線之間的頻率間隔之總和與差量。基本 15 上’兩組雷射線之頻率差額6JL0作用如同局部振盪器(LO) 頻率,其與RF輸入信號相乘以便產生中間頻率 RF。代表這過程的數學式如下: 20 其中為光電流。 5·美國專利第5,917,179號,公佈於1999年6月29日之 Yao所說明的Brillouin光電子振盪器。Yao所彼露之振遷器 產生單一頻調而非多頻調。此外,該振盈器使用激發性 11 200408212Maleki ’s article published in 1996 in IEEE J. Quantum Electronics, v. 32, n. 7, pp. 1141-1149. A photon oscillator is known as Bilu (the author calls it an optoelectronic oscillator). This oscillator includes a single laser and a closed loop. The closed loop includes a modulator, a section of optical fiber, a photodetector, an RF amplifier, and an electrical filter. The shutdown circuit of this oscillator is somewhat similar to the present invention. However, the purpose of this prior art was to use a combination of electrical narrowband frequency filters into the loop to produce a single tone. Tone with low phase noise is achieved by using a long fiber. The multi-tone demonstration reported in this article earlier was achieved by expanding the frequency of the filter's 15-bit width. However, the frequency intervals of those multi-tones are set by shooting a sine electric vaporizer into the modulator. The frequency of the incoming signal is equal to the frequency interval. This method causes all oscillator modes (each mode has a tone) to oscillate in phase. Therefore, the output of the prior art oscillator is a sequence of pulses. See Figure 14 (b) of this article. 20 2 · A single-frequency, multi-loop optoelectronic oscillator-refer to US Patent No. 5777778 published on July 7, 1998, and S. Yao and L. Maleki, published in IEEE J. Quantum Electronics in 2000, ν · 36, η · 1, pp. 79-84. Optoelectronic oscillators using most fiber loops are exposed as time delay channels. A set of optical fiber loops has a length and stores a medium as a storage medium to increase the value of the marriage. In addition, the length of the group light is very short (-general: ,, 2 to 2 meters), and is operated to disperse the tones so that the professional wave device can be selected by the person in the loop to select a single tone. The length of the two sets of loops, as well as the pass band of the RF filter, can be changed to adjust the frequency of the single tone to be generated. This method does not use most optical loops to get multi-tones, because it uses a second loop to ensure that only single-Lai will be generated. 3. Mt 宽 ζ bandwidth, adjustable rf comb generator with optical wavelength reference-see article published by S. Bennett et al. In 1999, ph〇tronics Technoi · Letters, ν〇1 · u, N 〇5, p. 55i_553. The multi-level RF optical wave transmission described in this paper is a concept of continuous phase modulation using laser-level carriers in a re-amplified fiber-optic loop. The light wave carrier 疋 is provided by a single input laser, and the optical cw waveform of the laser is injected into a group of closed fiber loops, which includes an optical phase modulator driven by an external generator. This results in an optical frequency comb that uses an RF frequency applied to the phase-modulation source to determine a frequency interval and uses the wavelength of the input laser to determine the absolute frequency. The loop also contains the (Er) -doped fiber amplifier section pumped by the separation pump laser. The effect of optical amplification in the recirculation loop is to increase the number of frequency combs at the output of the frequency comb generator. It may be desirable to have some mutual phase lock between different frequency combs, as they are defined using phase modulation added by an external RF generator. 4. A technique that uses optical heterodyne to generate ^^ signals. See section! Illustration. With this technique, the two sets of optical wavelengths of the laser wavelength generated by the RF light wave synthesizer are combined to the photodetector. In a simple case, the RF light wave synthesizer includes two sets of lasers, each of which produces a single wavelength, that is, a single 200408212 spectrum line. When their combined output is transferred to an electrical signal (photocurrent) by a photodetector, the electrical signal has a frequency component between the sum of the two sets of lightning rays and the difference. In general, the photodetector also functions as a low-pass frequency filter, so that it only produces heterodyne differential frequencies. In order to produce a heterodyne type 5 output, the two sets of lightning rays must be locked together so that their floats are coherent. Various methods in the related art can be used to achieve this lock. Optical heterodyne can also be combined with external optical modulators for frequency transfer (frequency conversion). Figure 1 shows this feature. The two-line light wave output of the RF light wave synthesizer is supplied to an optical intensity modulator, using a general modulator of a Mach-Zehnder 10 interferometer. A set of RF input signals are also supplied to the modulator ' which applies intensity modulation to the light wave signal. The transfer function of the modulator results in the total frequency and the difference. The output of the photodetector is another set of RF signals with a frequency component. The frequency component is the sum and difference of the frequency intervals between the RF input RF frequencies and between the two sets of lightning rays. Basically, the frequency difference 6JL0 of the two sets of lightning rays acts like a local oscillator (LO) frequency, which is multiplied with the RF input signal to generate an intermediate frequency RF. The mathematical formula representing this process is as follows: 20 where is the photocurrent. 5. U.S. Patent No. 5,917,179, Brillouin photoelectron oscillator described by Yao on June 29, 1999. Yao's shaker produces a single tone instead of multiple tones. In addition, the oscillator uses excitability 11 200408212
Brillouin散射(SBS)於振盪器光電回授通道中之光纖。這回 授通道可以具有一或多組光學及/或電氣迴路。該SBS產生 之第二光學信號也被饋送至通道中的光檢測器。此信號之 頻率可以不同於從通道之光學調變器所輸出之光學信號頻 5 率。該光檢測器產生SBS所產生之節拍的電氣信號以及調變 器輸出光學信號。這節拍信號被使用以驅動光學調變器, 並且產生另一調變之輸出信號而被饋送進入展示SBS之光 纖中。 【發明内容】 10 本發明之概要說明 在一論點中,本發明提供一種捷展頻譜波形產生器, 其包含:一光子震盪器,其包含用以在光學載波上產生一 系列RF頻梳之一多頻調光梳產生器;一光學外差式合成器 ,該光學外差式合成器包含第一與第二相位鎖定雷射,該 15 第一雷射饋送該多頻調光梳產生器而第二雷射包含一快速 可調波長頻調雷射,其輸出光線提供一頻率轉移參考;以 及一光檢測器,其配合光子震盪器之光學輸出而將頻率轉 移參考外差處理,以產生一捷展頻譜波形。 在另一論點中,本發明提供一種產生捷展頻譜波形之 20 方法,該方法包含的步驟為:產生多頻調光梳作為光學載 波上一系列之RF頻梳;產生一可調波長之單一頻調頻率轉 移參考;並且光學式地結合光梳與頻率轉移參考,以產生 適於依序外差之光波波形。 在另一論點中,本發明之一實施例提供一多頻調光子 12 200408212 振盪器,其包含:一組第一光學支線,其包含第一光學延 遲元件;第二光學支線,其具有一主要光纖、一提供光學 信號至光學支線之光學調變器的共用通道、以及一電氣部 份,其具有最少一組被耦合至第一光學支線與第二光學支 5 線的光檢測器,該至少一組光檢測器產生一組被耦合至該 光學調變器的電氣信號;以及一組第三光學支線,其提供 一史竇克斯(Stokes)光束至第二光學支線,該史竇克斯光束 在主要光纖中以相反的方向傳輸。 在另一論點中,本發明之一實施例提供一種用以產生 10 多頻調光梳之方法,該方法包含:利用光學調變器而調變 來自雷射之一組光學信號以提供一組被調變之光學信號; 延遲第一光學支線中之該被調變的光學信號以提供一組第 一被延遲之光學信號;在第二光學支線中以前進之方向傳 輸該被調變的光學信號以提供一組第二被延遲之光學信 15 號;從該被調變之光學信號中產生史竇克斯光束;將史竇 克斯光束射入該第二光學支線,因而以相反於第二光學支 線中之該被調變的光學信號的方向將史竇克斯光束傳輸, 其中該史竇克斯光束作用如同在第二光學支線中被激勵的 Bdllouin之光源;光學檢測該第一被延遲之光學信號以及第 20 二被延遲之光學信號以產生一組電氣信號;並且利用該電 氣信號以控制該光學調變器。 圖式簡單說明 第1圖展示利用RF光波合成器進行之先前技術頻率轉 移技術的圖形; 13 第2圖是依據本發明之捷波形產生器的方塊圖;Brillouin scattering (SBS) is a fiber in the photoelectric feedback channel of the oscillator. This feedback channel may have one or more sets of optical and / or electrical circuits. The second optical signal generated by the SBS is also fed to a photodetector in the channel. The frequency of this signal can be different from the frequency of the optical signal output from the optical modulator of the channel. The photodetector generates the electrical signals of the beats generated by the SBS and the modulator output optical signals. This beat signal is used to drive the optical modulator, and generates another modulated output signal that is fed into the fiber that exhibits SBS. [Summary of the Invention] 10 Summary of the Invention In one argument, the present invention provides a boom spectrum generator that includes: a photon oscillator that includes one of a series of RF frequency combs on an optical carrier Multi-frequency dimming comb generator; an optical heterodyne synthesizer comprising first and second phase-locked lasers, the 15 first laser feeding the multi-frequency dimming comb generator and The second laser includes a fast adjustable wavelength frequency-modulated laser whose output light provides a frequency shift reference; and a photodetector which cooperates with the optical output of the photon oscillator to process the frequency shift reference heterodyne to generate a Zoom out spectrum waveform. In another aspect, the present invention provides a 20 method for generating a Zhan spectrum waveform. The method includes the steps of: generating a multi-frequency dimming comb as a series of RF frequency combs on an optical carrier; generating a single adjustable wavelength Tonal frequency shift reference; and an optical comb and frequency shift reference are optically combined to generate a light wave waveform suitable for sequential heterodyne. In another aspect, an embodiment of the present invention provides a multi-frequency photon 12 200408212 oscillator, which includes: a set of first optical branch lines including a first optical delay element; and a second optical branch line having a main An optical fiber, a common channel of an optical modulator providing an optical signal to an optical branch line, and an electrical part having at least one set of photodetectors coupled to the first optical branch line and the second optical branch 5 line, the at least A set of photodetectors produces a set of electrical signals coupled to the optical modulator; and a set of third optical spurs that provide a Stokes beam to a second optical spur, the Stokes The light beam travels in the opposite direction in the main fiber. In another aspect, an embodiment of the present invention provides a method for generating a 10-frequency dimming comb. The method includes: using an optical modulator to modulate a set of optical signals from a laser to provide a set of optical signals. Modulated optical signal; delaying the modulated optical signal in the first optical branch line to provide a set of first delayed optical signals; transmitting the modulated optical signal in a forward direction in the second optical branch line Signals to provide a second set of delayed optical signals 15; a Stuxus beam is generated from the modulated optical signal; and a Stuxus beam is entered into the second optical branch line, thus being opposite to the first The direction of the modulated optical signal in the two optical spur lines transmits the Stokes beam, wherein the Studs beam acts as the light source of Bdllouin excited in the second optical spur line; the optical detection of the first The delayed optical signal and the 22nd delayed optical signal to generate a set of electrical signals; and the electrical signal is used to control the optical modulator. Brief Description of the Drawings Figure 1 shows a graph of the prior art frequency shifting technology using an RF light wave synthesizer; 13 Figure 2 is a block diagram of a shortcut waveform generator according to the present invention;
第3圖是多迴路、多頻調光子振B 第4圖展示多迴路、多頻調^^ 、 頻譜之圖形; 1 —之被量剛的Rf 第5圖是雙迴路(1公里之長迴路,8公尺之短迴 洞光子《器之-組RF頻調的詳細頻譜之圖形,1 組非常高之頻譜純度; — 第6圖是具有光學式放大迴路之多迴路、多頻調 盈器的方塊圖; 又 10 第7圖展示依據光學射入之快速切換光學外 器之圖形; 〇成 第8圖展示依據相位鎖定迴路之快速切換外 器之圖形; ^成 15 第9圖是多迴路、多頻調光子振盡器的方塊圖及 快速可調《雷射和—料波長雷射之快速切換光學衫 2成器的方塊圖,該光子振盪器具有-組光纖長度控制 裝m㈣㈣如控制光纖長度; 20 而是二Ξ路’但是不具有光纖長度控制裝置, ㈣光纖長度的環=:補償在多迴路、多挪 第11圖是多頻調Φ i 第12圖展示在2子展邊器之不同實施例的方塊圖。 信號的頻譜。 展7F的展内各不同點之光學 第13圖是多頻調光 尤千震盪态的另一實施例之方塊圖。 14 200408212 【實施方式】 本發明係關於一種獨特的方法,其使用同調的光學外 差產生⑨速頻率跳動或抖動、光波載波上之多頻調RF頻梳 5 ,因而使在載波上被傳輸之信號不易被檢測。在本發明下 面的說明中,首先討論光學外差之概念,以提供背景資訊 ί考苐3圖-苐6圖而說明用以產生一組頻率可轉移頻梳信 號之兩組實施例。接著,參考第7圖與第8圖以說明許多產 生跳頻波形之實施例。最後,(參考第9圖_第11圖)討論兩組 10用以產生頻率可轉移之頻梳信號實施例的其中之一而改進 穩定度之修正。 第2圖是捷波形產生器12的方塊圖。參考第3圖及第 6-10圖將更詳細說明所具有之兩組主要部份14、a。第一 主要部分是一種光子振盪器型式,亦即,多頻調光梳產生 15器14,其在光學載波上產生一系列之低相位雜訊RF頻梳。 第二主要部分是一種快速切換光學外差式合成器16,其包 含兩組相位鎖定雷射70、72(參閱第7圖與第8圖),該第一雷 射70饋送光梳產生器14。第二雷射72是一組快速可調波長 單一頻調雷射’其之頻率轉移參考的輸出光線,利用光檢 2〇測器Η中的光子震盪器14之光學輸出而被外差處理,以產 生跳頻RF頻梳(由於“振盪器”14 “產生” RF頻梳,故此處 之元件14有時被稱為震盪器且有時被稱為產生器)。局部振 盪器(LO)選擇器80控制頻率跳動。兩組雷射之展捷波長偏 移決定產生多頻調RF頻梳的頻率轉移。此外,光學相位調 15 200408212 變器(未展示)同時也可以被塞入可調波長雷射之光學通道 中,該雷射會導致頻率領域中之多頻調RF頻梳進一步地抖 動。這效應,組合上述跳頻機構,使得被調變2RF傳輸信 號非常不易被攔截。 5 一光耦合為26組合頻梳產生器14之輸出與合成器16中 可調波長的雷射之輸出。如第2圖所示,被組合之輸出可以 藉著使用光強度調變恭22之RF傳輸信號28而被調變。在第 2圖中,光學強度調變器22被展示在光耦合器26的下游。另 外,光學強度調變器22可以被置放於產生器14與耦合器% 10之間,如方塊22之展示。而且,耦合器26之輸出可以進一 步被另外的脈波或多相位之數碼所調變(或者傳輸信號可 以被這些數碼所調變)以進一步減低檢測(攔截)之可能性。 脈波或多相位數碼可以被施加於RF信號輸入28或被施加在 與調變器22串聯之分離光學強度調變器上。 15 光耦合器26之第二輸出可以被使用以從光檢測器20產 生一組局部振盪器參考信號,該光檢測器可方便地被採用 在同凋接收器中。在不同的實施例中,在被調變之輸出與 耦合裔26中的頻率轉移參考組合之前,RF輸入信 號26以及 任何另外的數碼利用移動光學強度調變器(如上所述地,在 2〇第9圖所示之耦合器26上游)而調變頻梳產生器14之輸出。 低頻率低雜訊參考震盪器24提供一組時序參考信號至 合成為16以及至多頻調振盪器14。 在光檢測器18的輸出之可用的被調變跳頻梳被施 加至一組適合的5^放大器(未展示),然後被施加至一組用 16 200408212 於傳輸之天線(未展示),作為與使用本發明之應用相稱的通 訊信號或雷達脈波。 光檢測器18可以被製作為RF放大器之一部份,因此來 自,例如,調變器22之可用的RF光波外差式波形可作為被 5 供應至RF放大器之一組光學信號。一組RF放大器之可能的 實施例,被揭露於美國專利申請,標題為“可遠端定位之 RF 功率放大系統(Remotely Locatable RF Power Amplification System)” ,於2001年 11 月 15 曰建檔,序號為 第60/332368號;其對應的申請包含於2002年4月5日建檔之 10 序號為1〇/116854者。RF光波外差式波形可以被應用作為至 光纖113之單一輸入(展示於該申請之第2圖),接著光檢測器 18之功能將由檢測器302(展示於該申請之第2圖)所提供。如 果光檢測器18之輸出被採用作為放大器之輸入,如上述揭 露,標題為“可遠端定位之RF功率放大系統,,之美國專利 15申請,則光檢測器18之輸出可以被應用作為調變器1〇6(展 示於該申請之第2圖)之輸入。 RF光波多頻調頻梳產生器14可以使用許多種技術加以 製作。目前這波形產生器部分之較佳實施例為一多迴路、 多頻調光子振徵器14 ’其方塊圖展示於第3圖(稍後將來考 2〇第6圖、第9圖和第1〇圖討論包含另外的特點之一另外的方 塊圖)。該多迴路、多頻調光子振盪器14至少包含兩組迴路 ,其最好是具有一共用部份。一組光學調變器32最好是被 採用於共用部份中,而光波延遲通道34與36以及光檢測器 38與40則分別被採用於第一與第二迴路中。一組低雜訊電 17 200408212 氣放大器42及一組RF頻通濾波器44最好同時也被部署於迴 路共用部分上。雷射光最好是由雷射7〇所提供,其供應振 盪器14功率’該雷射光在調變器32之電氣輸入33被一組RF 信號所調變。該被調變之光波接著被分離成兩組支線,一 5組被連接到較短的光學延遲通道34,而另一組則被連接到 較長的光學延遲通道36。被兩組光檢測器38與4〇所感知之 在兩組光波通道中的光學信號,其之電氣輸出與下面的放 大和頻通濾波結合,並且被回授至調變器32,如第3圖所示 。頻通濾波器44設定被產生2RF多頻調頻梳頻譜的頻寬。 10兩組光檢測器38與40可以由單一光檢測器(參閱第1〇圖中 之檢測器39)所取代。 這多頻調振盪器14之操作原則如下所述。產生於回授 迴路中的Ik機電氣雜訊調變雷射光,該雷射光經由兩組光 學延遲通道34與36傳輸並且被光學檢測之後,再生式地被 I5回饋至調變器32。如果開放式迴路增益大於一,則這正回 授將產生震盡。如果需要,則放大器42可以被提供在迴路 共用部份以增加增益。該增益可以使用幫浦雷射(例如,第 6圖展不之型式—_參閱元件29)另外地被添加於光學迴路中 。在雙迴路光子錄器讀況巾,可能震盪料存在於頻 20率區間,該區間為兩組迴路(r#rL)之延遲時間的倒數之 正數倍數’其中較短迴路之延遲時間,而q為較長迴 路之延遲時間。但是,如果兩組回授迴路之開放迴路增益 的、,,心額大於-並且各回授迴路之開放迴路增益少於一,則 震盪將只在自兩組延遲迴路重疊產生模式之頻率發生。因 18 i僅^生在由較短迴路(Af==k 所隔開的模式。另一古品…。斤决疋之頻率Q間 _ ,晨盪态相位雜訊S(f)二次地隨著 I/,)2)光學延遲時間而減少··咐,)=績2;Γ)2(Γ L人、?是輸入雜訊對信號比率,而f,是偏移頻率。 兩組效應產生一多頻調、多迴路光子振盈器中,其 中该頻調間隔與相位雜訊可以獨立地被控制。 示物他_範_雙迴路、多頻調光子 /斤里測的RF頻,f。這振m具有兩組光纖光學延遲 ^路,各具有一組大約8公尺(或更長)之較短迴路以及-組 日士約1公里(或更長)之較長迴路。當較短迴路之長度別公尺 頻_隔大約為26職,其代表38奈秒之延遲時間 / ^圖展7F又:¾路多頻調光子㈣器中之其中—組震盈頻 肩的詳細R_gf,其指示出色的頻譜純度。其頻率跨度為 5KHz。較長迴路之長度最好是至少4〇或更多倍於較短迴路 之長度。 在另3¼例巾’乡頻調光子振|器可以使用光學放 大器(如第6圖所示)以取代電氣放大器(如先前參考第3圖所 討^而加以製作。錢實施财,各料最好包含一組隔 離心、-組Er摻雜或Yb/Er#雜之光纖區段27以及一組波 長刀。j夕工器(WDM)31。雖然幫浦雷射29及相關的价推雜 或Y b / E r摻雜之區肋僅可以被採用於其巾—組迴路中(如 果需要的話),但是各摻雜之光纖區段27最好是利用幫浦雷 射29加以推送。隔_25可以保持紐以正補方向⑽ 圖中的順時針方向)在迴財流動,並關時也可避免來自 200408212 幫浦雷射29之光線干擾調變器32之操作。WDM 31將來自幫 浦雷射29的光耦合進入迴路,並且避免光線干擾光檢測器 38與40的作用。如果需要,此兩組光檢測器38與4〇可被單 光檢測器39(如苐10圖所展示)所取代,並且如果需要,可 5使用兩組幫浦雷射29(各迴路各使用一組)。 可以使用許多技術以達成快速切換光學外差式合成器 16。參閱第7圖與第8圖的範例實施例。在第7圖與第8圖之 貫知例中,该合成器16包含兩組上述之雷射7〇與72。這此 雷射為相位鎖定。第一雷射70是一組固定波長雷射,而第 1〇二雷射72是快速可調之雷射。可以使用許多習知技術達成 這相位鎖定。其中一種技術,且是較佳之技術,展示於第7 圖中。該技術包含至多線主雷射76之不同線路的兩組雷射 70與72(附屬雷射)之光學射入鎖定。這些線路可以是:G) 核式鎖定主雷射之不同模式,(2)頻率調變主雷射之調變旁 5 ▼或者(3)多線雷射之不同相位鎖定模式(參閱先前技術參 考1與3所披露之頻梳產生器)。 一高穩定且低相位雜訊之單調RF參考振盪器78可以被 使用以從外部鎖定模式鎖定雷射76(如果使用上述的方案〇 ’以頻率調變主雷射76(如果使用上述的方案2),或者以相 位凋變多線雷射76(如果使用的方案3)。如上述第2圖所討論 可以利用另外的參考信號振盪器24而進一步地wRF參考 震靈器78穩定化或同步化。 被固定波長雷射70所饋送之多頻調頻梳產生器14的光 學輸出是一光學頻梳,其包含被RF頻梳所調變之雷射波長 20 200408212 。將這光學頻梳與光檢測器18或20中之第二雷射72的快速 可調波長結合,可產生-些可以在頻率範圍中快速切換(跳 動)之RF頻梳。跳頻區間由跨越第二雷射7 2之波長區間所決 定。藉由上述光學射入鎖定方法(參閱第7圖之實施例),這 5區間由相鄰模式或多線主雷射%旁帶之間的間隔所決定。 如果多線主雷射76之模式間隔為5GHz,並且頻梳之頻寬為 5GHz,則頻梳之中心頻率可以依任何順序快速地在5(}Ηζ 、10GHz、15GHz ’專荨之間跳動。因為這兩組雷射7〇與72( 如上所述)為相位鎖定,故產生之頻率可切換外差式頻調將 10具有良好的頻譜純度與低相位雜訊。應該注意,跳頻區間 可以比頻梳之頻寬較小。 另一種用於相位鎖定雷射70與72之技術,包含一組相 位鎖定迴路(參閱第8圖)。 第8圖之相位鎖定迴路實施例採用兩組雷射7 〇與7 2之 15外差式輸出,並且比較該輸出與RF相位檢測器中的外部RF 參考82,以便在混合器86之輸出產生一組誤差信號9〇,而 用以更正雷射70與72之波長。兩組雷射70與72之輸出被耦 合器85所搞合並且被產生外差式電氣信號之光檢測器87所 檢測。檢測器87之輸出最好是由頻率分割器84進行頻率分 20割,並且頻率分割器84之輸出被施加至混合器86。藉由這 方法’在兩組相位鎖定雷射7〇與72之間的波長差量可以在 等效於頻率分割器84之步驟中加以變化。如果需要連續的 調整’則RF參考82應該是可連續調整的。一種相位鎖定迴 路方法之變化包含使用大於{〇7參考之頻率的波長區間。頻 21 200408212 率分割器8 4將兩組雷射之外差式輸出分割成一較低的頻率 ,該頻率可以利用混合器86而與RF參考82進行比較,如第8 圖所示。跳頻區間接著將等效於分割器比率乘以可調的RF 參考82之最小級距。第8圖之實施例容許非常細微之跳動, 5 以致於該信號似乎是連續的。耦合器85之輸出27所具有的 跳動資訊可使用於相關的接收器上,例如,使用於雷達應 用裝置中。 這四種選擇(參考第7圖討論之三種選擇以及第8圖之 一種選擇)各具有不同的優點及缺點。一般而言,選擇(1)( 10 與第7圖相關者)產生非常純的頻調,易於在其中切換。選 擇(2)產生較少頻調。選擇(3)產生大量頻調,但是它們是不 純的。選擇(4)需要具有非常窄的線寬度之雷射或者具有非 常短的迴路延遲時間之相位鎖定迴路。 第7圖展示之LO選擇器80調整雷射72之自由運轉頻率 15或波長,以便匹配來自多線主雷射76之所需的線路輸出。 這是利用設定雷射72之溫度與驅動電流而達成。展示於第8 圖之LO選擇器80’設定雷射72之溫度以便得到該雷射所需 的自由運轉頻率或波長。實際雷射頻率或波長係利用相位 鎖定迴路控制其驅動電流而進行細微之調整。L〇選擇器8〇, 20同時也選擇可調振盪器82之頻率以及頻率分割器84之分割 比率。 第9圖是多迴路、多頻調光子振盪器14的方塊圖,該光 子振盪器具有一組光纖長度控制裝置92以及一組回授迴路 ,以便控制延遲線34與36之光纖長度。延遲線34與36一般 22 200408212 有足夠長度,以至於當它們改變長度以反應於環境溫度改 變時,該溫度改變將不利地影響振盪器14之相位。因此, 需要某些裝置以便補償或控制光纖34與36反應於環境溫度 改變而改變長度之傾向。在第9圖中,光纖長度控制裝置% 5可以是一種加熱及/或冷卻裝置,至少用於加熱及/或冷卻光 纖34與36以控制它們的長度,或者光纖長度控制装置92可 以實際地伸縮光纖34與36以便控制它們的長度。例如,光 纖長度控制裝置92可以包含調整光纖長度之壓電的光纖延 伸器。最好是包含一頻率分割器94、一頻調選擇濾波器96 10 、一混合器98以及一濾波器1〇〇之一組回授電路被採用以控 制裝置92。該頻率分割器分割調變器32,之輸出,而頻調選 擇遽波器96選擇被產生且頻率被縮減頻調的其中之一,以 便利用混合器98而比較來自參考震盪器24之可用的參考頻 調。混合器98之輸出被過濾以便移除不需要的混和產物, 15然後被應用作為對光纖長度控制裝置92之控制信號。以此 方式,光纖34與36之長度將因反應於光子振盪器14所產生 之頻率的改變而被調整。 展示於第9圖實施例之光學強度調變器,最好是被製作 成為電氣吸收調變器32f。電吸收調變器32f不僅調變雷射70 20 所供應之光波載波的振幅,並且產生一被饋送至回授電路 中之頻率分割器94的光電流93。另外,來自迴路之回授可 以在光檢測器38與40之輸出被得到。同時,兩組光檢測器 38與40可以由一組單一光檢測器139所取代,如第10圖之展 不〇 23 200408212 第10圖是相似於第9圖,但是它取代光纖長度控制裝置 92,而採用迴路之相位控制以便補償多迴路、多頻調光子 振盪器14中之光纖34與36環境的長度改變。光學相位移位 器91被置於多頻調頻梳產生器14之多迴路中,並且被採用 5以代替光纖長度控制裝置92,以補償光纖34與36之長度改 變。第9圖之回授電路被使用以控制光學相位移位器%。這 回授電路敲離-部份被光學檢測且被放大之多頻調波形以 便決定其偏離參考振盪器24之頻率與相位。 第1〇圖中僅展示-組接收迴路34與36的光線之光檢測 1〇 5 39。這僅是表面的簡化。—組光檢測器39似乎較兩組光 檢測器38與40簡單,但是使用一組光檢測器%通常需要在 兩、、且迴路之間的嚴遂、相位控制,以便讓兩組迴路之間的離 相情況不會導致光線不正確地相加(或甚至消除)。因此,對 於所有實施例而言(包含第10圖的實施例),使用兩組光檢測 為38與40(各組各與延遲線34與36相關)是較佳的。 多頻調光梳產生器14可以另外地具有先前技術之設計 ,例如,參考1或甚至可能上述的參考3之披露。此種設計 並非較佳的,因為其具有非連續性的輸出。 光子震盪器14之射入光源可能是多頻調啟動震盪所需 2〇的。一適當的射入光源機構被顯露於上述美國專利申請, 軚題為“多頻調光子振盪器之射入光源(Injecd⑽-此以丨邱 °f a Multi-tone Photonic Oscillator)" 〇 在本發明另一實施例中,多頻調光子振盪器14可以在 其光學回授通道中使用另外的迴路加以製作,如第u圖所 24 展不。該另外的迴路在多頻調光子振盪器14的長迴路中產 生一激發性Brillouin散射(SBS)之史竇克斯(St〇kes)光源。於 光子振盪器14之光纖迴路中使用SBS將使得振盪器14減弱 產生所被產生的那些頻調,其強度超過某些臨限值,下面 5將詳細地說明。將頻調之強度壓制在一臨限值會產生一多 頻調波形,使該頻調的強度更加均勻。更均勻的頻調強度 可以產生RF感知器系統更需要使用之RF載波波形,例如, 那些針對低攔截可能性目標而設計之系統。 相似於第3圖示出的多頻調光子震盪器14,展示於第u 圖之多賴光子振m 14包含—組具有_rf光波輸出之光 電子回授迴路。一組雷射70供應一組具有光學載波之光學 仏號至震盪H 14。-組光學調變器32調變來自雷射7〇的光 ,該雷射光產生一RF光波輸出,其之頻譜包含光學載波與 周麦方▼ 一般將產生兩組旁帶,其之頻率分別較光學載 15波高和低。對於一多頻調振盪器而言,其調變旁帶包含多 數個頻率頻調。光子振堡器i何以被使用以結合被連接到 光子振盈器14之輸出的光檢测器(於第u圖中未被展示出) 。絲檢測轉RF光波信號轉移成_組同樣具有多頻調頻 譜之RF信號。 ' 2〇 夕頻凋光子振盪器14之光電子饋送迴路包含兩組光學 支線或通道以及一組共用電氣與光學通道。該共用通道至 少包含調變器32、一組光麵合器(VOC)195或分割器、一組 電氣結合器(2: 1)197以及一組電氣帶通濾波器(BPF)44。該 共用通迢同時可能包含一組或多組電氣放大器(AMP)42與 25 200408212 光予放大器(〇A)201以及一組電氣或光學可變的相位移位 器(Α Φ)191。光耦合器195可以是可變化的,因而在其多數 輸出中之相對功率總數被改變。熟習相關技術者將瞭解, 依據本發明另外的實施例,某些構件之相對位置可以被改 5變或者某些構件可以被消除。 第一光學支線或通道至少包含一組光檢測器(?1))38以 及組光學延遲元件234。這延遲元件234可以是一段光學 波導或光纖。橫越第一光學支線與共用通道之信號的所有 時間延遲建立自光子振盪器14所產生之多頻調的頻率間隔 10 。2公尺之光纖長度將產生100MHz等級之頻調間隔。對於 依據本發明實施例之光子振盪器14而言,該頻率間隔最好 是大於激發性Brillouin散射(SBS)之增益頻寬。高品質光纖 之增益頻寬一般為30-50MHZ或以下。 第二光學通道包含另一光檢測器40以及光學構件,其 15 產生一組比第一通道較長之延遲。這些光學構件可以僅包 含一段長的光纖(>100公尺)。但是,在第11圖展示之多頻 調光子振盪器14中,第二通道則利用SBS效應,如下面之詳 細說明。 如所展示,第11圖展示之多頻調光子振盪器14善用激 20 發性Brillouin散射(SBS),其一般是發生於光纖中之不必要 的非線性效應。SBS是一種習知的效應,特別發生於一長段 的均勻光纖或高Q值光纖共振器中且具有高光學功率位準 的情況。於G.P. Agrawal所著之《非線性光纖(Nonlinear FiberFigure 3 is a multi-loop, multi-frequency photon oscillator B. Figure 4 shows the multi-loop, multi-frequency ^^, and frequency spectrum graphs; 1-the Rf being measured is rigid; Figure 5 is a dual-loop (1 km long loop) , 8 meters of short-return photon "Detail of the spectrum of the device-group RF frequency tone, a group of very high spectral purity;-Figure 6 is a multi-loop, multi-frequency gain amplifier with optical amplification circuit Figure 10 shows the figure of the fast switching of the external device based on the optical injection; Figure 8 shows the figure of the fast switching of the external device based on the phase-locked loop; Figure 15 shows the multiple circuit. 、 Block diagram of multi-frequency tuned photoresonator and block diagram of the fast-tuning optical switching device for laser switching and laser wavelength lasers. The photon oscillator has a group of optical fiber length control device. Optical fiber length; 20 but two loops' but no fiber length control device, ㈣ loop of fiber length =: compensation in multiple loops, multiple loops Figure 11 is multi-frequency tone Φ i Figure 12 is shown at the 2 sub-edge Block diagram of different embodiments of the device. Signal spectrum. Fig. 13 of different points of optics is a block diagram of another embodiment of a multi-frequency dimming mode, especially in the thousands. 14 200408212 [Embodiment] The present invention relates to a unique method that uses homogeneous optical heterodyne to generate chirp speed. Frequency jitter or jitter, and multi-frequency RF combs on light wave carriers5, thus making it difficult to detect signals transmitted on the carrier. In the following description of the present invention, the concept of optical heterodyne is first discussed to provide background information Investigate Figure 3 to Figure 6 to illustrate two sets of embodiments for generating a set of frequency transferable comb signals. Next, refer to Figures 7 and 8 to explain many examples of generating frequency hopping waveforms. Finally (Refer to Fig. 9-Fig. 11) Discuss one of the two groups 10 for generating frequency-transferable comb signals to improve the stability correction. Fig. 2 is a block diagram of the agile waveform generator 12. .Refer to Figure 3 and Figures 6-10 for more detailed description of the two sets of main parts 14, a. The first main part is a photonic oscillator type, that is, a multi-frequency dimming comb generator 15 generator 14 , Which is generated on the optical carrier Series of low-phase noise RF combs. The second main part is a fast-switching optical heterodyne synthesizer 16 which contains two sets of phase-locked lasers 70 and 72 (see Figures 7 and 8). A laser 70 feeds the optical comb generator 14. The second laser 72 is a set of fast-tunable single-tone lasers whose frequency shifts the reference output light and uses photodetection in the photodetector 20 to measure the oscillation of the photons. The optical output of the amplifier 14 is heterodyne processed to generate a frequency-hopping RF comb. (Because the "oscillator" 14 "generates" the RF comb, the component 14 is sometimes called an oscillator and sometimes called Generator). The local oscillator (LO) selector 80 controls the frequency jump. The two wavelength offsets of the two lasers determine the frequency shift of the multi-frequency RF comb. In addition, the optical phase modulation 15 200408212 (not shown) can also be plugged into the optical channel of a tunable wavelength laser, which will cause the multi-frequency RF comb in the frequency domain to further shake. This effect, combined with the above frequency hopping mechanism, makes the modulated 2RF transmission signal very difficult to be intercepted. 5 An optical coupling is the output of the 26-comb frequency comb generator 14 and the output of the laser with adjustable wavelength in the combiner 16. As shown in Figure 2, the combined output can be modulated by using the RF transmission signal 28 of the light intensity modulation 22. In FIG. 2, the optical intensity modulator 22 is shown downstream of the optical coupler 26. In addition, the optical intensity modulator 22 may be placed between the generator 14 and the coupler% 10, as shown in block 22. Moreover, the output of the coupler 26 can be further modulated by another pulse wave or multi-phase digital (or the transmission signal can be modulated by these digitals) to further reduce the possibility of detection (interception). A pulse wave or multi-phase digital can be applied to the RF signal input 28 or to a separate optical intensity modulator in series with the modulator 22. 15 The second output of the photocoupler 26 can be used to generate a set of local oscillator reference signals from the photodetector 20, which can be conveniently used in a co-optic receiver. In various embodiments, before the modulated output is combined with the frequency-shifted reference in the coupling 26, the RF input signal 26 and any additional digital utilize a mobile optical intensity modulator (as described above, at 2 °). Upstream of the coupler 26 shown in FIG. 9) and the output of the variable frequency comb generator 14 is adjusted. The low-frequency low-noise reference oscillator 24 provides a set of timing reference signals to a composite of 16 and a multi-tone oscillator 14. The modulated frequency hopping combs available at the output of the photodetector 18 are applied to a suitable set of 5 ^ amplifiers (not shown) and then to a set of 16 200408212 transmitting antennas (not shown) as Communication signals or radar pulses commensurate with applications using the invention. The photodetector 18 can be made as part of an RF amplifier, so the available RF light heterodyne waveforms from the modulator 22, for example, can be supplied as a set of optical signals to the RF amplifier. A set of possible embodiments of RF amplifiers is disclosed in the US patent application, entitled "Remotely Locatable RF Power Amplification System", filed on November 15, 2001, serial number It is No. 60/332368; its corresponding application includes those with a serial number of 10/116854, which were filed on April 5, 2002. The RF light wave heterodyne waveform can be applied as a single input to the optical fiber 113 (shown in Figure 2 of the application), and then the function of the photodetector 18 will be provided by the detector 302 (shown in Figure 2 of the application) . If the output of the photodetector 18 is used as the input of an amplifier, as disclosed above, the application titled "Remotely Positionable RF Power Amplification System," US Patent 15, then the output of the photodetector 18 can be used as a regulator. The input of the transformer 10 (shown in Figure 2 of the application). The RF light wave multi-frequency FM comb generator 14 can be made using many techniques. At present, the preferred embodiment of the waveform generator part is a multi-loop. The block diagram of the multi-frequency photon oscillator 14 ′ is shown in FIG. 3 (see FIG. 6, FIG. 9 and FIG. 10 for a future discussion of another block diagram including one of the additional features). The multi-loop, multi-frequency photon oscillator 14 includes at least two sets of loops, which preferably have a common portion. A set of optical modulators 32 are preferably used in the common portion, and the light delay channel 34 And 36 and photodetectors 38 and 40 are used in the first and second loops respectively. A set of low-noise electrical 17 200408212 air amplifier 42 and a set of RF frequency pass filters 44 are also preferably deployed in the loop at the same time. On the common part. The laser light is the best Provided by the laser 70, which supplies the power of the oscillator 14 'The laser light is modulated by a set of RF signals at the electrical input 33 of the modulator 32. The modulated light wave is then separated into two sets of branch lines, One of the five groups is connected to the shorter optical delay channel 34, and the other is connected to the longer optical delay channel 36. The two groups of light detectors 38 and 40 perceive the difference between the two optical wave channels. Optical signals, whose electrical output is combined with the following amplification and frequency pass filtering, and is fed back to the modulator 32, as shown in Figure 3. The frequency pass filter 44 sets the frequency of the 2RF multi-frequency FM comb spectrum. Wide. 10 sets of photodetectors 38 and 40 can be replaced by a single photodetector (see detector 39 in Fig. 10). The operating principle of this multi-tone oscillator 14 is as follows. Generated from feedback The electrical noise of the Ik machine in the loop modulates the laser light. After the laser light is transmitted through two sets of optical delay channels 34 and 36 and is optically detected, it is regeneratively fed back to the modulator 32 by I5. If the open loop gain is greater than One, then this positive feedback will be shaken out. If needed, Amplifier 42 can be provided in the common part of the loop to increase the gain. This gain can be additionally added to the optical loop using a pump laser (for example, the type shown in Figure 6-see element 29). In the dual loop Photon recorder reading condition towels may exist in the frequency 20 frequency interval, which is a positive multiple of the inverse of the delay time of the two sets of loops (r # rL). Among them, the delay time of the short loop is longer, and q is longer The delay time of the loop. However, if the open loop gain of the two groups of feedback loops is greater than-and the open loop gain of each feedback loop is less than one, then the oscillation will only generate a pattern from the overlap of the two sets of delay loops. The frequency of occurrence occurs because 18 i is only born in a mode separated by a short circuit (Af == k. Another antique ... The frequency Q between 疋 and 疋, the phase noise S (f) of the morning swing state decreases twice with I /,) 2) the optical delay time ··, == 2; Γ) 2 (Γ L Human and? Are the ratio of input noise to signal, and f is the offset frequency. Two sets of effects produce a multi-tone, multi-loop photon oscillator, where the tone interval and phase noise can be controlled independently 。 Shown he _ Fan _ dual-loop, multi-frequency photon / kilogram measured RF frequency, f. This oscillator m has two sets of fiber optical delay, each with a set of about 8 meters (or longer). Shorter circuits and longer circuits with a length of about 1 km (or longer). When the length of the shorter circuits is different in meters, the interval is about 26 positions, which represents a delay time of 38 nanoseconds / ^ Photo exhibition 7F: Among the ¾-way multi-frequency photon generators, the detailed R_gf of the set of vibration frequency shoulders indicates excellent spectral purity. Its frequency span is 5KHz. The length of the longer loop is preferably at least 40 or more More than twice the length of the shorter loop. In another 3¼'s case, the FM photon oscillator can use an optical amplifier (as shown in Figure 6) instead of an electrical amplifier (as previously referred to It is discussed in Figure 3 and made. Money is used to make money, and each material preferably includes a set of isolated cores, a set of Er-doped or Yb / Er # hybrid fiber sections 27, and a set of wavelength knives. WDM) 31. Although pump laser 29 and related valence or Y b / E r doped zone ribs can only be used in their towel-set loops (if required), but each doped fiber Segment 27 is best pushed by pump laser 29. The interval of _25 can keep the New Zealand in a positive direction (clockwise in the figure) in the return of wealth, and can also avoid from 200408212 pump laser when closed. The 29 light interferes with the operation of the modulator 32. The WDM 31 couples the light from the pump laser 29 into the loop and prevents the light from interfering with the effects of the light detectors 38 and 40. If necessary, these two sets of light detectors 38 and 40 40 can be replaced by a single photodetector 39 (shown in Figure 10), and if needed, two sets of pump lasers 29 can be used (one for each circuit). Many techniques can be used to achieve fast switching Optical heterodyne synthesizer 16. Refer to the example embodiments of Figs. 7 and 8. In Figs. 7 and 8 In the conventional example, the synthesizer 16 includes two groups of the lasers 70 and 72 described above. These lasers are phase-locked. The first laser 70 is a group of fixed-wavelength lasers, and the 102nd laser 72 is a fast adjustable laser. This phase lock can be achieved using many conventional techniques. One of these techniques, and the better one, is shown in Figure 7. This technique includes at most different lines of the main laser 76. Two groups of lasers 70 and 72 (auxiliary lasers) are optically locked. These lines can be: G) Different modes of nuclear-locked main lasers, (2) Frequency modulation of main lasers next to modulation 5 ▼ Or (3) different phase-locking modes of multi-line lasers (see the frequency comb generators disclosed in the prior art references 1 and 3). A monostable RF reference oscillator 78 with high stability and low phase noise can be used to lock the laser 76 from the external lock mode (if using the above scheme 0 'to modulate the main laser 76 at a frequency (if using the above scheme 2) ), Or phase-muted multi-line laser 76 (if option 3 is used). As discussed in Figure 2 above, an additional reference signal oscillator 24 can be used to further stabilize or synchronize the wRF reference tremor 78. The optical output of the multi-frequency FM comb generator 14 fed by the fixed-wavelength laser 70 is an optical frequency comb containing a laser wavelength 20 200408212 modulated by the RF frequency comb. The optical frequency comb and light detection The combination of the fast adjustable wavelength of the second laser 72 in the transmitter 18 or 20 can generate RF combs that can be quickly switched (beat) in the frequency range. The frequency hopping interval consists of the wavelength of the second laser 72 Determined by the interval. With the above-mentioned optical injection locking method (refer to the embodiment in FIG. 7), these 5 intervals are determined by the interval between adjacent modes or the sidebands of the multi-line main laser. If the multi-line main laser The mode interval of shooting 76 is 5GHz, and the frequency comb With a bandwidth of 5GHz, the center frequency of the comb can quickly jump between 5 () Ηζ, 10GHz, and 15GHz in any order. Because these two groups of lasers 70 and 72 (as described above) are in phase Locked, so the frequency-switchable heterodyne tone will have a good spectral purity and low phase noise. It should be noted that the frequency hopping interval can be smaller than the bandwidth of the frequency comb. Another type is used for phase-locked lasers The technology of 70 and 72 includes a set of phase-locked loops (see Figure 8). The phase-locked loop embodiment of Figure 8 uses two sets of laser 70 and 72 2 15 heterodyne outputs, and compares the output with The external RF reference 82 in the RF phase detector is used to generate a set of error signals 90 at the output of the mixer 86 to correct the wavelengths of the lasers 70 and 72. The outputs of the two lasers 70 and 72 are coupled by the coupler 85 is combined and detected by a light detector 87 that generates a heterodyne electrical signal. The output of the detector 87 is preferably divided by the frequency divider 84 into 20 frequencies, and the output of the frequency divider 84 is applied to the mix 86. By this method 'phase locked in two groups The difference between the wavelengths between 70 and 72 can be changed in a step equivalent to frequency divider 84. If continuous adjustment is needed, then RF reference 82 should be continuously adjustable. Variations in a phase-locked loop method Includes the use of wavelength intervals greater than the reference frequency of {〇7. Frequency 21 200408212 rate divider 8 4 divides the two sets of laser heterodyne output into a lower frequency, which can be compared with RF reference 82 using the mixer 86 Make a comparison, as shown in Figure 8. The frequency hopping interval is then multiplied by the minimum step equivalent to the divider ratio multiplied by the adjustable RF reference 82. The embodiment of Figure 8 allows very fine beats, 5 such that The signal seems to be continuous. The jitter information possessed by the output 27 of the coupler 85 can be used in related receivers, for example, in radar applications. Each of these four options (three options discussed in Figure 7 and one in Figure 8) has different advantages and disadvantages. In general, choosing (1) (10 is related to Figure 7) produces a very pure tone, which is easy to switch among. Choice (2) produces fewer tones. Choice (3) produces a large number of tones, but they are impure. Choice (4) requires a laser with a very narrow line width or a phase locked loop with a very short loop delay time. The LO selector 80 shown in Figure 7 adjusts the free running frequency 15 or wavelength of the laser 72 to match the required line output from the multi-line main laser 76. This is achieved by setting the temperature of the laser 72 and the drive current. The LO selector 80 'shown in Fig. 8 sets the temperature of the laser 72 in order to obtain the free operating frequency or wavelength required for the laser. The actual laser frequency or wavelength is fine-tuned by using a phase-locked loop to control its drive current. The L0 selectors 80 and 20 also select the frequency of the adjustable oscillator 82 and the division ratio of the frequency divider 84. Fig. 9 is a block diagram of a multi-loop, multi-frequency tuned photon oscillator 14 having a set of fiber length control devices 92 and a set of feedback loops to control the fiber lengths of the delay lines 34 and 36. The delay lines 34 and 36 are generally 22 200408212 long enough that when they change length to reflect changes in ambient temperature, the temperature change will adversely affect the phase of the oscillator 14. Therefore, some means are needed to compensate or control the tendency of the optical fibers 34 and 36 to change length in response to changes in ambient temperature. In FIG. 9, the optical fiber length control device% 5 may be a heating and / or cooling device, at least for heating and / or cooling the optical fibers 34 and 36 to control their lengths, or the optical fiber length control device 92 may actually extend and contract. Optical fibers 34 and 36 in order to control their length. For example, the fiber length control device 92 may include a piezoelectric fiber extender that adjusts the fiber length. Preferably, a feedback circuit comprising a frequency divider 94, a tone selection filter 96 10, a mixer 98 and a filter 100 is used to control the device 92. The frequency divider divides the output of the modulator 32, and the tone selection chirper 96 selects one of the generated and reduced frequency to use the mixer 98 to compare the available ones from the reference oscillator 24. Reference tone. The output of the mixer 98 is filtered to remove unwanted mixed products, and 15 is then applied as a control signal to the fiber length control device 92. In this manner, the lengths of the optical fibers 34 and 36 will be adjusted in response to changes in the frequency generated by the photonic oscillator 14. The optical intensity modulator shown in the embodiment of Fig. 9 is preferably manufactured as an electric absorption modulator 32f. The electric absorption modulator 32f not only modulates the amplitude of the light wave carrier supplied by the laser 7020, but also generates a photocurrent 93 that is fed to the frequency divider 94 in the feedback circuit. In addition, feedback from the loop can be obtained at the outputs of the photodetectors 38 and 40. At the same time, the two sets of photodetectors 38 and 40 can be replaced by a set of single photodetectors 139, such as shown in Figure 10.23 200408212 Figure 10 is similar to Figure 9, but it replaces the fiber length control device 92 The phase control of the loop is used to compensate for the change in the length of the environment of the optical fibers 34 and 36 in the multi-loop, multi-frequency photon oscillator 14. The optical phase shifter 91 is placed in the multiple loops of the multi-frequency FM comb generator 14, and 5 is used instead of the optical fiber length control device 92 to compensate for the length change of the optical fibers 34 and 36. The feedback circuit of Fig. 9 is used to control the optical phase shifter%. This feedback circuit knocks out-a portion of the multi-tone waveform that is optically detected and amplified to determine its frequency and phase deviation from the reference oscillator 24. In Fig. 10, only the light detection of the groups of receiving circuits 34 and 36 is detected. This is just a simplification of the surface. — The group of photodetectors 39 seems simpler than the two groups of photodetectors 38 and 40, but using a group of photodetectors% usually requires strict and phase control between the two and the circuits in order to allow the two groups of circuits to The out-of-phase condition does not cause the rays to be incorrectly added (or even eliminated). Therefore, for all embodiments (including the embodiment in FIG. 10), it is preferable to use two groups of light detections of 38 and 40 (each group is related to the delay lines 34 and 36). The multi-frequency dimming comb generator 14 may additionally have the design of the prior art, for example, the disclosure of reference 1 or even the above-mentioned reference 3. This design is not preferred because it has a discontinuous output. The incident light source of the photon oscillator 14 may be required for the multi-frequency to start the oscillation. An appropriate incident light source mechanism is disclosed in the above-mentioned U.S. patent application, entitled "Injecd⑽-Multi-tone Photonic Oscillator (Injecd)-This is Qiu ° Multi-tone Photonic Oscillator" " In another embodiment, the multi-frequency photonic oscillator 14 can be fabricated using another circuit in its optical feedback channel, as shown in Figure 24. This additional circuit is implemented in the multi-frequency photonic oscillator 14 A Stokes light source that generates an excited Brillouin scattering (SBS) in a long loop. Using SBS in the fiber optic circuit of the photon oscillator 14 will cause the oscillator 14 to attenuate those tones that are generated, Its intensity exceeds certain thresholds, which will be explained in detail below. Suppressing the intensity of a tone at a threshold will produce a multi-tone waveform, making the tone more uniform in intensity. A more uniform tone intensity It can generate RF carrier waveforms that RF perceptron systems need more, such as those designed for targets with low probability of interception. Similar to the multi-frequency photon oscillator 14 shown in Figure 3, shown in Figure u many The photon oscillator m 14 contains a group of photoelectronic feedback loops with _rf light wave output. A group of laser 70 supplies a group of optical signals with an optical carrier to the oscillating H 14.-A group of optical modulators 32 modulate from the laser 70% of the light, the laser light produces an RF light wave output, the spectrum of which contains optical carrier and Zhou Maifang ▼ generally two sets of sidebands will be generated, the frequency of which is 15 waves higher and lower than the optical carrier. For a multi-frequency oscillator In terms of its modulation sideband, it contains most frequency tones. Why is the photonic vibrator i used in combination with a photodetector connected to the output of the photonic resonator 14 (not shown in figure u) ). The wire detection and conversion RF light wave signal is transferred to a group of RF signals that also have a multi-frequency spectrum. The common channel includes at least a modulator 32, a set of smooth surface combiners (VOC) 195 or splitters, a set of electrical couplers (2: 1) 197, and a set of electrical band-pass filters (BPF) 44. The shared communication may also contain a group Multiple sets of electrical amplifiers (AMP) 42 and 25 200408212 optical preamplifiers (〇A) 201 and a set of electrically or optically variable phase shifters (A Φ) 191. The optical coupler 195 can be variable, so in The relative total power in most of its outputs is changed. Those skilled in the relevant art will understand that according to other embodiments of the present invention, the relative positions of certain components may be changed or certain components may be eliminated. The channel includes at least a set of photodetectors (? 1)) 38 and a set of optical delay elements 234. This delay element 234 may be a length of optical waveguide or optical fiber. All time delays of the signal across the first optical branch line and the common channel are established from the multi-tone frequency interval 10 generated by the photonic oscillator 14. A fiber length of 2 meters will produce a tone interval of 100MHz. For the photon oscillator 14 according to the embodiment of the present invention, the frequency interval is preferably larger than the gain bandwidth of the excited Brillouin scattering (SBS). The gain bandwidth of high-quality fiber is generally 30-50MHZ or below. The second optical channel contains another photodetector 40 and an optical component, 15 of which produces a longer delay than the first channel. These optical components may contain only a length of optical fiber (> 100 meters). However, in the multi-frequency photonic oscillator 14 shown in Fig. 11, the second channel uses the SBS effect, as described in detail below. As shown, the multi-frequency photonic oscillator 14 shown in FIG. 11 makes good use of excited 20 Brillouin scattering (SBS), which is generally an unwanted non-linear effect occurring in an optical fiber. SBS is a well-known effect, especially in the case of a long section of uniform fiber or high-Q fiber resonator with high optical power level. Nonlinear Fiber by G.P. Agrawal
Optics、》一書(Academic Press,1995)詳細地說明 SBS。當 26 200408212 SBS發生時,沿前進方 入沿反方向傳輸之光二的某些能量被搞合進 ’其與梦(光纖之構成材料^"種7^纖之非線性效應 關。基本上,向 $種震盧式刺激模式(聲子)有 5 10 15 20 向傳輸光(在-向下光子被消除以產生反 當能量與動量之聲子。^ _Vs)之光子以及適 、, _ °移位之數量通常稱為史竇克斯 而夕_/亚可以表示成VB=2V—。對1.W波長之光 ,,vB近似於11GHz,其巾哺㈣為光纖中聲音和光線 的速率’而vP是向前傳輸光之光學頻率。該邮效應具有有 限的頻寬,其-般被敘述為歸1〇也增益頻寬。對Μ随之 矽光纖而言,這頻寬ΔνΒ大約為3〇-5〇MHz,但是可以更寬( 如果光纖中具有由於製造過程、溫度或壓力變化而產生之 異質)。如果向前傳輸光包含多數個具有大於頻寬之頻 率間隔的頻調,則各頻調將獨立地與矽媒體互動。 對於小的信號,反相傳輸史竇克斯光束之增長可以描 述成一種指數關係’ exP[g(v)(Pp/Ac)Leff]。其中,㊂卜)為增 益係數,PP為向前傳輸’’幫浦π功率,Ac為光纖之有效核心 區域,而Leff為有效的光纖長度(亦即,[l-exp(-a [)]/α,其 中L為光纖長度而a為吸收係數)。g(v)具有峰iVs==Vp_VB,Optics, (Academic Press, 1995) explains SBS in detail. When 26 200408212 SBS occurred, some of the energy of the light two transmitted along the forward side and in the opposite direction was combined into 'It is related to the non-linear effect of the dream (the constituent material of optical fiber ^ " 7 kinds of fiber). There are 5 10 15 20 directional stimulus modes (phonons) that transmit light (in-down photons are eliminated to produce phonons of opposite energy and momentum. ^ _Vs) photons and appropriate, _ ° The number of shifts is often referred to as Stokes, and can be expressed as VB = 2V—. For light with a wavelength of 1.W, vB is approximately 11GHz, and its towel feeds the speed of sound and light in the fiber. 'And vP is the optical frequency of forward transmission light. The post effect has a limited bandwidth, which is generally described as returning to 10 and gain bandwidth. For M and silicon fiber, this bandwidth ΔνΒ is approximately 30-50 MHz, but can be wider (if the fiber has heterogeneity due to manufacturing process, temperature, or pressure changes). If the forward transmission light contains a plurality of tones with a frequency interval greater than the bandwidth, then Each tone will interact with the silicon media independently. For small signals, reverse transmission The growth of the Beam beam can be described as an exponential relationship 'exP [g (v) (Pp / Ac) Leff]. Among them, ㊂) is the gain coefficient, PP is the forward transmission `` puπ power, and Ac is the fiber The effective core area, and Leff is the effective fiber length (that is, [l-exp (-a [)] / α, where L is the fiber length and a is the absorption coefficient). g (v) has a peak iVs == Vp_VB,
以及頻寬ΔνΒ之羅倫茲(Lorentzian)線形狀。對於純矽光纖 而言,g(vs)具有大約5x10 Ucm/W之值並且與波長無關。SBS 是一種激發性轉換處理程序,其可以被描述成具有一組臨 限。對於一些情况,例如,光學功率位準在該臨限之上, 該處理程序是玎觀的。若為該臨限之下的情況,則該處理 27 200408212 程序是較小的。許多通常型式之光纖的1550奈米波長之sbS 臨限已經被量測(參閱,C.C· Lee和S. Chi之《IEEE Photonic Technology Letters,2000,vol· 12,no· 6》第 672頁),例如 ,25公里長之光纖的臨限通常在5-l〇mW之間。應注意到, 5 這是各頻率區別的頻調之臨限,其大於SBS頻寬。對於輸入 功率較高於SBS臨限幫浦功率Pthres而言,傳輸功率被壓制於 大約(Pthres)exp(- a L)並且超出功率(pp_pthres)被轉移成一強 烈反向傳輸之史竇克斯光束。由於激發性散射過程中的指 數增益’互動之有效頻寬被減低至△外/仏义咐)1/2。如果該 10支線包含足夠之光纖長度並且多頻調中具有高光功率位準 ’貝〗SBS在光子震盈器14之長支線中是重要的。 第12圖展示第11圖所示之光子振盪器的SBS效應,其同 時展示RF光波信號中的兩組調變旁帶。第12圖之線a展示輸 入該光纖之光頻譜。這頻譜同時也對應於第u圖點,v,之可 15見的頻譜(在緊接光耦合器195之光學放大器201的輸出)。第 12圖之線0展示自光纖輸出之向前傳輸光所具有的頻譜。此 頻譜同時也對應於第11圖之點?可見的頻譜(在循環器211 之輸出)。應注意,各頻調中之功率已經被壓制至一臨限值 。该功率被轉移成反向傳輸光,其頻譜展示於第12圖之線b。 ί0風一般很難達成SBS壓制效應明顯需要的各頻調之高光 子光率。多頻調光子振盪器14之其他組件提供一種方法以 達成=射之向前傳輪光中SBS被壓制於較低位準之光學功 率。第U圖展示之光子振蘯器14包含另外的光學支線或迴 、言、路包έ兩組光學循環器(CIR)211、一段光纖251以 28 200408212 及-短或多組光學放大器20卜該迴路同時也可以包含可變 光學衰減器213。來自第二光學支線之史竇克斯光束利用= 組循環器211而被導入另外的光學迴路中。在相反方向被射 入第二光學支紅前,這史竇切光束減大。自迴路被 5射出之史竇克斯光束作用如同第二光學支線光纖251中之 SBS的光源^該光源是有效的,因為SBS同時取決於反向傳 輸史竇克斯光束以及向前傳輸光之強度。得自另外迴路中 之各光學放大器的增益可以大於2〇dB。因此,入射之向前 傳輸光的SBS功率臨限可以被大幅地減低。 · 10 如上之簡單討論,第12圖展示可以在第11圖展示之光 子震盡器的點,V、”b,,與"C"觀察到的頻譜。應注意,退出 第二支線之信號的頻譜(如第12圖之線c所展示)較進入第^ - 之線之信號的頻譜(如第12圖之線b所展示)具有更一致之強 度的頻調。同時,光學載波頻率295之功率被減低。 15 在本發明之另一實施例中,多頻調光子震盪器14可以 «光學回授通道中使用不同迴路之組態而加以製作,# # 第13圖所不。展示於第13圖之光子震盪㈣具有不同的迴 «作,其提供產生SBS社竇克斯光於第二光學通道中。 藉由這種方式’ -小部分之輸入信號(―般為〇MmW)被饋 2〇送進入再循環的環路中。該環路包含—光纖迴路%卜一組 光學循壤器211以及用以搞合光進出該環路之& 2輛合器 223。心衣路重複循環地輸入光(以頻率外)以及由於娜產 生於%路中的史竇克斯移位光(以頻率心由於重複循環, 故環路内SBS震盪之臨限幫浦功率被減低。該臨限被設定, 29 200408212 因而所有或幾乎所有的頻調產生可觀的史竇克斯移位能量 。一部份來自環路之史竇克斯移位光被敲離並且被饋送進 入主要SBS光纖(在第二光學支線中)之遠端,因此它反向傳 輸至運送信號之光線。在主要SBS光纖中,在Vs之史寶克斯 移位光線之BriUoum放大將各種入射的頻調壓制在外。如展 示於第11®之光子振盪器,史竇克斯光源被提供於sbs效應 10 15 20 第I3圖展*之光子震mnu的第二絲支線包含一纽 光學隔離H(ISO)217、-組光學分割器(1χ 2)221、一段光 纖(主要SBS光纖)251以及一組光學循環器2丨丨。這支線同時 也包含第二光學循彻211,其提供心監視支線中史寶克 斯光的輸出埠。該隔離器217以及循環器211避免史寶克期 光束以及史冑克_位解構件槪進人光子㈣器以 共用通道中。自光學分割器221輸出的__部份光_合進入 主要SBS光纖251。另—部分被輕合進人環路中。與該環銘 相關的光學循環器211將被耗合進入環路之信號光自被舞 合在環路外之史竇克斯光束分離出。Μ耗合器223將一部 份之信號光搞合進人環路中,而將-部份之史竇克斯光(自 環路中二Β啦知於環外。該環路的最小長度以及: X耦σ為223之輕合強度被選擇以確保可產生足夠功率之 史寶克斯光源。該環路同時也可以包含另外的器 2〇1,其導致史竇克斯光源之放大。 展不於弟13圖之杳從 四 重歿循%的環路是一組光學共振器, 其可以用各具有~線會々, 見之一組共振頻率而加以描述。因為And a Lorentzian line shape with a bandwidth ΔνΒ. For pure silicon fiber, g (vs) has a value of about 5x10 Ucm / W and is independent of wavelength. SBS is an motivating conversion handler that can be described as having a set of thresholds. For some cases, for example, the optical power level is above the threshold, the process is superficial. If it is the case below this threshold, the procedure 27 200408212 procedure is smaller. The sbS threshold of 1550 nanometer wavelengths of many common types of fibers has been measured (see, CC · Lee and S. Chi, IEEE Photonic Technology Letters, 2000, vol · 12, no · 6, p.672), For example, the threshold for a 25 km fiber is usually between 5 and 10 mW. It should be noted that this is the threshold of different frequency tones, which is larger than the SBS bandwidth. For input power that is higher than the SBS threshold pump power Pthres, the transmission power is suppressed to approximately (Pthres) exp (-a L) and the excess power (pp_pthres) is transferred into a Studks beam with a strong reverse transmission . Due to the exponential gain in the excitation scattering process, the effective bandwidth of the interaction is reduced to Δout / 仏). If the 10 branches contain sufficient fiber length and have high optical power levels in multi-tones, SBS is important in the long branch of the photonic oscillator 14. Figure 12 shows the SBS effect of the photon oscillator shown in Figure 11, which also shows two sets of modulated sidebands in the RF light wave signal. Line a in Fig. 12 shows the optical spectrum of the optical fiber input. This spectrum also corresponds to the visible spectrum at point u, v, (at the output of the optical amplifier 201 next to the optical coupler 195). Line 0 in Figure 12 shows the frequency spectrum of forward transmitted light output from the fiber. This spectrum also corresponds to the point of Figure 11? Visible spectrum (output at circulator 211). It should be noted that the power in each tone has been suppressed to a threshold. This power is transferred into reverse transmission light, and its spectrum is shown on line b in Figure 12. It is generally difficult to achieve the high photon luminosity of each frequency that is obviously required by the SBS suppression effect. The other components of the multi-frequency photonic oscillator 14 provide a way to achieve optical power in which the SBS in the forward pass light is suppressed to a lower level. The photon vibrator 14 shown in Figure U includes two additional optical spur lines or two sets of optical circulator (CIR) 211, a piece of optical fiber 251 to 28 200408212, and-short or multiple sets of optical amplifiers 20 The loop may also include a variable optical attenuator 213. The Stokes beam from the second optical branch line is introduced into another optical circuit using the group circulator 211. This sinusoidal beam becomes larger before being injected into the second optical branch in the opposite direction. The Stokes beam emitted from the loop 5 acts as the light source of the SBS in the second optical branch fiber 251. This light source is effective because SBS depends on both the reverse transmission of the Stokes beam and the forward transmission of light. strength. The gain from each optical amplifier in the other loop can be greater than 20 dB. Therefore, the SBS power threshold of the incident forward transmission light can be greatly reduced. · 10 As briefly discussed above, Fig. 12 shows the points of the photon killer that can be shown in Fig. 11, V, "b," and the observed spectrum of "C". It should be noted that the signal exiting the second branch line The frequency spectrum (as shown by line c in FIG. 12) has a more consistent intensity tone than the frequency spectrum of the signal entering the line ^-(as shown by line b in FIG. 12). At the same time, the optical carrier frequency 295 The power is reduced. 15 In another embodiment of the present invention, the multi-frequency tuned photon oscillator 14 can be made using the configuration of different loops in the optical feedback channel, which is not shown in Figure 13. The photon oscillator in Fig. 13 has a different response, which provides the generation of SBS Doux light in the second optical channel. In this way '-a small part of the input signal (typically 0MmW) is Feed 20 into the recirculating loop. The loop contains-a fiber optic circuit, a set of optical loopers 211, and & 2 combiners 223 for coupling light in and out of the loop. Heart Road Repeatedly cyclically input light (out of frequency) and Stokes due to Na generated in% Bit light (due to the repetition of the frequency center, the threshold power of the SBS oscillation in the loop is reduced. The threshold is set, 29 200408212, so all or almost all of the tones produce considerable Stokes shifts Energy. Part of the Stokes shift light from the loop is knocked off and fed into the far end of the main SBS fiber (in the second optical spur line), so it travels back to the light carrying the signal. In the main SBS fiber, the BriUoum amplification of the Spokes shift light of Vs suppresses various incident tones. As shown in the 11th photon oscillator, the Stux light source is provided for the sbs effect. 10 15 20 The second wire branch of photon vibration mnu in I3 exhibition * includes a new optical isolation H (ISO) 217, a group of optical splitters (1 × 2) 221, a section of optical fiber (main SBS fiber) 251, and a group of optical circulator丨 丨. This branch line also contains a second optical loop through 211, which provides the output port of the Sparrows light in the heart monitoring branch line. The isolator 217 and the circulator 211 avoid the entry of the Stryker phase beam and the Stryker solution People photon In the channel. __ Part of the light output from the optical splitter 221 is combined into the main SBS fiber 251. The other part is lightly integrated into the human loop. The optical circulator 211 related to the ring name will be consumed The signal light entering the loop is separated from the Stokes beam that is danced outside the loop. The M combiner 223 combines a part of the signal light into the person's loop, and the-part of the history Doux light (Second B in the loop is known outside the loop. The minimum length of the loop and the light-coupling intensity of X-coupling σ is 223 are selected to ensure that a Sparrows light source can generate sufficient power. The loop At the same time, an additional device 201 may be included, which results in a magnification of the Stux light source. The loops from the four-fold loops shown in Fig. 13 are a set of optical resonators, which can be described by a set of resonance frequencies, each of which has a line of sight. because
30 200408212 光子振盪器14產生之RF光波信號的頻調是習知的,故該環 路可以被設計而具有共振頻率與頻調之光學頻率一致之一 子集。這共振頻率之調整可以利用調整環路中之光纖261的 長度而加以完成。最好將環狀之共振器設計成具有大於頻 5調頻率中預期之偏移的線寬。共用SBS環狀共振器具有1〇〇 或更大之精確度。2χ 2耦合器223之耦合強度決定環狀共振 器之線寬,因為光纖中之光的衰減很小。展示於第12圖之 光學頻譜同時也可以在第13圖中標誌為"an、”bn與’V’的點 中觀察到。再者,離開第二支線之頻調的強度被壓制。可 10 能需要進行電氣放大器42及光學放大器201之增益以及各 種可變光學衰減器213之衰減的一些調整,以便達成所需的 臨限位準而確保一致的頻調強度。2X 2耦合器223之耦合強 度以及環路中光纖261之長度同時也可以被調整以便得到 所需的頻調強度。 15 20 應>主意’史竇克斯光束之頻率一般是自多頻調光子振 盪σ"所產生之頻調的頻率偏移大於10GHz。因為那些頻調 i含的頻率範圍一般低於5GHz,故可能選擇那些頻調之 頻率頻帶,以便史竇克斯光束及光子震盪器頻調之光學頻 ^ έ重噓(對於上方與下方調變旁帶而言)。例如,將多頻 調集:於大仙服將可達成這目標。錢方式,共用通 π通毅^§44可以進_步地衰減任何可能由⑽產生 之寄生頰調。 ” 7敬不於弟11圖與第13圖之j 子振遷器14的頻調間隔最好是大於SBS頻寬。亦即 31 200408212 頻寬一般大於50MHz。因此,第11圖與第13圖之多頻調光 子振盪器的頻調間隔最好是大於50MHz。 本發明已配合較佳實施例而說明,因此,熟習本技術 者將瞭解本發明可有許多之修改。因此,本發明並不受限 5制於除了附加申請專利範圍所需求之外所彼露之實施例。 【圖式簡單說明】 第1圖展示利用RF光波合成器進行之先前技術頻率轉 移技術的圖形; 第2圖是依據本發明之捷波形產生器的方塊圖; 1〇 第3圖是多迴路、多頻調光子振盪器的方塊圖;30 200408212 The frequency of the RF light wave signal generated by the photon oscillator 14 is known, so the loop can be designed to have a subset of the resonant frequency that is consistent with the optical frequency of the tone. The resonance frequency can be adjusted by adjusting the length of the optical fiber 261 in the loop. Preferably, the ring resonator is designed to have a line width that is greater than the expected offset in the 5 tone frequency. The shared SBS ring resonator has an accuracy of 100 or more. The coupling strength of the 2χ 2 coupler 223 determines the line width of the ring resonator because the attenuation of light in the fiber is small. The optical spectrum shown in Figure 12 can also be observed at the points marked " an, "bn and 'V' in Figure 13. Also, the intensity of the tones leaving the second branch line is suppressed. 10 It may be necessary to make some adjustments to the gain of the electrical amplifier 42 and the optical amplifier 201 and the attenuation of various variable optical attenuators 213 in order to achieve the required threshold level and ensure consistent tone intensity. 2X 2 coupler 223 The coupling strength and the length of the fiber 261 in the loop can also be adjusted at the same time to obtain the desired tone intensity. 15 20 Application > The idea 'The frequency of the Stutz beam is generally generated from the multi-frequency photon oscillation σ " The frequency offset of the tone is greater than 10GHz. Because the frequency range of those tones i is generally lower than 5GHz, the frequency bands of those tones may be selected so that the optical frequency of the Stokes beam and the photon oscillator tone ^ Shou (for the sidebands of the upper and lower modulations). For example, multi-frequency tuning: in Daxianfu will achieve this goal. By means of money, sharing π Tongyi ^ 44 can further attenuate any Probably by ⑽ The resulting parasitic cheek tone. "7 Regardless of the frequency difference between the sub-vibrator 14 in Figure 11 and Figure 13 is preferably greater than the SBS bandwidth. That is, 31 200408212 bandwidth is generally greater than 50MHz. Therefore, the frequency interval between the multi-frequency photonic oscillators of FIGS. 11 and 13 is preferably greater than 50 MHz. The invention has been described in connection with the preferred embodiments, and those skilled in the art will appreciate that the invention can be modified in many ways. Therefore, the present invention is not limited to the embodiments disclosed in addition to those required by the scope of additional patent applications. [Brief description of the drawings] FIG. 1 shows a graph of a prior art frequency transfer technology using an RF light wave synthesizer; FIG. 2 is a block diagram of a shortcut waveform generator according to the present invention; and FIG. 3 is a multi-loop, Block diagram of a multi-frequency photon oscillator;
第4圖展示多迴路、多頻調光子«器之被量測的RF 頻譜之圖形; 第5圖是雙迴路(1公里之長迴路,8公尺之短迴路)多頻 調光子振盡器之-組RF頻調的詳細頻譜之圖形,其指示一 I5 組非常高之頻譜純度; 多頻調光子振 第6圖是具有光學式放大迴路之多迴路、 盡器的方塊圖; 學外差式合成 第7圖展示依據光學射入之快逮切換光 器之圖形; 、 20 苐8圖展示依據相位鎖 為之圖形; 疋设路之快速切換外差式合成 第9圖是多迴路、多頻調光 快速可調波長雷射和-固定波的方及包含- 式合成器的方塊圖’該光子振盪快速切換光學外^ ° 有一組光纖長度控讳 32 200408212 裝置及一組回授迴路以控制光纖長度; 第10圖與第9圖相似,但是不具有光纖長度控制裝置, 而是利用迴路之相位控制以補償在多迴路、多頻調光子振 盪器中光纖長度的環境改變。 5 第11圖是多頻調光子震盪器之不同實施例的方塊圖。 第12圖展示在第11圖展示的震盪器内各不同點之光學 信號的頻譜。 第13圖是多頻調光子震盪器的另一實施例之方塊圖。 【圖式之主要元件代表符號表】 12…捷波形產生器 33…電氣輸入 14…多頻調光梳產生器 34…光波延遲通道 16…快速切換光學外差式合成器 36…光波延遲通道 18…光檢測器 38…光檢測器 20…光檢測器 40···光檢測器 22…光強度調變器 42…低雜訊電氣放大器 23…光纖分配網路 44…RF頻通濾波器 24…低頻率低雜訊參考震盪器 70···相位鎖定雷射 25…隔離器 72···相位鎖定雷射 26…光搞合器 74…頻率鎖定模組 27…光纖區段 76···多線主雷射 28…RF輸入信號 78…單調RF參考振盪器 29…幫浦雷射 80···局部振盪器(LO)選擇器 31…波長分割多工器(WDM) 82···外部RF參考 32…光學調變器 84…頻率分割器 33 200408212 85…光耦合器 86…混合器 87…光檢測器 88…迴路濾波器 90…誤差信號 92…光纖長度控制裝置 94…頻率分割器 96…頻調選擇濾波器 98…混合器 100···控制迴路濾波器 191···相位移位器(ΔΦ) 193···光學放大器 195···光耦合器(VOC) 197···電氣結合器 20卜"光學放大器 21卜··光學循環器 213···可變光學衰減器 217···光學隔離器 221···光學分割器 223···2χ 2耦合器 234···光學延遲元件 25卜·光纖(主要SBS光纖) 261···光纖迴路 295···光學載波頻率 34Figure 4 shows the measured RF spectrum of a multi-loop, multi-frequency tunable photon device; Figure 5 is a dual-loop (long loop of 1 km, short loop of 8 meters) multi-frequency photon killer -The detailed spectrum graph of the group of RF tones, which indicates a very high spectral purity of the I5 group; Figure 6 is a block diagram of multiple loops and filters with optical amplification circuits; Figure 7 shows the figure of the fast-switching optical device based on the optical injection; Figure 20 shows the figure based on the phase lock; Figure 9 shows the fast-switching heterodyne synthesis of the road. Figure 9 is a multi-loop, multi- Frequency-modulated fast-tunable wavelength laser and -fixed wave square and include-block diagram of the synthesizer 'the photon oscillation quickly switches the optical outside ^ ° has a set of fiber length control 32 200408212 device and a set of feedback loop to Control fiber length; Figure 10 is similar to Figure 9, but does not have a fiber length control device, but uses phase control of the loop to compensate for environmental changes in fiber length in a multi-loop, multi-frequency photon oscillator. 5 Figure 11 is a block diagram of a different embodiment of a multi-frequency photon oscillator. Figure 12 shows the spectrum of the optical signal at various points in the oscillator shown in Figure 11. FIG. 13 is a block diagram of another embodiment of a multi-frequency photon oscillator. [Representative symbol table of the main components of the figure] 12 ... Shortwave generator 33 ... Electrical input 14 ... Multi-frequency dimming comb generator 34 ... Light delay channel 16 ... Fast switching optical heterodyne synthesizer 36 ... Light delay channel 18 ... light detector 38 ... light detector 20 ... light detector 40 ... light detector 22 ... light intensity modulator 42 ... low noise electrical amplifier 23 ... optical fiber distribution network 44 ... RF frequency pass filter 24 ... Low-frequency and low-noise reference oscillator 70 ... Phase locked laser 25 ... Isolator 72 ... Phase locked laser 26 ... Optical coupler 74 ... Frequency locked module 27 ... Fiber section 76 ... Line main laser 28 ... RF input signal 78 ... Monotonic RF reference oscillator 29 ... Pump 80 ... Local oscillator (LO) selector 31 ... Wavelength division multiplexer (WDM) 82 ... External RF Reference 32 ... optical modulator 84 ... frequency divider 33 200408212 85 ... optical coupler 86 ... mixer 87 ... light detector 88 ... loop filter 90 ... error signal 92 ... fiber length control device 94 ... frequency divider 96 ... Frequency selection filter 98 ... mixer 100 ... control Circuit filter 191 ... Phase shifter (ΔΦ) 193 ... Optical amplifier 195 ... Optical coupler (VOC) 197 ... Electrical coupler 20bu " Optical amplifier 21bu ... Optical circulator 213 ... Variable optical attenuator 217 ... Optical isolator 221 ... Optical splitter 223 ... 2x 2 coupler 234 ... Optical delay element 25 Fiber optic fiber (mainly SBS fiber) 261 ... Optical fiber loop 295 ... Optical carrier frequency 34
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/036849 WO2003043177A2 (en) | 2001-11-15 | 2002-11-15 | Agile spread waveform generator and photonic oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200408212A true TW200408212A (en) | 2004-05-16 |
Family
ID=52347506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092113199A TW200408212A (en) | 2002-11-15 | 2003-05-15 | Agile spread waveform generator and photonic oscillator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200408212A (en) |
-
2003
- 2003-05-15 TW TW092113199A patent/TW200408212A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8750717B1 (en) | Method and apparatus for waveform generation | |
US7373088B2 (en) | Agile spread waveform generator | |
TW558860B (en) | Injection-seeding of a multi-tone photonic oscillator | |
US7085499B2 (en) | Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator | |
US8265488B2 (en) | Electromagnetic transmission/reception system | |
US5374935A (en) | Coherent optically controlled phased array antenna system | |
US20180180655A1 (en) | Ultra-low noise photonic phase noise measurement system for microwave signals | |
US7499653B2 (en) | Multiple wavelength photonic oscillator | |
US8848752B2 (en) | High spectral-purity carrier wave generation by nonlinear optical mixing | |
US7425696B2 (en) | Photoelectric oscillator | |
CN111082872A (en) | Fourier domain mode-locked photoelectric oscillator based on electronic control frequency sweep and implementation method | |
JP4072053B2 (en) | Frequency synthesizer | |
TW200408212A (en) | Agile spread waveform generator and photonic oscillator | |
US7324256B1 (en) | Photonic oscillator | |
JP3803748B2 (en) | Optical millimeter wave or submillimeter wave generator | |
Seeds | Photonic techniques for microwave frequency synthesis | |
TW200408211A (en) | Frequency agile spread waveform generator and method and pre-processor apparatus and method | |
Slavík et al. | Compact and low-power comb-locked transmitter based on ITLA tuneable lasers | |
WO2003043147A1 (en) | Injection-seeding of a multi-tone photonic oscillator | |
Wang et al. | Photonic Generation of Tunable Broadband Linearly Frequency-Modulated Signal Based on a Frequencyshifted Optical Loop | |
Guo et al. | Flexible multi-band dual-chirped microwave waveform generator based on a recirculating frequency shifting loop | |
TW200307383A (en) | Low-noise, switchable RF-lightwave synthesizer | |
CN118944761A (en) | A device for generating optically generated multi-frequency microwave signals based on directly modulated lasers | |
Tao et al. | Experimentally demonstration of fast, large-range and real-time photonic-assisted frequency-hopping mm-wave signal transmission system | |
CN119134001A (en) | A tunable microwave pulse generation system and method based on injection locking |