TW200308096A - Insulation gate type semiconductor device - Google Patents
Insulation gate type semiconductor device Download PDFInfo
- Publication number
- TW200308096A TW200308096A TW092108822A TW92108822A TW200308096A TW 200308096 A TW200308096 A TW 200308096A TW 092108822 A TW092108822 A TW 092108822A TW 92108822 A TW92108822 A TW 92108822A TW 200308096 A TW200308096 A TW 200308096A
- Authority
- TW
- Taiwan
- Prior art keywords
- conductivity type
- semiconductor layer
- layer
- semiconductor
- type
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/668—Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
200308096 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關於一種用在電力控制的絕緣閘型半導體 裝置,特別是有關於一種切換用功率 MOSFET ( Metal Oxide Semiconductor Field Effect Transistor)或 IGBT ( Insulated Gate Bipolar Transistor)等的 MOS 閘元件。 【先前技術】 爲了要將切換電源等的電源電路予以小型化,可以提 高切換頻率。亦即,可以減小在電源電路內的電感或是電 容等的被動元件。但是當提高切換頻率時,則MOSFET 或IGBT等的切換元件的切換損失會增加。而切換損失的 增加會導致電源效率降低。因此,在電源電路小型化時, 藉由切換元件的高速化以減低切換元件的損失乃不可欠缺 【發明內容】 (發明所欲解決的課題) 目前當作切換元件來使用之MOSFET及IGBT等的 MOS閘元件乃縮短閘極長度,藉此能夠減低閘極與汲極 的對向面積。如此一來藉著減低閘極•汲極間電容可以達 到M0S閘元件的高速化。 然而,當爲了要達到高速化而減小閘極•汲極間電容 時,則在配線中的寄生電感與切換元件電容之間會引起共 -6 - (2) (2)200308096 振。而此在切換時則成爲一造成高頻雜訊(切換雜訊)的 主要原因。爲了要抑制如此的切換雜訊,則不得不進行軟 切換(soft switch )不可。或是必須要設置濾波電路或是 要改善閘驅動電路。但是爲了要抑制切換雜訊則會導致成 本的增加。 如上所述,以往藉由減低閘極•汲極間電容來達成高 速化者必須要抑制切換雜訊,因此會有不得不進行軟切換 ,或利用濾波電路等的外部電路的問題。 在此,本發明的目的則在於提供一種高速,且不必利 用外部電路即能夠抑制切換雜訊之絕緣閘型半導體裝置。 (解決課題的手段) 爲了要達到上述目的本發明之絕緣閘型半導體裝置, 其特徵在於: 具備有: 第1導電型的第1半導體層; 選擇性地形成在上述第1導電型之第1半導體層的表 面部的多個的第2導電型的第2半導體層; 分別被形成在上述多個第2導電型之第2半導體層的 表面部的至少一個的第1導電型的第3半導體層; 分別被連接到上述多個第2導電型的第2半導體層以 及上述至少一個的第1導電型的第3半導體層的多個的第 1的主電極; 被形成在上述第1導電型的第1半導體層之背面側的 (3) (3)200308096 第4半導體層; 被連接到上述第4半導體層的第2主電極; 經由閘絕緣膜而被形成在上述多個第2導電型的第2 半導體層,上述至少一個的第1導電型的第3半導體層, 以及上述第1導電型的第1半導體層的各表面上的控制電 極及; 設在上述第1導電型的第1半導體層,且被連接到上 述多個第2導電型的第2半導體層的至少其中一者,而具 有較上述多個第2導電型的第2半導體層爲低之雜質濃度 的一個的第2導電型的第5半導體層。 又,本發明之絕緣閘型半導體裝置,其特徵在於: 具備有: 第1導電型的第1半導體層; 選擇性地形成在上述第1導電型之第1半導體層的表 面部的多個的第2導電型的第2半導體層; 分別被形成在上述多個第2導電型之第2半導體層的 表面部的至少一個的第1導電型的第3半導體層; 分別被連接到上述多個第2導電型的第2半導體層以 及上述至少一個的第1導電型的第3半導體層的多個的第 1的主電極; 被形成在上述第1導電型的第1半導體層之背面側的 第4半導體層; 被連接到上述第4半導體層的第2主電極; 經由閘絕緣膜而被形成在上述多個第2導電型的第2 -8 - (4) (4)200308096 半導體層,上述至少一個的第1導電型的第3半導體層, 以及上述第1導電型的第1半導體層的各表面上的控制電 極及; 設在上述第1導電型的第1半導體層,且被連接到上 述多個第2導電型的第2半導體層的至少其中一者,而具 有較上述多個第2導電型的第2半導體層爲低之雜質濃度 的一個的第2導電型的第5半導體層, 在將電壓施加在上述第2主電極時之上述控制電極與 上述第2主電極之間的電容則構成爲在低電壓下減少,在 高壓下爲一定或增加的形態。 又,本發明之絕緣閘型半導體裝置,其特徵在於: 具備有: 第1導電型的第1半導體層; 選擇性地形成在上述第1導電型之第1半導體層的表 面部的多個的第2導電型的第2半導體層; 分別被形成在上述多個第2導電型之第2半導體層的 表面部的至少一個的第1導電型的第3半導體層; 分別被連接到上述多個第2導電型的第2半導體層以 及上述至少一個的第1導電型的第3半導體層的多個的第 1的主電極; 被形成在上述第1導電型的第1半導體層之背面側的 第4半導體層; 被連接到上述弟4半導體層的第2主電極; 經由閘絕緣膜而被形成在上述多個第2導電型的第2 -9- (5) (5)200308096 半導體層,上述至少一個的第1導電型的第3半導體層, 以及上述第1導電型的第1半導體層的各表面上的控制電 極及; 設在上述第1導電型的第1半導體層,且被連接到上 述多個第2導電型的第2半導體層的至少其中一者,而具 有較上述多個第2導電型的第2半導體層爲低之雜質濃度 的一個的第2導電型的第5半導體層, 當施加在上述第2主電極的電壓爲額定電壓的W3到 2/3時’則上述控制電極與上述第2主電極之間的電容會 開始增加。 又,本發明之絕緣閘型半導體裝置,其特徵在於: 具備有: 第1導電型的第1半導體層; 選擇性地形成在上述第1導電型之第1半導體層的表 面部的多個的第2導電型的第2半導體層; 分別被形成在上述多個第2導電型之第2半導體層的 表面部的至少一個的第1導電型的第3半導體層; 分別被連接到上述多個第2導電型的第2半導體層以 及上述至少一個的第1導電型的第3半導體層的多個的第 1的主電極; 被形成在上述第1導電型的第1半導體層之背面側的 第4半導體層; 被連接到上述第4半導體層的第2主電極; 經由閘絕緣膜而被形成在上述多個第2導電型的第2 -10- (6) 200308096 半導體層,上述至少一個的第1導電型的第3半導體層, 以及上述第1導電型的第1半導體層的各表面上的控制電 極及; 設在上述第1導電型的第1半導體層,且被連接到上 述多個第2導電型的第2半導體層的至少其中一者,而具 有較上述多個第2導電型的第2半導體層爲低之雜質濃度 的一個的第2導電型的第5半導體層, 當施加在上述第2主電極的電壓爲額定電壓的1/3到 2/3時,則上述至少一個的第2導電型之第5半導體層會 完全地空乏化。 又,本發明之絕緣閘型半導體裝置,其特徵在於: 具備有: 第1單元:至少包含有:選擇性地被形成在第第1導 電型的第1半導體層的表面部的多個的第2導電型之第2 半導體層,分別形成在上述多個的第2導電型之第2半導 體層的表面部的至少一個的第1導電型之第3半導體層, 以及被連接到上述多個的第2導電型之第2半導體層與上 述至少一個的第1導電型之第3半導體層的多個第1主電 極及; 第2單元:至少包含有:選擇性地被形成在上述第1 導電型的第1半導體層的表面部的多個的第2導電型之第 2半導體層,與設在相鄰的上述第2導電型之第2半導體 層之間,且具有較上述多個的第2導電型之第2半導體層 爲低的雜質濃度的第2導電型的第5半導體層。 -11- (7) (7)200308096 又,本發明之絕緣閘型半導體裝置,其特徵在於: 具備有: 第1單元:至少包含有:選擇性地被形成在第1導電 型的第1半導體層的表面部的多個的第2導電型之第2半 導體層,分別形成在上述多個的第2導電型之第2半導體 層的表面部的至少一個的第1導電型之第3半導體層,以 及被連接到上述多個的第2導電型之第2半導體層與上述 至少一個的第1導電型之第3半導體層的多個第1主電極 及; 第2單元:至少包含有:選擇性地被形成在上述第1 導電型的第1半導體層的表面部的多個的第2導電型之第 2半導體層,與設在相鄰的上述第2導電型之第2半導體 層之間,且具有較上述多個的第2導電型之第2半導體層 爲低的雜質濃度的第2導電型的第5半導體層, 在上述第1導電型之第1半導體層設有具有較上述第 1導電型之第1半導體層爲高之雜質濃度的第1導電型之 低電阻層, 在上述第1單元之相鄰的上述第2導電型之第2半導 體層之間設有具有較上述第1導電型之低電阻層爲低之雜 質濃度的第1導電型之第7半導體層。 又,本發明之絕緣閘型半導體裝置,其特徵在於: 具備有: 第1導電型的第1半導體層; 被設在上述第1導電型之第1半導體層,且具有較上 •12· (8) (8)200308096 述第1導電型之第1半導體層爲高之雜質濃度的第1導電 型的低電阻層; 選擇性地形成在上述第1導電型之低電阻層的表面部 的多個的第2導電型的第2半導體層; 分別被形成在上述多個第2導電型之第2半導體層的 表面部的至少一個的第1導電型的第3半導體層; 分別被連接到上述多個第2導電型的第2半導體層以 及上述至少一個的第1導電型的第3半導體層的多個的第 1的主電極; 被形成在上述第1導電型的第1半導體層之背面側的 第4半導體層; 被連接到上述第4半導體層的第2主電極; 經由閘絕緣膜而被形成在上述多個第2導電型的第2 半導體層,上述至少一個的第1導電型的第3半導體層, 以及上述第1導電型的低電阻層的各表面上的控制電極及 設在上述第1導電型的低電阻層,且分別被連接到相 鄰的上述第2導電型的第2半導體層,而具有較上述多個 第2導電型的第2半導體層爲低之雜質濃度的多個的第2 導電型的第5半導體層, 在上述多個的第2導電型的第5半導體層之間則設有 具有較上述第1導電型的低電阻層爲低之雜質濃度爲低的 第1導電型的第7半導體層。 又’本發明之絕緣閘型半導體裝置,其特徵在於: -13- (9) (9)200308096 具備有: 第1導電型的第1半導體層; 被設在上述第1導電型的第丨半導體層,且具有較上 述第1導電型的第1半導體層爲高之雜質濃度的第1導電 型的低電阻層; 選擇性地形成在上述第〗導電型之低電阻層的表面部 的多個的第2導電型的第2半導體層; 分別被形成在上述多個第2導電型之第2半導體層的 表面部的至少一個的第1導電型的第3半導體層; 分別被連接到上述多個第2導電型的第2半導體層以 及上述至少一個的第1導電型的第3半導體層的多個的第 1的主電極; 被形成在上述第1導電型的第1半導體層之背面側的 第4半導體層; 被連接到上述第4半導體層的第2主電極; 經由閘絕緣膜而被形成在上述多個第2導電型的第2 半導體層,上述至少一個的第1導電型的第3半導體層, 以及上述第1導電型的低電阻層的各表面上的控制電極及 9 設在上述第1導電型的第1半導體層,且分別被連接 到上述多個第2導電型的第2半導體層,而具有較上述多 個第2導電型的第2半導體層爲低之雜質濃度的一個的第 2導電型的第5半導體層。 根據本發明的絕緣閘型半導體裝置,藉著施加某種程 •14- (10) 200308096 度的高電壓,在turn off時可以使第2導電型的第5半導 體層空乏化。藉此可以在不損及高速性的情形下抑制在 turnoff時之電壓的反彈情形。 【實施方式】 (第1實施形態) 圖1爲表示本發明之第1實施形態之縱型功率 M0SFET的構成例。 在圖1中,作爲第1半導體層的漂移層11,則是 在其中一面(表面)藉由擴散設置η低電阻層11a。在η 低電阻層11a的表面部則藉由擴散選擇性地形成作爲第2 半導體層的多個的P基極層12。各p基極層12則是在與 元件的正面呈直交的第1方向配置成線條狀。在各P基極 層1 2表面部藉由擴散分別選擇性地形成作爲第3半導體 層的多個的n +源極層13。 又,在位於相鄰之二個的P基極層12之間的上述η 低電阻層1 1 a的表面部則藉由擴散選擇性地形成作爲第5 半導體層的P層1 4。在本實施形態中,P層1 4係在沿著 上述P基極層12的第1方向配置成線條狀。此外’則被 連接到相鄰的二個的P基極層中的其中一個的p基極層 12。又,該p層14則形成爲具有較上述P基極層12爲低 的雜質濃度。 在上述ιΤ漂移層1 1的另一面(背面)則形成有作爲 第4半導體層的η +汲極層15。在該η +汲極層115’則整 -15- (11) (11)200308096 面地連接有作爲第2主電極的汲極21。 另一方面,在上述爲p基極層12上則分別包含上述 n +源極層13的一部分在內而形成作爲第I主電極的源極 22。各源極22則在第1方向上配置成線條狀。又,在上 述源極2 2之間,則經由閘絕緣膜(例如矽(s丨)氧化膜 )23而形成有作爲控制電極的閘極24。亦即,平面型構 造的閘極24,則是從其中一個的上述p基極層12內的上 述n +源極層13,經由上述η低電阻層lla以及上述p層 14,而被形成在到達另一個的上述p基極層12內的上述 n +源極層13的領域上。上述閘絕緣膜23的膜厚約設成 0 · 1 μιη 〇 在此,用來形成上述η_漂移層11以及上述η +汲極 層1 5的基板,例如使用一藉由磊晶成長而在低電阻Si基 板上形成η -層的基板η或是使用一藉由擴散而在Si基板 上形成n+層的基板。 如上所述,在位於相鄰的上述p基極層12之間的上 述閘極2 4下方的上述η低電阻層1 1 a的表面部則配置有 P層以下稱爲閘極下p層)14。此外,該p層14則具有 較上述p基極層12爲低的雜質濃度。該p層14則在施加 高電壓時被空乏化。藉此可以在MOSFET中實現一高速 且低雜訊的切換特性。 亦即,與本實施形態有關的構造(以下,只稱本實施 形態構造)的MOSFET,則利用一閘極。汲極間電容會根 據汲極電壓而增加的特性,而實現高速•低雜訊的切換特 •16- (12) (12)200308096 性。 因2爲將在本實施形態構造之MO SFET中之間極· 汲極間電容相對於源極•汲極間電壓的依存性與習知構造 之MOSFET (未圖示)進行比較來表示的說明圖。 如圖2的虛線所示,當爲習知構造的MOSFET ( B ) 時,則閘極•汲極間電容會持續地與源極·汲極間電壓呈 比例地減少。 相較於此,如圖2的實際所示,本實施形態構造之 MOSFET ( A )的閘極•汲極電容則當源極•汲極間電壓 成爲高電壓時會增加。 亦即,若源極•汲極間電壓爲低電壓時,則閘極•汲 極間電容會慢慢地減少。此外,隨著源極·汲極間電壓成 爲高電壓,閘極•汲極間電容會增加。而此是因爲閘極下 P層14會因爲源極、汲極間電壓的高電壓化(高汲極電 壓)而乏化,因此與外觀上的閘極長度變長同樣地,在外 觀上的閘極24與汲極2 1的對向面積會增加使然。 在此,MOSFET的切換速度則閘極•汲極間電容愈小 會變得愈高速。但是MOSFET當在完全成爲OFF時的電 容小時,則在切斷(Turn off)時的反彈電壓會變大。因 此,MOSFET最後在開始OFF時,亦即,在汲極電壓低的 狀態下的電容要小,而在結束OFF時,亦即,在汲極電 壓高的狀態下的電容要大。 習知構造的MOSFET(B),則p基極層的間隔愈狹 窄,其閘極與汲極的對向電極會變得愈小。亦即,閘極· -17- (13) (13)200308096 汲極間的電容會變小。此外,當施加汲極電壓時,則從p 基極層開始的空乏層會延伸。因此,閘極•汲極間的電容 會愈來愈減少。爲了要實現高速•低雜訊的切換,則必須 要有闡驅動電路。又,也要求有一閘電流會慢慢地減小等 的複雜的控制。 如此般,本實施形態構造的MOSFET ( A )則利用一 閘極•汲極間電容會根據汲極電壓而增加的特性。亦即, 在MOSFET開始OFF的時點,藉由閘極下p層因爲低汲 極電壓而非空乏化會使得p基極層1 2的間隔變狹窄。如 此般,可以使閘極24與汲極2 1的對向面積變小而減小閘 極•汲極間電容。藉此可以確保往切換特性的高速性。另 一方面,在結束OFF的時點,藉由閘極下p層因爲高汲 極電壓而空乏化會使得外觀上的P基極層12的間隔變寬 。藉此可以抑制汲極電壓的反彈而減少切換雜訊。如此般 並不需要外部電路或複雜的控制,即能夠實現高速•低雜 訊的切換特性。 圖3爲分別將本實施形態構造的MOSFET在Turn off 時的汲極電壓(Vds )波形與汲極電流(Id )波形與習知 構造的MOSFET進行比較來表示的說明圖。 當爲習知構造的MOSFET ( B )時,如先前所述,切 換特性會因爲縮短閘極長度而變短而高速化。又,如圖3 的虛線所示,在OFF時的反彈電壓(汲極電壓Vds)會與 其呈比例地增加。汲極電壓Vds之後也會大幅地振盪而相 當的不安定。 -18- (14) (14)200308096 相較於此,本實施形態構造的mosfet(a),則在 低汲極電壓時的閘極•汲極間電容會變小,且在高汲極電 壓時的閘極•汲極間電容會變大。藉此,可以維持高速性 ,且例如圖3的實線所示般反彈電壓會成爲以往的情形的 一半以下,而成爲一連汲極電壓Vds的振盪也會被抑制的 切換特性。 當爲上述本實施形態構造的MOSFET時,則如圖1 所示是一將閘極下P層14只設在相鄰的二個p基極層12 中的其中一者的構造。此外並不限於此,例如圖4所示, 也可以是一分別將閘極下p層14設在相鄰的二個p基極 層1 2兩者的構造。 又,閘極下P層14並不限於形成較p基極層12爲淺 。亦即,只要閘極下P層14在動作上可因爲高汲極電壓 而空乏化即可。因此,閘極下p層14的接合深度可以與 p基極層12相同,或是較p基極層12爲深。但是若是將 閘極下P層1 4形成爲淺時,則在完全已經空乏化時之實 際有效的閘極24與汲極2 1的對向面積的增加情形會變得 更大。因此,閘極•汲極間電容相較於汲極電壓的增加的 變化情形會變大而得到有助於低雜訊化的極大效果。因此 ,閘極下P層14最好是較p基極層12爲淺。 又,在圖1所示之本實施形態構造的MOSFET中,η 低電阻層1 1 a,是爲了要減低相鄰的ρ基極層1 2間的電 阻而設。亦即,η低電阻層11a乃形成爲較P基極層12 爲深。藉此可以抑制從爲ρ基極層12所挾持的狹窄的 -19 - (15) (15)200308096 JFET ( Junction FET)領域擴展到寬廣的n —漂移層11的 阻力。爲了要降低ON電阻可以將η低電阻層1 1 a形成爲 較P基極層12爲淺。 如此般,η低電阻層1 1 a不會直接地影響到高速•低 雜訊的切換特性。因此,如圖5所示,也可以省略形成η 低電阻層(圖4所示之本實施形態構造的MOSFET也相 同)。 不只是高速性,當也注意到ON電阻時,則通常表示 高速性的闡電容也會與面積呈正比,而ON電阻則與面積 呈反比。因此,所謂的高速化與低ON電阻化則成爲一制 衡(frade-off )的關係。但是在本實施形態構造的 MOSFET中有可能只需要稍微增加通道(channel)電阻 或:FFET領域的電阻即可以大幅地高速化。藉此可以改善 高速化與低ON電阻化的制衡(frade-off)的關係。因此 可以在維持切換速度的情形下設成更低的ON電阻。 通常切換元件的額定電壓(元件耐壓)可以選擇爲電 源電壓的1 · 5倍到3倍者。因此閘極•汲極電容相對於電 源電壓程度的電壓最好要大。亦即,切換元件最好是其閘 極·汲極間電容具有會根據額定電壓的1/3到2/3的電壓 開始增加的特性。 若閘極下P層14完全地空乏化時,則閘極24與汲極 2 1的對向面積會大幅地增加,且閘極•汲極間電容會增 加。因此,閘極下p層14最好可以根據爲額定電壓的1/3 到2/3的電壓而完全地被空乏化。 -20- (16) (16)200308096 此外,當閘極下p層1 4完全地空乏化時,則閘極· 汲極間的電容會增加(參照圖2)。然而,當閘極•汲極 間的電容未增加時,亦即,當電容不再減少而成爲一定的 電容時,或是可以抑制電容減少的情形時,則在OFF時 的電容也會較習知構造的M0SFET爲大。因此,由於切 換雜訊可以被抑制,因此,閘極下p層1 4可以不完全地 被空乏化,而可以只有部分地被空乏化。 圖6爲將本實施形態構造之MOSFET(A)的turn off波形與習知構造的MO SFET ( B )的turn off波形加以 比較來表示的說明圖。 在低汲極電壓的狀態下,閘極•汲極間電容會因爲p 層14而變小,因此成爲一高速切換特性。另一方面,在 高汲極電壓的狀態下,p層14會空乏化。藉此,在外觀 上的閘極長度會變長,且閘極•汲極電容會變大。因此能 夠抑制反彈電壓。 由圖6可知,在閘極24下的p基極層12間之實施空 乏化的P層1 4的面積愈增加,則切換特性愈高速化。 圖7爲在本實施形態構造的M0SFET中,表示在讓 閘極下P層14的面積變化時之turn off損失(Eoff)的 變化的說明圖。此外,橫軸爲相對於閘極24下的p基極 層12間的面積實施空乏化的p層14所占的比例。縱軸爲 誘導型負載中的turn off損失。200308096 (1) Description of the invention [Technical field to which the invention belongs] The present invention relates to an insulated gate semiconductor device used for power control, and particularly to a switching power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or MOS (Insulated Gate Bipolar Transistor) MOS gate element. [Prior Art] In order to miniaturize power supply circuits such as switching power supplies, the switching frequency can be increased. That is, it is possible to reduce the passive components such as inductance or capacitance in the power supply circuit. However, as the switching frequency is increased, the switching loss of switching elements such as MOSFETs or IGBTs increases. An increase in switching loss results in reduced power efficiency. Therefore, when the power supply circuit is miniaturized, it is indispensable to reduce the loss of the switching element by increasing the speed of the switching element. [Summary of the Invention] (Problems to be Solved by the Invention) MOSFETs, IGBTs, etc. that are currently used as switching elements The MOS gate element shortens the length of the gate, thereby reducing the area of the gate and the drain opposite to each other. In this way, the gate-drain capacitance can be reduced to achieve high-speed M0S gate devices. However, when the gate-drain capacitance is reduced in order to achieve high speed, a parasitic inductance in the wiring and the switching element capacitance will cause a total of -6-(2) (2) 200308096 vibration. This becomes a major cause of high-frequency noise (switching noise) during switching. In order to suppress such switching noise, it is necessary to perform a soft switch (soft switch). Either a filter circuit must be set up or the gate drive circuit must be improved. However, in order to suppress the switching noise, the cost will increase. As described above, in the past, users who have achieved high speed by reducing the gate-drain capacitance must suppress switching noise. Therefore, they have to perform soft switching or use external circuits such as filter circuits. Here, an object of the present invention is to provide an insulated gate type semiconductor device capable of suppressing switching noise at high speed without using an external circuit. (Means for Solving the Problems) In order to achieve the above-mentioned object, the insulated gate semiconductor device of the present invention is characterized by comprising: a first semiconductor layer of a first conductivity type; and selectively formed on the first of the first conductivity type. A plurality of second semiconductor layers of the second conductivity type on the surface portion of the semiconductor layer; a third semiconductor of the first conductivity type that is formed on at least one of the surface portions of the plurality of second conductivity types of the second semiconductor layer; Layers; a plurality of first main electrodes respectively connected to the plurality of second conductive layers of the second conductivity type and the at least one third conductive layer of the first conductivity type; formed on the first conductivity type (3) (3) 200308096 fourth semiconductor layer on the back side of the first semiconductor layer; a second main electrode connected to the fourth semiconductor layer; formed on the plurality of second conductive types via a gate insulating film A second semiconductor layer, a third semiconductor layer of the at least one first conductivity type, and a control electrode on each surface of the first semiconductor layer of the first conductivity type; and a first electrode of the first conductivity type provided above Semiconductor layer, and At least one of the second semiconductor layers of the second conductivity type is connected to the second semiconductor layer of the second conductivity type having a lower impurity concentration than the second semiconductor layer of the plurality of second conductivity types. Semiconductor layer. The insulated gate semiconductor device according to the present invention includes: a first semiconductor layer of a first conductivity type; and a plurality of selectively formed on a surface portion of the first semiconductor layer of the first conductivity type. A second semiconductor layer of the second conductivity type; a third semiconductor layer of the first conductivity type formed on at least one of the surface portions of the second semiconductor layer of the plurality of second conductivity types; a third semiconductor layer of the first conductivity type; A plurality of first main electrodes of the second semiconductor layer of the second conductivity type and the third semiconductor layer of the at least one first conductivity type; and formed on the back side of the first semiconductor layer of the first conductivity type A fourth semiconductor layer; a second main electrode connected to the fourth semiconductor layer; and a second -8-(4) (4) 200308096 semiconductor layer formed on the plurality of second conductivity types via a gate insulating film, The third semiconductor layer of the at least one first conductivity type, the control electrode on each surface of the first semiconductor layer of the first conductivity type, and the first semiconductor layer of the first conductivity type, and are connected to each other To the second half of the plurality of second conductivity types A fifth semiconductor layer of the second conductivity type having at least one of the conductive layers and a second conductivity type having a lower impurity concentration than the second semiconductor layer of the plurality of second conductivity types is applied with a voltage to the second main The capacitance between the control electrode and the second main electrode at the time of the electrode is configured to be reduced at a low voltage and constant or increased at a high voltage. The insulated gate semiconductor device according to the present invention includes: a first semiconductor layer of a first conductivity type; and a plurality of selectively formed on a surface portion of the first semiconductor layer of the first conductivity type. A second semiconductor layer of the second conductivity type; a third semiconductor layer of the first conductivity type formed on at least one of the surface portions of the second semiconductor layer of the plurality of second conductivity types; a third semiconductor layer of the first conductivity type; A plurality of first main electrodes of the second semiconductor layer of the second conductivity type and the third semiconductor layer of the at least one first conductivity type; and formed on the back side of the first semiconductor layer of the first conductivity type A fourth semiconductor layer; a second main electrode connected to the fourth semiconductor layer; and a second -9- (5) (5) 200308096 semiconductor layer formed on the plurality of second conductivity types via a gate insulating film, The third semiconductor layer of the at least one first conductivity type, the control electrode on each surface of the first semiconductor layer of the first conductivity type, and the first semiconductor layer of the first conductivity type, and are connected to each other To the second half of the plurality of second conductivity types When the voltage applied to the second main electrode is at least one of the bulk layers, and the fifth semiconductor layer of the second conductivity type has a lower impurity concentration than the second semiconductor layer of the plurality of second conductivity types, When W3 to 2/3 of the rated voltage ', then the capacitance between the control electrode and the second main electrode will start to increase. The insulated gate semiconductor device according to the present invention includes: a first semiconductor layer of a first conductivity type; and a plurality of selectively formed on a surface portion of the first semiconductor layer of the first conductivity type. A second semiconductor layer of the second conductivity type; a third semiconductor layer of the first conductivity type formed on at least one of the surface portions of the second semiconductor layer of the plurality of second conductivity types; a third semiconductor layer of the first conductivity type; A plurality of first main electrodes of the second semiconductor layer of the second conductivity type and the third semiconductor layer of the at least one first conductivity type; and formed on the back side of the first semiconductor layer of the first conductivity type A fourth semiconductor layer; a second main electrode connected to the fourth semiconductor layer; a second -10- (6) 200308096 semiconductor layer formed on the plurality of second conductivity types via a gate insulating film, at least one of the above The third semiconductor layer of the first conductivity type, and the control electrode on each surface of the first semiconductor layer of the first conductivity type, and the first semiconductor layer of the first conductivity type is provided and is connected to the plurality of 2nd semiconductor of 2nd conductivity type When the voltage applied to the second main electrode is at least one of the bulk layers, and the fifth semiconductor layer of the second conductivity type has a lower impurity concentration than the second semiconductor layer of the plurality of second conductivity types, When it is 1/3 to 2/3 of the rated voltage, the at least one fifth semiconductor layer of the second conductivity type is completely empty. The insulated gate semiconductor device according to the present invention includes: a first unit including at least: a plurality of first portions which are selectively formed on a surface portion of the first semiconductor layer of the first conductivity type; The second semiconductor layer of the second conductivity type is a third semiconductor layer of the first conductivity type formed on at least one of the surface portions of the plurality of second semiconductor layers of the second conductivity type, and a third semiconductor layer connected to the plurality of second conductivity layers. A plurality of first main electrodes of the second semiconductor layer of the second conductivity type and the third semiconductor layer of the at least one first conductivity type; and a second unit including at least: selectively formed on the first conductivity The second semiconductor layer of the second conductivity type on the surface portion of the first semiconductor layer of the semiconductor type is provided between the second semiconductor layer of the second conductivity type adjacent to the second semiconductor layer and has a plurality of The second semiconductor layer of the two conductivity type is a fifth semiconductor layer of the second conductivity type having a low impurity concentration. -11- (7) (7) 200308096 The insulated gate semiconductor device of the present invention is characterized by comprising: a first unit including at least: a first semiconductor selectively formed in a first conductivity type; The second semiconductor layer of the second conductivity type on the surface portion of the layer is a third semiconductor layer of the first conductivity type formed on at least one of the surface portions of the plurality of second semiconductor layers of the second conductivity type. And a plurality of first main electrodes connected to the second semiconductor layer of the plurality of second conductivity types and the third semiconductor layer of the at least one first conductivity type; A plurality of second semiconductor layers of the second conductivity type which are formed on the surface portion of the first semiconductor layer of the first conductivity type are provided between the second semiconductor layers of the second conductivity type adjacent to each other. And a fifth semiconductor layer of the second conductivity type having a lower impurity concentration than the second semiconductor layer of the plurality of second conductivity types, and the first semiconductor layer of the first conductivity type is provided with a The first semiconductor layer of the 1 conductivity type has the first conductivity of a high impurity concentration Type low-resistance layer, a first conductivity type having a lower impurity concentration than the low-resistance layer of the first conductivity type is provided between the second semiconductor layers of the second conductivity type adjacent to the first unit. 7th semiconductor layer. The insulated gate semiconductor device of the present invention includes: a first semiconductor layer of a first conductivity type; and a semiconductor layer provided on the first semiconductor layer of the first conductivity type. 8) (8) 200308096 The first semiconductor layer of the first conductivity type is a low-resistance layer of the first conductivity type having a high impurity concentration; and a large number of selectively formed on a surface portion of the low-resistance layer of the first conductivity type. Second semiconductor layers of the second conductivity type; third semiconductor layers of the first conductivity type formed on at least one of the surface portions of the plurality of second semiconductor layers of the second conductivity type; and third semiconductor layers of the first conductivity type; The plurality of second conductive layers of the second conductivity type and the plurality of first main electrodes of the at least one first conductivity type of the third semiconductor layer are formed on the back surface of the first conductivity type first semiconductor layer. A fourth semiconductor layer on the side; a second main electrode connected to the fourth semiconductor layer; a second semiconductor layer formed on the plurality of second conductivity types via a gate insulating film, and at least one of the first conductivity types The third semiconductor layer, and the above-mentioned first conductive layer The control electrodes on each surface of the low-resistance layer and the low-resistance layer provided on the first conductivity type are connected to adjacent second semiconductor layers of the second conductivity type, respectively, and have a plurality of The second-conductivity-type second semiconductor layer is a plurality of second-conductivity-type fifth semiconductor layers having a low impurity concentration. The low-resistance layer of the one conductivity type is a seventh semiconductor layer of the first conductivity type having a low impurity concentration. The insulated gate semiconductor device of the present invention is characterized in that: -13- (9) (9) 200308096 includes: a first semiconductor layer of a first conductivity type; and a first semiconductor layer of the first conductivity type A low-resistance layer of the first conductivity type having a higher impurity concentration than the first semiconductor layer of the first conductivity type; a plurality of selectively formed on a surface portion of the low-resistance layer of the first conductivity type; A second semiconductor layer of the second conductivity type; a third semiconductor layer of the first conductivity type formed on at least one of the surface portions of the plurality of second semiconductor layers of the second conductivity type; a third semiconductor layer of the first conductivity type; A plurality of first main electrodes of the second semiconductor layer of the second conductivity type and the third semiconductor layer of the at least one first conductivity type; and formed on the back surface side of the first semiconductor layer of the first conductivity type A fourth semiconductor layer; a second main electrode connected to the fourth semiconductor layer; a second semiconductor layer formed of the plurality of second conductivity types through a gate insulating film; and at least one of the first conductivity type A third semiconductor layer, and the first conductive layer Control electrodes and 9 on each surface of the low-resistance layer of the type are provided on the first semiconductor layer of the first conductivity type, and are connected to the second semiconductor layers of the plurality of second conductivity types, respectively, and have more than The second semiconductor layer of the second conductivity type is a fifth semiconductor layer of the second conductivity type having a low impurity concentration. According to the insulated gate semiconductor device of the present invention, by applying a high voltage of a certain range of 14- (10) 200308096 degrees, the fifth semiconductor layer of the second conductivity type can be made empty when it is turned off. This can suppress the rebound of the voltage at turnoff without compromising high-speed performance. [Embodiment] (First Embodiment) Fig. 1 shows a configuration example of a vertical power MOSFET of a first embodiment of the present invention. In FIG. 1, the drift layer 11 as the first semiconductor layer is provided with an η low-resistance layer 11a on one side (surface) by diffusion. On the surface portion of the η low-resistance layer 11a, a plurality of P base layers 12 as a second semiconductor layer are selectively formed by diffusion. Each p base layer 12 is arranged in a line shape in a first direction orthogonal to the front surface of the element. A plurality of n + source layers 13 as a third semiconductor layer are selectively formed on the surface of each P base layer 12 by diffusion. In addition, on the surface portion of the η low-resistance layer 1 1 a located between two adjacent P base layers 12, a P layer 14 as a fifth semiconductor layer is selectively formed by diffusion. In this embodiment, the P layers 14 are arranged in a line shape along the first direction of the P base layer 12 described above. In addition, it is connected to the p base layer 12 of one of the two adjacent P base layers. The p layer 14 is formed to have a lower impurity concentration than the P base layer 12 described above. On the other side (back surface) of the aforementioned ITO drift layer 11, an n + drain layer 15 is formed as a fourth semiconductor layer. A drain electrode 21 serving as a second main electrode is connected to the η + drain layer 115 'across the entire surface of -15- (11) (11) 200308096. On the other hand, the source electrode 22 as the first main electrode is formed on the p-type base layer 12 including a part of the n + source layer 13. Each source electrode 22 is arranged in a line shape in the first direction. Between the source electrodes 22, a gate electrode 24 is formed as a control electrode via a gate insulating film (for example, a silicon (s) oxide film) 23. That is, the gate electrode 24 having a planar structure is formed from the n + source layer 13 in one of the p base layers 12 through the η low-resistance layer 11a and the p layer 14. It reaches the area of the n + source layer 13 in another p base layer 12. The film thickness of the gate insulating film 23 is set to about 0.1 μm. Here, a substrate for forming the η_drift layer 11 and the η + drain layer 15 is formed by, for example, epitaxial growth. A substrate n in which an n − layer is formed on a low-resistance Si substrate, or a substrate in which an n + layer is formed on a Si substrate by diffusion. As described above, a P layer is hereinafter disposed on the surface portion of the η low-resistance layer 1 1 a below the gate 24 between the adjacent p base layers 12 (hereinafter referred to as the p-layer under the gate) 14. The p layer 14 has a lower impurity concentration than the p base layer 12 described above. The p-layer 14 is depleted when a high voltage is applied. This enables a high-speed and low-noise switching characteristic in the MOSFET. That is, a MOSFET having a structure related to this embodiment (hereinafter, simply referred to as the structure of this embodiment) uses a gate. Capacitance between the drains will increase according to the characteristics of the drain voltage to achieve high-speed and low-noise switching characteristics. 16- (12) (12) 200308096. The reason 2 is an explanation in which the dependence of the inter-electrode / drain-capacitance capacitance on the source-drain voltage in the MO SFET structured in this embodiment is compared with a conventionally constructed MOSFET (not shown). Illustration. As shown by the dotted line in FIG. 2, when the MOSFET (B) is a conventional structure, the capacitance between the gate and the drain continuously decreases in proportion to the voltage between the source and the drain. In contrast, as shown in FIG. 2, the gate-drain capacitance of the MOSFET (A) constructed in this embodiment increases when the source-drain voltage becomes high. That is, if the source-drain voltage is low, the gate-drain capacitance gradually decreases. In addition, as the source-drain voltage becomes high, the gate-drain capacitance increases. This is because the P layer 14 under the gate is depleted due to the increase in the voltage between the source and the drain (high drain voltage). Therefore, the appearance of the gate layer becomes longer as well as the gate length becomes longer. The opposing area of the gate electrode 24 and the drain electrode 21 will increase. Here, the switching speed of the MOSFET becomes faster as the gate-drain capacitance becomes smaller. However, when the capacitance of the MOSFET is completely OFF, the rebound voltage when the MOSFET is turned off will increase. Therefore, the capacitance of the MOSFET is finally small at the beginning of the OFF state, that is, in a state where the drain voltage is low, and at the end of the OFF state, that is, the capacitance is large at a state where the drain voltage is high. With a conventionally constructed MOSFET (B), the narrower the interval between the p base layers, the smaller the counter electrode between the gate and the drain becomes. In other words, the gate electrode -17- (13) (13) 200308096 decreases the capacitance between the drain electrodes. In addition, when a drain voltage is applied, an empty layer extending from the p base layer is extended. Therefore, the capacitance between the gate and the drain will decrease. In order to achieve high-speed and low-noise switching, a driver circuit is required. In addition, complicated control is required such that the gate current gradually decreases. As such, the MOSFET (A) structured in this embodiment uses a characteristic that a capacitance between a gate and a drain increases according to a drain voltage. That is, at the point when the MOSFET starts to turn off, the interval between the p-base layers 12 becomes narrower due to the lower drain voltage rather than depletion of the p-layer under the gate. In this way, the opposing area between the gate 24 and the drain 21 can be reduced, and the capacitance between the gate and the drain can be reduced. This can ensure high-speed switching characteristics. On the other hand, when the p-layer under the gate is depleted due to the high drain voltage at the time when the OFF is completed, the appearance of the P-base layer 12 becomes wider. This can suppress the rebound of the drain voltage and reduce switching noise. In this way, high-speed and low-noise switching characteristics are achieved without external circuits or complicated control. FIG. 3 is an explanatory diagram showing a comparison between a drain voltage (Vds) waveform and a drain current (Id) waveform of a MOSFET structured according to the present embodiment at the time of turning off and a conventionally constructed MOSFET. In the case of a conventionally constructed MOSFET (B), as described earlier, the switching characteristics are shortened and the speed is increased by shortening the gate length. As shown by the dotted line in FIG. 3, the bounce voltage (drain voltage Vds) at the time of OFF increases in proportion to it. After the drain voltage Vds also oscillates greatly, it is quite unstable. -18- (14) (14) 200308096 Compared to this, the mosfet (a) structure of this embodiment will reduce the gate-drain capacitance at low drain voltage, and at high drain voltage At this time, the capacitance between the gate and the drain becomes larger. Thereby, high-speed performance can be maintained, and the bounce voltage such as shown by the solid line in FIG. 3 will be less than half of the conventional case, and a switching characteristic in which the oscillation of the drain voltage Vds will also be suppressed. In the case of the MOSFET structured in this embodiment, as shown in FIG. 1, a structure in which the lower gate P layer 14 is provided on only one of two adjacent p base layers 12 is shown. In addition, it is not limited to this. For example, as shown in FIG. 4, a structure in which the p-layer 14 under the gate is respectively provided on two adjacent p-base layers 12 may be used. In addition, the gate P layer 14 is not limited to being formed shallower than the p base layer 12. That is, as long as the P layer 14 under the gate can be depleted due to the high drain voltage in operation. Therefore, the junction depth of the p-layer 14 under the gate can be the same as or deeper than that of the p-base layer 12. However, if the P layer 14 under the gate is formed shallow, the increase in the area of the opposing area of the gate 24 and the drain 21, which is actually effective when the P layer 14 is completely empty, will become larger. Therefore, the change in the capacitance between the gate and the drain compared to the increase in the drain voltage becomes larger, and a great effect of reducing noise is obtained. Therefore, the P layer 14 under the gate is preferably shallower than the p base layer 12. In the MOSFET structured in this embodiment shown in FIG. 1, the η low-resistance layer 1 1 a is provided to reduce the resistance between the adjacent p-base layers 12. That is, the η low-resistance layer 11 a is formed deeper than the P base layer 12. This can suppress the resistance from expanding from the narrow -19-(15) (15) 200308096 JFET (Junction FET) area supported by the p base layer 12 to the wide n-drift layer 11. In order to reduce the ON resistance, the η low-resistance layer 1 1 a may be formed shallower than the P base layer 12. As such, the η low-resistance layer 1 1 a does not directly affect the switching characteristics of high speed and low noise. Therefore, as shown in FIG. 5, the formation of the η low-resistance layer may be omitted (the MOSFET structured in this embodiment shown in FIG. 4 is also the same). Not only high-speed performance, but when ON resistance is also noticed, the capacitance that usually indicates high-speed performance is also proportional to area, while ON resistance is inversely proportional to area. Therefore, the so-called high speed and low ON resistance become a frade-off relationship. However, in the MOSFET structured in this embodiment, it is only necessary to slightly increase the channel resistance or the resistance in the FFET field, which can greatly increase the speed. This can improve the relationship between fred-off of high speed and low ON resistance. Therefore, a lower ON resistance can be set while maintaining the switching speed. Normally, the rated voltage (component withstand voltage) of the switching element can be selected from 1 to 5 times to 3 times the power supply voltage. Therefore, the voltage of the gate / drain capacitor relative to the power supply voltage should be large. That is, it is preferable that the switching element has a characteristic in which the capacitance between the gate and the drain starts to increase according to a voltage of 1/3 to 2/3 of the rated voltage. If the P layer 14 under the gate is completely empty, the area of the gate 24 and the drain 21 facing each other will increase greatly, and the capacitance between the gate and the drain will increase. Therefore, it is preferable that the p-layer 14 under the gate can be completely depleted according to a voltage of 1/3 to 2/3 of the rated voltage. -20- (16) (16) 200308096 In addition, when the p-layer 14 under the gate is completely empty, the capacitance between the gate and the drain increases (see Figure 2). However, when the capacitance between the gate and the drain has not increased, that is, when the capacitance no longer decreases to become a certain capacitance, or when the decrease in capacitance can be suppressed, the capacitance at the time of OFF is also more customary. The known MOSFET is large. Therefore, since the switching noise can be suppressed, the p-layer 14 under the gate may not be completely blanked, but may be partially blanked. Fig. 6 is an explanatory diagram showing a turn-off waveform of a MOSFET (A) structured in this embodiment and a turn-off waveform of a conventionally-configured MO SFET (B). In the state of low drain voltage, the gate-drain capacitance becomes smaller because of the p-layer 14, so it has a high-speed switching characteristic. On the other hand, in a state of high drain voltage, the p-layer 14 becomes empty. As a result, the gate length becomes longer and the gate-drain capacitance becomes larger. Therefore, the rebound voltage can be suppressed. As can be seen from Fig. 6, as the area of the p-layers 14 to be vacant between the p-base layers 12 under the gate 24 increases, the switching characteristics become faster. Fig. 7 is an explanatory diagram showing a change in turn-off loss (Eoff) when the area of the P layer 14 under the gate is changed in the MOSFET structured in this embodiment. In addition, the horizontal axis is the proportion of the p-layer 14 which is made empty with respect to the area between the p-base layers 12 under the gate 24. The vertical axis is the turn off loss in an induced load.
如圖7所示,當面積比的値在30%以上時,則預估有 助於高速化,而連turn off損失也較習知構造的M0SFET -21 - :(30%) (17) 200308096 (約1.35mJ)爲小。因此最好面積比爲一較該値 爲大的値。 圖8爲在本實施形態構造的MOSFET中, 閘極下P層14的淨摻雜量(有效摻雜量)變化 off時的變化的說明圖。 所謂的淨摻雜量並不是一實際上實施離子注 量,而是一相當於存在於P層14之部分的載子 量(濃度),是一從P型雜質量減去存在於p3 之間的η型雜質量的雜質量。 當淨摻雜量小時,由於Ρ層14會因爲低的 全地空乏化,因此對於高速化的效果小。當成爲 以上的淨摻雜量時,則ρ層1 4在施加高電壓時 化,且電容不會增加。此時,由於能夠進行高 turn off損失成爲一定,因此與進行通常的高速 同樣地,其切換雜質會變大。因此,P層14的 最好是在1〜3.2xl012cnT2程度以下。 而在實際上製造MOSFET時,乃將η低電阻 及閘極下Ρ層14之各自的摻雜物設爲磷(Ρ)、 。此時η低電阻層1 1 a以及閘極下ρ層1 4則因 數的差異而可以藉由同時擴散而形成。 由於高濃度的η低電阻層1 1 a與ρ層1 4係 此淨摻雜量與實際上實施離子注入的雜質量是不 8所示,可以調整實施離子注入的雜質量以使得 成爲最適當的雜質量。 表示在讓 時之 turn 入的雜質 數的雜質 g極層12 電壓而完 某個程度 不會空乏 速化者的 化的情形 淨摻雜量 層1 1 a以 硼(B) 爲擴散常 重疊,因 同。如圖 淨摻雜量 -22- (18) 200308096 圖9爲在本實施形態構造的MO SFET中表示相鄰 基極層1 2間的距離Lj與對低雜訊化有效之閘極下 14的最大淨摻雜量NpO的關係的說明圖。此外,在 表示當將P基極層12的深度Xj設爲4μιη的情形。 最大淨摻雜量NpO是一在施加高電壓時,閘極 層14進行空乏化之最大的淨摻雜量。當較此爲大時 閘極下P層1 4不會被空乏化,且閘電容不會增加, ,雜訊會增加。因此,閘極下p層14的淨摻雜量最 抑制在最大淨摻雜量NpO以下。 如圖9所示,最大淨摻雜量NpO乃大約與p基 1 2間的距離Lj呈正比。因此,最大淨摻雜量N p 0與 極層之間的距離 Lj的比(NpO/Nj )最好是設在 1 0 15 c πΓ 3 以下。 又’當ρ基極層12的深度變深時,則會變得很 汲極電壓施加在閘極下ρ層14而難以被空乏化。因 最大淨摻雜量NpO會與ρ基極層12的深度Xj呈反比 如圖9所示,當將ρ基極層12的深度Xj設爲 時’則最大淨摻雜量NpO與ρ基極層12的深度Xj 間隔Lj的積的比(Np0/ ( Lj · Xj ))最好是在設在 1 018cnT4 以下。 (第2實施形態) 圖丨〇爲本發明之第2實施形態之功率MOSFET 成例。此外,與圖1所示之MOSFET相同的部分則As shown in Fig. 7, when the area ratio 値 is more than 30%, it is estimated to contribute to high speed, and even the turn-off loss is higher than that of the conventional structure M0SFET -21-: (30%) (17) 200308096 (About 1.35mJ) is small. Therefore, it is preferable that the area ratio be a 値 larger than the 値. FIG. 8 is a diagram illustrating a change when the net doping amount (effective doping amount) of the P-layer 14 under the gate changes off in the MOSFET structured in this embodiment. The so-called net doping amount is not an actual ion fluence, but a carrier amount (concentration) corresponding to the part existing in the P layer 14, which is a subtraction between the p-type impurity and the existence between p3 The heterogeneity of the n-type heterogeneity. When the net doping amount is small, the effect of high speed is small because the P layer 14 is depleted due to low total ground void. When the net doping amount is as described above, the p-layer 14 is aged when a high voltage is applied, and the capacitance does not increase. In this case, since a high turn-off loss can be performed, the switching impurities become larger in the same manner as in a normal high-speed operation. Therefore, it is preferable that the P layer 14 is less than about 1 to 3.2 x 1012cnT2. When actually manufacturing the MOSFET, the respective low-resistance and dopants of the p-layer 14 under the gate are set to phosphorus (P),. At this time, the η low-resistance layer 1 a and the gate lower p layer 14 can be formed by simultaneous diffusion due to differences in the factors. Since the high-concentration η low-resistance layers 1 1 a and ρ layers 1 4 are not shown in FIG. 8, the net doping amount and the impurity amount of the actual ion implantation are not shown. The impurity amount of the ion implantation can be adjusted to be the most appropriate. Miscellaneous mass. In the case where the number of impurities in the g electrode layer 12 at the time of the turn is turned on, the voltage will be eliminated to a certain extent, and the speed do not become empty. The net doping amount layer 1 1 a often overlaps with boron (B) as the diffusion. Because of the same. As shown in the figure, the net doping amount is -22- (18) 200308096. Fig. 9 shows the distance Lj between the adjacent base layers 12 and the lower gate 14 effective for low noise in the MO SFET structured in this embodiment. An explanatory diagram of the relationship between the maximum net doping amount NpO. In addition, the case where the depth Xj of the P base layer 12 is set to 4 μm is shown. The maximum net doping amount NpO is a maximum net doping amount at which the gate layer 14 is depleted when a high voltage is applied. When it is larger than this, the P layer 14 under the gate will not be empty, and the gate capacitance will not increase, and noise will increase. Therefore, the net doping amount of the p-layer 14 under the gate is suppressed to the maximum below the maximum net doping amount NpO. As shown in FIG. 9, the maximum net doping amount NpO is approximately proportional to the distance Lj between the p groups 12. Therefore, the ratio of the maximum net doping amount N p 0 to the distance Lj between the electrode layers (NpO / Nj) is preferably set to 1 0 15 c πΓ 3 or less. Also, when the depth of the p base layer 12 becomes deeper, a drain voltage becomes applied to the p layer 14 under the gate and it becomes difficult to be depleted. Because the maximum net doping amount NpO will be inverse to the depth Xj of the ρ base layer 12 as shown in FIG. 9, when the depth Xj of the ρ base layer 12 is set to ', then the maximum net doping amount NpO and ρ base The ratio (Np0 / (Lj · Xj)) of the product of the depth Xj and the interval Lj of the layer 12 is preferably set below 1018cnT4. (Second Embodiment) FIG. 0 shows an example of a power MOSFET according to a second embodiment of the present invention. In addition, the same parts as the MOSFET shown in Figure 1
的P P層 此則 下P ,則 因此 好是 極層 P基 2 X 難將 此, 〇 4 μιη 以及 5 X 的構 附加 -23- (19) (19)200308096 相同的符號,且省略其詳細的說明。在此只針對不同的部 分來說明。又,圖1 〇則以省略掉形成η低電阻層的情形 爲例子。 在圖1 0中,作爲第5半導體層的ρ層1 4則分別成爲 一被埋入到η -漂移層1 1內的構造。亦即,在本實施形態 中’二個的上述ρ層14係被配置在上述各ρ基極層12的 下方。此外’該二個的上述ρ層分別被連接到相鄰的二個 的Ρ基極層12。此外,各ρ層14則在分別沿著上述ρ基 極層12的第1方向配置成矩陣狀。又,該ρ層14則分別 具有較上述各ρ基極層12爲低的雜質濃度。 本實施形態構造的MOSFET,則例如與圖1所示之構 造的MOSFET同樣地藉由施加高汲極電壓而使得ρ層14Α 空乏化。此外,閘極•汲極間電容也會因爲閘極2 4與汲 極21的對向面積的增加而增加。藉此能夠實現高速•低 雜訊的切換特性。 如此般,若在閘極24與汲極21之間存在有ρ層14Α ,則可以得到與上述的第1實施形態的情形大約相同的效 果。因此,藉由高汲極電壓而空乏化的ρ層也並不一定要 形成在ιΤ漂移層(或η低電阻層)的表面。The PP layer here is P, so it is fortunate that the polar layer P group 2 X is difficult to add this, 〇 4 μιη and 5 X structure with the same symbol -23- (19) (19) 200308096, and its detailed Instructions. Only the different parts will be explained here. FIG. 10 illustrates a case where the formation of the η low-resistance layer is omitted. In FIG. 10, the p-layers 14 which are the fifth semiconductor layers have a structure embedded in the? -Drift layer 11 respectively. That is, in this embodiment, two of the p-layers 14 are disposed below each of the p-base layers 12 described above. In addition, the two p-layers are connected to two adjacent p-base layers 12 respectively. In addition, the respective p-layers 14 are arranged in a matrix shape along the first direction of the p-base layer 12. The p-layers 14 each have a lower impurity concentration than the p-base layers 12 described above. In the MOSFET structured in this embodiment, for example, the p-layer 14A is made empty by applying a high drain voltage similarly to the MOSFET structured as shown in FIG. In addition, the capacitance between the gate and the drain also increases due to the increase in the area where the gate 24 and the drain 21 face each other. This enables high-speed and low-noise switching characteristics. As described above, if the p-layer 14A is present between the gate 24 and the drain 21, the same effect as that in the case of the first embodiment described above can be obtained. Therefore, the p-layer that is depleted by the high drain voltage does not necessarily have to be formed on the surface of the ITO drift layer (or η low-resistance layer).
當爲本實施形態構造的MOSFET時,其製程則相較 於圖1所示構造的MOSFET多少複雜些。亦即,光是將ρ 層14A形成在ιΤ漂移層1 1的內部就會導致製程變得複雜 。但是在施加高電壓時的電場的集中點則變得會接近於Ρ 基極層12的底部。而該點會較圖1所示構造的MOSFET -24- (20) (20)200308096 更提高其破壞忍耐量。 (第3實施形態) 圖1 1爲表示本發明之第3實施形態之功率MOSFET 的構成例。此外,與圖1所示之MOSFET的相同的部分 則附加相同的符號,且省略其詳細的說明。此外,在此只 針對不同的部分來說明。又,圖1 1是以省略形成η低電 阻層的情形爲例子。 在圖1 1中,作爲控制電極的閘極24a則經由閘絕緣 膜23a被埋入到n-漂移層1 1的表面部。亦即,在本實施 形態中,深溝(trench)型構造的閘極(trench gtate) 24a則呈線條狀地設在相鄰的二個的p基極層1 2的相互 之間。又,在該深溝閘(trench gate ) 24a的周圍則形成 有作爲第5半導體層的p層14B。此外,該p層14B則被 連接到至少p層12的其中一者。該p層14B則具有較上 述各P基極層12爲低的雜質濃度。 對於具有如此之深溝閘24a的本實施形態構造的 MOSFET而言,p層14B在低汲極電壓下並不會被空乏化 而會殘留下來。因此,閘極•汲極間電容會變小而得以進 行高速切換。另一方面,若施加高汲極電壓時,則p層 14B會被空乏化。藉此,在外觀上的閘面積會增加而導致 閘極•汲極間電容增加,因此會成爲低雜訊,而能夠實現 一與具有圖1所示之平面型構造之閘極的MOSFET的情 形大約相同效果,亦即,高速•低雜訊的切換特性。 •25· (21) (21)200308096 又,當爲本實施形態構造的MOSFET時,則可以改 變被P層14B所包圍之深溝閘24a的數目的比例以及p層 14B相對於深溝閘24a的面積比。藉此,在圖1所示之構 造的MOSFET中,可以得到與改變p層的面積比時同樣 的效果。 又,如圖12所示,也可以如包圍深溝閘24a之單側 的側壁與底部般地形成P層14B / 。亦即,除了深溝閘 24a之側壁的一部分外,也能夠形成p層14B /。此時, 由於未製作電流完全不流過的通道,因此能夠達成低ON 電阻化。 (第4實施形態) 圖13爲本發明之第4實施形態之功率MOSFET的構 成例。此外,在與圖1所示的MOSFET相同的部分則附 加相同的符號,且省略其詳細的說明。又,圖13是以形 成η低電阻層的情形爲例子。 在圖13中,作爲控制電極的閘極24b則具有分裂閘 構造。在本實施形態中,在η低電阻層1 1 a的表面部形成 作爲第5半導體層的二個的閘極下p層14。該二個閘極 下p層14則個自被連接到相鄰的上述p基極層12。此外 ,該P層具有較上述各p基極層12爲低的雜質濃度。 通常藉著將闡構造設成分裂闡構造,可以藉由減低闡 電容來達成切換特性的高速化。因此當形成閘極下p層 14時,更可以實現高速的切換特性。 -26- (22) (22)200308096 此外,用來製造本實施形態構造之MO SFET的製程 ,則可以在形成閘極下P層1 4後才形成閘極24b (分割 )。又,當在η低電阻層11a的整面形成好閘極下p層 14後才形成閘極24b。此外’也可以將該閘極24b設成掩 罩來形成η低電阻層11a (將p層14分割)。 又,閘構造並不限於上述分製闡構造的閘極24b。如 圖14所示,可以使用平台(terrance)闡構造的閘極(控 制電極)24c。此時則可以得到與上述分裂閘構造大約相 同的效果。 (第5實施形態) 圖15爲本發明之第5實施形態之功率MOSFET的構 成例。此外,在與圖1所示的MOSFET相同的部分則附 加相同的符號,且省略其詳細的說明。又,圖1 5是以形 成η低電阻層的情形爲例子。 在圖15中,作爲第2半導體層的多個的ρ基極層 1 2a則呈線條狀地形成在與元件之正面呈直交的第1方向 上。另一方面,作爲第5半導體層的多個的閘極下ρ層 14則呈線條狀地形成在與上述各ρ基極層12呈直交的第 2方向上。 若根據如此般之本實施形態構造的MOSFET,不僅得 到與圖1所示之構造大約相同的效果,更可以期待別的效 果。例如不會有對位偏離的影響,而能夠形成進行空乏化 的P層。 -27- (23) (23)200308096 (第6實施形態) 圖16爲本發明之第6實施形態之功率MOSFET的構 成例。此外,在與圖 1所示的 MOSFET相同的部則附加 相同的符號,且省略其詳細的說明。又,圖1 6是以形成 η低電阻層的情形爲例子。 在圖16中,作爲第2半導體層的多個的ρ基極層 12a則呈格子狀(或鋸齒狀)地配置在η低電阻層na的表 面部。此外,作爲第5半導體層的多個的閘極下ρ層14a 則呈矩形地分別配置在相鄰的4個的ρ基極層1 2 a之間。 又,作爲第3半導體層的多個的Π+源極層13a則呈 環狀地被形成在上述各ρ基極層12a的表面部,在分別與 上述ρ基極層12a以及上述n +源極層13a呈對應的部位 則設有作爲第1主電極之矩形的源極22a。又,作爲控制 電極的閘極24d則經由闡絕緣膜23d設在除了上述各源極 2 2 a以外的部位。 根據本實施形態構造的MOSFET,則可以得到與圖1 所示之構成的MOSFET大約相同的效果。又,由於在各ρ 基極層1 2a之角落部的電場被更加緩和,因此能夠抑制耐 壓降低的情形。 又,如圖1 6所示,將相鄰的閘極下ρ層14a的間隔 Wp設成較相鄰的ρ基極層12a的間隔Wj爲狹窄。如此 一來,結果則與將ρ基極層12a的面積變狹窄時同樣的效 果。藉此,可以緩和P基極層12a與η低電阻層lla的接 -28- (24) 200308096 合的電場,而能夠抑制耐壓降低的情形。該效果即使是如 圖15所示將各p基極層12形成爲線條狀的構造同樣也可 以得到。 圖17爲在圖16所示之構造的功率MOSFET中將上 述閘極下p層14a以及上述η低電阻層lla的配置設成 相反時的例子。 亦即,作爲第2半導體層的多個的p基極層i2a則呈 格子狀(或鋸齒狀)地配置在η低電阻層lla的表面部 。此外,作爲第5半導體層的個的閘極下p層1 4 a則分別 呈矩形地配置在相鄰的二個的p基極層12a之間。 即使是設成如此的構造,也可以得到與圖16所示之 MOSFET大約相同的效果。 圖18爲在圖16所示之構造的功率MOSFET中將閘 極下P層配置成線條狀時的例子。 亦即,作爲第2半導體層的多個的p基極層12則呈 格子狀(或鋸齒狀)地配置在η低電阻層lla的表面部。 此外,作爲第5半導體層的多個的閘極下p層1 4b則分別 呈線條狀地配置在相鄰的P基極層1 2a之間。 當設成如此的構造時,則可以得到與圖1 6所示之 MOSFET大約相同的效果。 圖19〜圖 21分別係表在第 6實施形態之功率 MOSFET中之更多其他構成例。 圖19爲將p基極層配置成格子狀(或鋸齒狀)時之 閘極下P層之配置圖案的一例。此時,如包圍著數個作爲 -29- (25) (25)200308096 第2半導體層的p基極層12a般地將作爲第5半導體層的 多個的閘極下p層14c配設成在一個方向的線條狀。 圖21爲在將p基極層配置成格子狀(或鋸齒狀)時 之閘極下P層的配置圖案的更多其他的例子。此時,則如 包圍數個作爲第2半導體層的P基極層12a般將作爲第5 半導體層的多個的閘極下P層14c配置成二個方向的線條 狀。 分別如圖19〜圖21所示,不管是設成那種的構造’ 本實施形態的MOSFET均可容易實現。 (第7實施形態) 圖22爲本發明的第7實施形態,爲適用在IGBT時 的例子。此外,在與圖1所示的MOSFET相同的部分則 附加相同的符號,且省略其詳細的說明。此外,則只針對 不同的部分來說明。又,圖22係表以省略掉形成η低電 阻層時爲例子。 在圖22中,本實施形態構造的IGBT (非擊穿Non Punch Through型構造)則具有與在省略掉圖5所示之η 低電阻層時的MOSFET大約相同的構造。 亦即,作爲第2半導體層的多個的p基極層12則藉 由擴散選擇性地形成在作爲第1半導體層之ιΤ漂移層1 1 的其中一面(表面)。各ρ基極層12則呈線條狀配置在 從圖面的面前朝內的第1方向。又,作爲第3半導體層之 至少一個的η +源極層1 3則藉由擴散分別選擇性地形成在 -30- (26) 200308096 各p基極層12的表面部。 又’作爲第5半導體層的p層14則藉由擴散選擇性 地被形成在位於相鄰的二個的p基極層12之間的上述η-漂移層1 1的表面部。在本實施形態中,ρ層1 4則呈線條 狀地配置在沿著上述ρ基極層12的第1方向。此外,則 被連接到在相鄰的二個ρ基極層12中的其中一個的ρ基 極層12。又,該ρ層14具有較上述ρ基極層12爲低的 雜質濃度。 在上述η —漂移層1 1的另一面(背面)則形成有作爲 第4半導體層的〆汲極層31。作爲第2主電極的汲極21 則連接到該Ρ +汲極層3 1的整面。 另一方面,在上述各Ρ基極層12上則分別包含上述 η +源極層13的一部分在內而形成作爲第1主電極的源極 2 2。各源極2 2則呈線條狀地配置在第1方向。又,作爲 控制電極的閘極2 4則經由闡絕緣膜2 3而形成在上述源極 22之間。亦即,平面型構造的閘極24,則被形成在從其 中一個的ρ基極層12內的上述η +源極層13,經由上述η — 漂移層11以及上述ρ層14而到達另一個的上述ρ基極層 1 2內的上述η +源極層1 3的領域上。上述閘絕緣膜2 3的 膜厚約爲0 · 1 μ m。 如此般,本實施形態構造的IGBT,其中在MOSFET 中的n +漂移層15的部分是由P +汲極層31所構成。藉此 可以當作IGBT來動作。 一般而言,若是MOS闡元件,則其切換特性大致上 -31 - (27) (27)200308096 係根據由MOS闡構造所決定的電容來決定。因此’對 IGBT而言,本實施形態的MOS闡構造是有效的。 此外,IGBT並不限於(非擊穿non punch through) 型構造,如圖 23所示,也可以適用於擊穿(punch through)型構造的IGBT。當爲衝穿型構造的IGBT時, 作爲第6半導體層的11+緩衝層32是設在ιΤ漂移層Π與 Ρ +汲極層3 1之間。 圖24爲本發明之第7實施形態之IGBT之又一其他 成例。此外,對與圖23所示的IGBT相同的部分則附加 相同的符號,且省略其詳細的說明。在此只針對不同的部 分來說明。又,圖2 0係表以形成η低電阻層的情形爲例 。更且,此爲適用於衝穿型構造之IGBT時的例子。 如圖24所示,IGBT有將源極接點(source contact) 之一部分(源極22A)實施間拔的假單元(第2單元)41 的形式。藉由針對源極接點實施間拔可以加強η -漂移層 1 1的傳導度調變。 在此構造的IGBT中,在上述假單元41形成有作爲 第5半導體層的閘極下ρ層14d。此時,ρ層14d則如完 全覆蓋η低電阻層11a的表面部而形成。另一方面,在通 常將源極接點(源極22 )形成在兩側的正常單元(第1 單元)42則未形成閘極下ρ層14d。因此,在低汲極電壓 時,閘極•汲極電容會變小而可以進行高速切換,而在高 汲極電壓時,則閘極·汲極間電容會增加而成爲一低切換 雜訊。 -32- (28) 200308096 此外,本實施形態構造的IGBT,如圖22〜圖24所 並不限於平面型的MOS闡構造,也可以同樣地實施在 溝型的MOS闡構造。 (第8實施形態) 圖25爲本發明之第8實施形態之功率MOSFET的 成例。此外,對與圖24所示之IGBT相同的部分則附 相同的符號,且省略其詳細的說明。此外,則只針對不 的部分來說明。又,圖25是以形成η低電阻層時爲例^ 如圖25所示,該MOSFET是一已形成有作爲第5 導體層之閘極下p層14d的MOS單元(第2單元)5】 與未形成有閘極下p層14d的MOS單元(第1單元) 混合存在的單元構造。上述閘極下p層1 4d則例如完全 蓋η低電阻層11a的表面部而形成。 當爲本實施形態構造的MOSFET時,則讓備有閘 下p層14d的MOS單元51的密度(數目)變化。如此 來,可以得到與讓閘極下p層1 4d的面積比變化時同樣 效果。亦即,單元5 1的個數相對於元件整體之單元5 ] 5 2的個數的比例則相當於圖7所示的閘極下p層1 4的 積比。 又,相較於針對上述源極接點實施間拔的IGBT ( 照圖24),可以簡化製程,且在製造上非常有利。 在此,則將未插入閘極下p層的MOS單元52中的 極24設成分裂闡構造,而將插入有閘極下p層14d 示 深 構 加 同 半 52 覆 極 的 Λ 面 參 閘 的 -33- (29) 200308096 MO S單元51中的閘極24設成通常的構造。於是在 壓時,由於電容是根據MOS單元52的闡面積來決定 此,閘極•汲極間電容會變小而變爲高速。另一方面 高電壓時,MOS單元51的閘極24的面積會變大而 一低雜訊。 此外,閘極下P層14d並不一定要完全覆蓋η低 層11a的表面部。即使將η低電阻層11a的表面部 一部分地覆蓋閘極下P層1 4d的構造也可以得到同樣 果。此外,最重要的是根據元件整體的闡面積與閘極 積(例如η低電阻層1 1 a的表面積)的比例來設計元 又,對於淨摻雜量最好是如圖8所示的値。 更且,並不限於MOSFET,如圖26所示,也同 可以適用在擊穿型構造的IGBT (或未圖示的非擊穿 造的IGBT)。 (第9實施形態) 圖27爲本發明之第9實施形態之功率MOSFET 成例。此外,對與圖25所示之MOSFET相同的部分 加相同的符號,且省略其詳細的說明。在此只針對不 部分來說明。 當爲本實施形態構造的MOSFET時,如圖27所 分別具備有作爲第5半導體層之閘極下p層14d的 單元(第1單元)51a並未具有作爲第3半導體層的 極層1 3。 低電 ,因 ,在 成爲 電阻 設成 的效 下面 件。 樣地 型構 的構 則附 同的 示, MOS n+源 -34- (30) (30)200308096 在該構造的MO SFET中,可以提高破壞忍耐量。亦 即,由於即使是施加電壓給閘極24也沒有電子流動的路 徑,因此不會動作。亦即,MOS單元51a,則在高汲極電 壓時只具備有提高閘極•汲極間電容的功能。因此’即使 是除去n+源極層13也不會影響到ON電阻。 又,由於沒有n+源極層13,因此在MOS單元51a未 存在有寄生雙埠電晶體。因此,即使是在施加高電壓時產 生雪崩降伏的情形,也能夠迅速地將所產生的電洞排出。 藉此,除了能夠實現高速•低雜訊的切換特性外,也可以 提高雪崩忍耐量。 又,圖 27所示的 MOSFET,乃將 MOS單元 52與 MOS單元51a的閘極長度設成相同的長度。相較於此, 如圖28所示,乃將MOS單元51b的閘極24B的閘極長度 加長,且將MOS單元52a的彈極24A的閘極長度縮短。 藉此針對高速•低切換雜訊的效果會變強。 亦即,在低電壓時,只有MOS單元52a的閘極電容 會成爲元件整體的閘極電容。因此,藉著縮短MOS單元 5 2a的閘極長度可以達成高速化。又,在高電壓時,閘極 下p層14d會空乏化。因此,MOS單元51b的閘極電容 會加到MOS單元52a的閘極電容。此如,藉著加大MOS 單元5 1 b的閘極長度可以加大閘極電容的增加量,結果能 夠大幅地減低切換雜訊。 (第1 〇實施形態) -35· (31) 200308096 在此,則針對上述閘極下p層的雜質量更加詳細地說 明。在此,則以圖1所示構造的MOSFET爲例來加以說 明。 第1實施形態的MOSFET,閘極•汲極間電容會因爲 閘極下P層14的空乏化而變化。而此對於MOSFET的高 速化以及低雜訊化有所幫助。因此,閘極下p層1 4則必 須要有足以使在施加高汲極電壓時會產生空乏化的雜質量 。如此般,在閘極下p層14的雜質量存在有作爲產生空 乏化之極限的最大値。 閘極下P層14的最大雜質量乃根據閘極下p層14之 空乏化的程度來決定。空乏化的程度則受到施加在閘極下 P層1 4之電場的大小所左右。亦即,閘極下p層1 4的最 大雜質量則與MOSFET之各部分的尺寸或各部分的濃度 有關。具體地說,乃與閘極下p層14的尺寸,p基極層 12的間隔(距離)、η低電阻層1 1 a的濃度、ρ基極層 12的深度等有關。因此,在設計閘極下!3層14的雜質量 時最重要的是考慮到MOSFET的各部分的尺寸以及各部 分的濃度。此外,上述η低電阻層11a具有較n_漂移層 1 1爲高的雜質濃度。 當爲圖1所示的MOSFET時,閘極下ρ層14係被形 成在與η低電阻層11a同一表面。因此,閘極下ρ層14 的雜質量必須要根據淨摻雜量來檢討。所謂的淨摻雜量是 指從相當於正孔的量的ρ型雜質量減去η型雜質量的量。 在以下的說明中,閘極下ρ層14的雜質量表示閘極 -36- (32) 200308096 下p層14的淨摻雜量。又,雜質量的單位則使 濃度在深度方向實施積分之單位面積的濃度(Cm 圖29爲在第1實施形態之M0SFET中之閘 14的尺寸(面積比Ap)與閘極下P層14之最 量NpO關係的說明圖。但是在此係表不將n 11a的摻雜量(Nn)設成4xl012cm_2、p基極層 隔(Lj )設成6μιη時的情形。 所謂的閘極下 Ρ層14的面積比 Ap ( Apl+Ap2 )係指閘極下P層14的面積(Apl )相 極層12間之面積(Apl+Ap2 )的比例。如圖1 分別將閘極2 4、ρ基極層1 2、η +源極層1 3 ’以 Ρ層14形成線條狀時,則Ρ基極層12間的面積 基極層12.的間隔Lj呈正比。同樣地,閘極下Ρ 面積大約與闡極下ρ層14的長度Lgp呈正比。 極下ρ層1 4的面積比Ap能夠以ρ基極層1 2的严E 閘極下ρ層14的長度Lgp的比(Ap = Lgp/Lj )來 如圖2 9所示,閘極下ρ層14的最大淨摻 大約是與閘極下P層1 4的面積比Ap的倒數呈 使閘極下ρ層1 4的面積產生變化,則可以產生 閘極下P層14的全部淨摻雜量Np —點也不會 摻雜量Np爲單位面積的雜質量。因此,當閘極_ 的面積變大時,則其淨摻雜量Np也會變小。 若將閘極下ρ層14的面積比Ap的倒數( 最大淨摻雜量NpO的關係以一次近似式來表示 用將雜質 •2)。 極下P層 大淨摻雜 低電阻層 1 2的間 = Apl/ ( 對於P基 所示,當 及閘極下 大約與P 層14的 藉此,閘 哥隔Lj與 表示。 雜量NpO 正比。即 空乏化的 變化。淨 F P 層 I/Αρ)與 時則成爲 -37- (33) (33)200308096 如以下公式(1 )所示。In the case of the MOSFET structured in this embodiment, the manufacturing process is somewhat more complicated than that of the MOSFET structured in FIG. That is, simply forming the ρ layer 14A inside the ITO drift layer 11 will cause the process to become complicated. However, the concentration point of the electric field when a high voltage is applied becomes closer to the bottom of the P base layer 12. And this point will increase its damage tolerance more than the MOSFET -24- (20) (20) 200308096 with the structure shown in Figure 1. (Third Embodiment) Fig. 11 shows a configuration example of a power MOSFET according to a third embodiment of the present invention. In addition, the same parts as those of the MOSFET shown in FIG. 1 are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, only the different parts will be described here. Fig. 11 shows an example in which the formation of a low-resistance layer is omitted. In FIG. 11, a gate electrode 24a as a control electrode is buried in a surface portion of the n-drift layer 11 via a gate insulating film 23a. That is, in this embodiment, the gates 24a of a deep trench structure are provided in a line shape between two adjacent p base layers 12 of each other. A p-layer 14B as a fifth semiconductor layer is formed around the trench gate 24a. In addition, the p-layer 14B is connected to at least one of the p-layers 12. The p-layer 14B has a lower impurity concentration than each of the P-base layers 12 described above. For the MOSFET having the structure of this embodiment having such a deep trench gate 24a, the p-layer 14B does not become empty under the low drain voltage and remains. As a result, the capacitance between the gate and the drain becomes smaller, enabling high-speed switching. On the other hand, when a high drain voltage is applied, the p-layer 14B is depleted. As a result, the gate area in appearance will increase and the gate-drain capacitance will increase, so it will become a low noise, and it can realize a situation similar to a MOSFET with a gate with a planar structure as shown in Figure 1. About the same effect, that is, high-speed and low-noise switching characteristics. • 25 · (21) (21) 200308096 In addition, when the MOSFET is constructed in this embodiment, the ratio of the number of deep trench gates 24a surrounded by the P layer 14B and the area of the p layer 14B with respect to the deep trench gate 24a can be changed ratio. Thereby, in the MOSFET constructed as shown in Fig. 1, the same effect as that obtained when the area ratio of the p-layer is changed can be obtained. Further, as shown in FIG. 12, the P layer 14B / may be formed like a side wall and a bottom portion surrounding one side of the deep trench gate 24a. That is, the p-layer 14B / can be formed in addition to a part of the side wall of the deep trench gate 24a. In this case, since a channel through which no current flows at all is not made, a low ON resistance can be achieved. (Fourth Embodiment) Fig. 13 is a configuration example of a power MOSFET according to a fourth embodiment of the present invention. In addition, the same reference numerals are assigned to the same parts as those of the MOSFET shown in FIG. 1, and detailed descriptions thereof are omitted. Fig. 13 shows a case where an η low-resistance layer is formed. In Fig. 13, the gate electrode 24b as a control electrode has a split gate structure. In this embodiment, a lower gate p-layer 14 is formed on the surface of the η low-resistance layer 1 1 a as two fifth semiconductor layers. The two lower p-layers 14 are connected to the adjacent p-base layer 12. In addition, the P layer has a lower impurity concentration than each of the p base layers 12 described above. Generally, by setting the interpretation structure to a split interpretation structure, speeding up switching characteristics can be achieved by reducing the interpretation capacitance. Therefore, when the p-layer 14 under the gate is formed, high-speed switching characteristics can be achieved. -26- (22) (22) 200308096 In addition, in the process for manufacturing the MO SFET of this embodiment, the gate 24b (splitting) can be formed after the P layer 14 under the gate is formed. The gate electrode 24b is formed after the gate lower p layer 14 is formed on the entire surface of the η low-resistance layer 11a. Alternatively, the gate electrode 24b may be used as a mask to form the η low-resistance layer 11a (the p-layer 14 is divided). The gate structure is not limited to the gate electrode 24b of the above-mentioned divided structure. As shown in Fig. 14, a gate (control electrode) 24c of the structure can be explained using a terrain. At this time, approximately the same effect as that of the above-mentioned split gate structure can be obtained. (Fifth Embodiment) Fig. 15 is a configuration example of a power MOSFET according to a fifth embodiment of the present invention. In addition, the same reference numerals are assigned to the same parts as those of the MOSFET shown in FIG. 1, and detailed descriptions thereof are omitted. Fig. 15 shows an example in which a low-resistance layer is formed. In FIG. 15, a plurality of p base layers 12a as the second semiconductor layer are formed in a line shape in a first direction orthogonal to the front surface of the element. On the other hand, the plurality of lower gate p-layers 14 as the fifth semiconductor layer are formed in a line shape in a second direction orthogonal to each of the p-base layers 12 described above. According to the MOSFET structured in this embodiment, not only the same effect as that of the structure shown in Fig. 1 can be obtained, but also other effects can be expected. For example, there is no effect of misalignment, and a p-layer can be formed to be depleted. -27- (23) (23) 200308096 (Sixth Embodiment) Fig. 16 is a configuration example of a power MOSFET according to a sixth embodiment of the present invention. In addition, the same parts as those of the MOSFET shown in FIG. 1 are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, FIG. 16 illustrates a case where an η low-resistance layer is formed. In FIG. 16, a plurality of p base layers 12a as the second semiconductor layer are arranged on the surface of the n low-resistance layer na in a lattice (or zigzag) manner. In addition, a plurality of lower gate p-layers 14a as the fifth semiconductor layer are arranged in a rectangular shape between four adjacent p-base layers 12a, respectively. Further, a plurality of Π + source layers 13a as the third semiconductor layer are formed in a ring shape on the surface portion of each of the p base layers 12a, and are respectively connected to the p base layer 12a and the n + source. A rectangular source electrode 22a is provided as a first main electrode at a corresponding portion of the electrode layer 13a. The gate electrode 24d as a control electrode is provided at a position other than the above-mentioned respective source electrodes 2 2a through the insulating film 23d. According to the MOSFET structured in this embodiment, approximately the same effects as those of the MOSFET structure shown in FIG. 1 can be obtained. Furthermore, since the electric field in the corners of each of the p base layers 12a is further alleviated, it is possible to suppress a decrease in withstand voltage. As shown in Fig. 16, the interval Wp between the adjacent lower p-layers 14a is set to be narrower than the interval Wj between the adjacent p-base layers 12a. As a result, the same effect as that obtained when the area of the? Base layer 12a is reduced is obtained. Thereby, the electric field combined between the P base layer 12a and the η low-resistance layer 11a can be relaxed, and a reduction in withstand voltage can be suppressed. This effect can be obtained even in a structure in which each p base layer 12 is formed in a line shape as shown in Fig. 15. Fig. 17 shows an example in which the arrangement of the p-layer 14a under the gate and the η low-resistance layer 11a are reversed in the power MOSFET having the structure shown in Fig. 16. That is, a plurality of p base layers i2a as the second semiconductor layer are arranged in a lattice (or zigzag) manner on the surface portion of the n low-resistance layer 11a. In addition, the p-layers 14 a below the gate, which are the fifth semiconductor layers, are each arranged in a rectangular shape between two adjacent p-base layers 12 a. Even with such a structure, the same effect as that of the MOSFET shown in FIG. 16 can be obtained. Fig. 18 shows an example when the P layer under the gate is arranged in a line shape in the power MOSFET having the structure shown in Fig. 16. That is, a plurality of p base layers 12 as the second semiconductor layer are arranged in a lattice (or zigzag) manner on the surface portion of the n low-resistance layer 11a. Further, a plurality of lower gate p-layers 14b as the fifth semiconductor layer are arranged in a line shape between adjacent P-base layers 12a. With this structure, the same effect as that of the MOSFET shown in FIG. 16 can be obtained. Fig. 19 to Fig. 21 are further examples of other configurations in the power MOSFET according to the sixth embodiment. FIG. 19 is an example of an arrangement pattern of the P layer under the gate when the p base layer is arranged in a lattice (or zigzag) shape. At this time, a plurality of p-layers 14c under the gate, which are a plurality of fifth semiconductor layers, are disposed on the p-base layer 12a as a fifth semiconductor layer, such as to surround a plurality of p-base layers 12a as -29- (25) (25) 200308096. Lines in one direction. Fig. 21 shows still another example of the arrangement pattern of the P layer under the gate when the p base layer is arranged in a lattice (or zigzag) pattern. At this time, the plurality of lower gate P layers 14c as the fifth semiconductor layer are arranged in a line shape in two directions as if the P base layers 12a as the second semiconductor layer are surrounded. As shown in FIGS. 19 to 21 respectively, the MOSFET of this embodiment can be easily realized regardless of the structure. (Seventh Embodiment) Fig. 22 shows a seventh embodiment of the present invention, and is an example when applied to an IGBT. In addition, the same parts as those of the MOSFET shown in FIG. 1 are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, only the different parts will be explained. Fig. 22 is a table showing an example in which the formation of the? -Low-resistance layer is omitted. In FIG. 22, the IGBT (non-breakdown Non Punch Through structure) constructed in this embodiment has approximately the same structure as the MOSFET when the η low-resistance layer shown in FIG. 5 is omitted. That is, a plurality of p base layers 12 as the second semiconductor layer are selectively formed on one surface (surface) of the ITO drift layer 1 1 as the first semiconductor layer by diffusion. Each p base layer 12 is arranged in a line shape in a first direction facing inward from the front of the drawing. In addition, the η + source layer 13, which is at least one of the third semiconductor layers, is selectively formed on the surface portion of each p base layer 12 by -30- (26) 200308096. The p-layer 14 as the fifth semiconductor layer is selectively formed on the surface portion of the η-drift layer 11 between two adjacent p-base layers 12 by diffusion. In this embodiment, the p-layers 14 are arranged in a line shape in a first direction along the p-base layer 12. In addition, it is connected to the p-base layer 12 in one of two adjacent p-base layers 12. The p-layer 14 has a lower impurity concentration than the p-base layer 12 described above. On the other side (back surface) of the η-drift layer 11, a chirped drain layer 31 as a fourth semiconductor layer is formed. The drain 21 as the second main electrode is connected to the entire surface of the P + drain layer 31. On the other hand, a source 22 as a first main electrode is formed on each of the P base layers 12 including a part of the η + source layer 13. Each source electrode 22 is arranged in a line shape in the first direction. The gate electrode 24, which is a control electrode, is formed between the source electrodes 22 through the insulating film 23. That is, the gate electrode 24 having a planar structure is formed in the η + source layer 13 in the ρ base layer 12 from one of them, and reaches the other via the η-drift layer 11 and the ρ layer 14. In the above-mentioned ρ base layer 12 within the above-mentioned η + source layer 13. The gate insulating film 23 has a film thickness of about 0.1 μm. As such, in the IGBT structured in this embodiment, the portion of the n + drift layer 15 in the MOSFET is composed of the P + drain layer 31. This allows it to operate as an IGBT. In general, if it is a MOS device, its switching characteristics are roughly -31-(27) (27) 200308096 is determined based on the capacitance determined by the MOS device structure. Therefore, for the IGBT, the MOS structure of this embodiment is effective. In addition, the IGBT is not limited to a non-punch through structure, as shown in FIG. 23, and can also be applied to an IGBT with a punch through structure. In the case of an IGBT having a punch-through structure, an 11+ buffer layer 32 as a sixth semiconductor layer is provided between the ITO drift layer Π and the P + drain layer 31. Fig. 24 shows still another example of the IGBT according to the seventh embodiment of the present invention. In addition, the same parts as those of the IGBT shown in FIG. 23 are assigned the same reference numerals, and detailed descriptions thereof are omitted. Only the different parts will be explained here. In addition, FIG. 20 shows a case where an η low-resistance layer is formed. Furthermore, this is an example when applied to an IGBT of a punch-through structure. As shown in FIG. 24, the IGBT has a dummy cell (second cell) 41 in which a part of a source contact (source 22A) is thinned out. The modulation of the conductivity of the η-drift layer 1 1 can be enhanced by performing thinning on the source contacts. In the IGBT having this structure, the dummy cell 41 is formed with a lower gate p layer 14d as a fifth semiconductor layer. At this time, the p-layer 14d is formed so as to completely cover the surface portion of the? -Low-resistance layer 11a. On the other hand, in the normal cell (the first cell) 42 where the source contact (source 22) is usually formed on both sides, the lower gate p layer 14d is not formed. Therefore, at low drain voltages, the gate-drain capacitance becomes smaller and high-speed switching is possible, while at high drain voltages, the gate-drain capacitance increases and becomes a low-switching noise. -32- (28) 200308096 In addition, the IGBT structured in this embodiment is not limited to a planar MOS structure as shown in Figs. 22 to 24, and can be similarly implemented in a trench MOS structure. (Eighth Embodiment) Fig. 25 is an example of a power MOSFET according to an eighth embodiment of the present invention. In addition, the same parts as those of the IGBT shown in FIG. 24 are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, only the parts that are not described will be explained. FIG. 25 is a case where the η low-resistance layer is formed. As shown in FIG. 25, the MOSFET is a MOS cell (second cell) 5 having a p-layer 14d under the gate as a fifth conductor layer. 5] A cell structure mixed with a MOS cell (first cell) in which the p-layer 14d under the gate is not formed. The p-layer 14d under the gate is formed, for example, by completely covering the surface portion of the low-resistance layer 11a. In the MOSFET structured in this embodiment, the density (number) of the MOS cells 51 provided with the p-layer 14d under the gate is changed. In this way, the same effect as that obtained when the area ratio of the p-layer 14d under the gate is changed can be obtained. That is, the ratio of the number of cells 51 to the number of cells 5] 52 in the entire device is equivalent to the product ratio of the p-layers 14 under the gate shown in FIG. In addition, compared with the IGBT (see FIG. 24) that implements the inter-distribution of the source contacts described above, the manufacturing process can be simplified and the manufacturing is very advantageous. Here, the pole 24 in the MOS cell 52 that is not inserted into the p-layer below the gate is set to a split structure, and the deep structure with the p-layer 14d below the gate inserted is added to the Λ plane of the same half-52 covered electrode -33- (29) 200308096 The gate 24 in the MO S unit 51 is provided in a usual structure. Therefore, when the voltage is applied, since the capacitance is determined according to the area of the MOS cell 52, the capacitance between the gate and the drain becomes small and becomes high speed. On the other hand, when the voltage is high, the area of the gate 24 of the MOS cell 51 becomes large and a noise is low. In addition, the lower gate P layer 14d does not necessarily completely cover the surface portion of the n low layer 11a. The same effect can be obtained even in a structure in which the surface portion of the η low-resistance layer 11a partially covers the under-gate P layer 14d. In addition, the most important thing is to design the element according to the ratio of the total area of the element to the gate product (such as the surface area of the η low-resistance layer 1 1 a). . Furthermore, it is not limited to the MOSFET, as shown in FIG. 26, it can also be applied to an IGBT with a breakdown structure (or a non-breakdown IGBT (not shown)). (Ninth Embodiment) Fig. 27 is an example of a power MOSFET according to a ninth embodiment of the present invention. In addition, the same reference numerals are given to the same parts as those of the MOSFET shown in FIG. 25, and detailed descriptions thereof are omitted. Only a part of the explanation will be given here. In the MOSFET structured in this embodiment, as shown in FIG. 27, each of the cells (first cell) 51a provided with the p-layer 14d under the gate as the fifth semiconductor layer does not have the electrode layer 1 as the third semiconductor layer. . Low power is due to the effect of the resistance set. The structure of the sample structure shows that the MOS n + source -34- (30) (30) 200308096 can increase the damage tolerance of the MO SFET in this structure. That is, since there is no path through which electrons flow even when a voltage is applied to the gate electrode 24, it does not operate. In other words, the MOS unit 51a only has a function of increasing the capacitance between the gate and the drain when the drain voltage is high. Therefore, even if the n + source layer 13 is removed, the ON resistance is not affected. Since there is no n + source layer 13, no parasitic dual-port transistor exists in the MOS cell 51a. Therefore, even in the case where avalanche drops occur when a high voltage is applied, the generated holes can be quickly discharged. This not only enables high-speed and low-noise switching characteristics, but also improves avalanche tolerance. In addition, in the MOSFET shown in FIG. 27, the gate lengths of the MOS cell 52 and the MOS cell 51a are set to the same length. In contrast, as shown in FIG. 28, the gate length of the gate 24B of the MOS unit 51b is increased, and the gate length of the spring 24A of the MOS unit 52a is shortened. With this, the effect of high-speed and low-switching noise becomes stronger. That is, at a low voltage, only the gate capacitance of the MOS cell 52a becomes the gate capacitance of the entire device. Therefore, by shortening the gate length of the MOS cell 52a, a high speed can be achieved. At high voltage, the p-layer 14d under the gate becomes empty. Therefore, the gate capacitance of the MOS cell 51b is added to the gate capacitance of the MOS cell 52a. For example, by increasing the gate length of the MOS cell 5 1 b, the increase in the gate capacitance can be increased, and as a result, the switching noise can be greatly reduced. (10th embodiment) -35 · (31) 200308096 Here, the impurity amount of the p-layer below the gate will be described in more detail. Here, the MOSFET structure shown in FIG. 1 is taken as an example for explanation. In the MOSFET of the first embodiment, the capacitance between the gate and the drain changes due to the emptying of the P layer 14 under the gate. This is helpful for high speed and low noise of MOSFET. Therefore, the p-layer 14 under the gate must have a sufficient amount of impurities to cause emptying when a high drain voltage is applied. As such, the maximum amount of impurities present in the p-layer 14 under the gate is the limit for the generation of depletion. The maximum impurity level of the P layer 14 under the gate is determined according to the degree of depletion of the p layer 14 under the gate. The degree of emptying is affected by the magnitude of the electric field applied to the P layer 14 under the gate. That is, the maximum impurity amount of the p-layer 14 under the gate is related to the size of each part of the MOSFET or the concentration of each part. Specifically, it is related to the size of the p-layer 14 under the gate, the interval (distance) of the p-base layer 12, the concentration of the η low-resistance layer 11a, the depth of the p-base layer 12, and the like. Therefore, under the design gate! The most important factor for the impurity level of the three layers 14 is the size and concentration of each part of the MOSFET. The n low-resistance layer 11a has a higher impurity concentration than the n_drift layer 11a. In the case of the MOSFET shown in Fig. 1, the lower gate p-layer 14 is formed on the same surface as the η low-resistance layer 11a. Therefore, the impurity amount of the p-layer 14 under the gate must be reviewed based on the net doping amount. The so-called net doping amount is an amount obtained by subtracting an n-type impurity amount from a p-type impurity amount corresponding to the amount of a positive hole. In the following description, the impurity amount of the p-layer 14 under the gate indicates the net doping amount of the p-layer 14 under the gate -36- (32) 200308096. The unit of the impurity mass is the concentration per unit area where the concentration is integrated in the depth direction (Cm FIG. 29 shows the size (area ratio Ap) of the gate 14 in the MOSFET of the first embodiment and the P-layer 14 under the gate. An explanatory diagram of the relationship of the maximum NpO. However, the case where the doping amount (Nn) of n 11a is set to 4xl012cm_2 and the p base spacer (Lj) is set to 6 μm is shown here. The so-called P layer under the gate The area ratio Ap (Apl + Ap2) of 14 refers to the ratio of the area (Apl + Ap2) of the P layer 14 under the gate to the area (Apl + Ap2) between the electrode layers 12. As shown in Figure 1, When the electrode layers 1 2 and η + the source layer 1 3 ′ form a line shape with the P layer 14, the area between the P base layers 12 and the interval Lj between the base layers 12 are proportional. Similarly, the P area under the gate is similar. It is approximately proportional to the length Lgp of the p-layer 14 under the pole. The area ratio Ap of the p-layer 14 under the pole can be equal to the ratio of the length Lgp of the p-layer 14 under the gate (Ap = Lgp). / Lj). As shown in Figure 29, the maximum net doping of the p-layer 14 under the gate is approximately the inverse of the area ratio Ap with the p-layer 14 under the gate, which changes the area of the p-layer 14 under the gate. , You can generate the gate The total net doping amount Np of the P layer 14 does not include the amount of impurity Np per unit area. Therefore, as the area of the gate electrode becomes larger, the net doping amount Np also becomes smaller. If the area ratio of the p layer 14 under the gate is the inverse of Ap (the relationship between the maximum net doping amount NpO is expressed by a first-order approximation using the impurity • 2). The P layer under the electrode is a large net doped low-resistance layer 1 2 Time = Apl / (for the P base, when the gate is approximately the same as P layer 14, the gate is separated by Lj and. The amount of miscellaneous NpO is proportional. That is, the change of depletion. Net FP layer I / Αρ) Then it becomes -37- (33) (33) 200308096 as shown in the following formula (1).
Np0 = 9xl 01 VAp+l .2x1 012cm'2 ( 1 ) 因此,閘極下p層14的淨摻雜量Np最好是較最大 淨摻雜量N p 0爲小。 閘極下P層14的淨摻雜量Np與p基極層12之間隔 Lj的關係則例如圖9所示大約呈正比。而此是因爲當P 基極層12的間隔Lj變窄時,則來自汲極的電力線會被P 基極層12所遮斷,因此,閘極下p層14會變得難以空乏 化而導致最大淨摻雜量NpO變小所造成。 根據該正比關係,當將上述公式(1 )變形時則成爲 以下公式(2 )Np0 = 9xl 01 VAp + l. 2x1 012cm'2 (1) Therefore, the net doping amount Np of the p-layer 14 under the gate is preferably smaller than the maximum net doping amount N p 0. The relationship between the net doping amount Np of the p-layer 14 under the gate and the interval Lj of the p-base layer 12 is approximately proportional to that shown in FIG. 9, for example. This is because when the interval Lj of the P base layer 12 is narrowed, the power line from the drain electrode is blocked by the P base layer 12, and therefore, the p layer 14 under the gate becomes difficult to become empty, resulting in Caused by a decrease in the maximum net doping amount NpO. According to this proportional relationship, when the above formula (1) is transformed into the following formula (2)
Np0/Lj = l .7x1 015/Ap + 2xl 015cm·3 ( 2 ) 因此,閘極下P層14的淨摻雜量Np最好是較最大 淨摻雜量NpO爲小。 圖30爲表示在第1實施形態構造的MOSFET中之p 基極層12的深度Xj與閘極下p層14之最大淨摻雜量 NpO的關係。但是在此則是表示一將η低電阻層1 la的 摻雜量設爲4 X 1012cnT2、閘極下p層14的面積比(Ap) 設爲5 0%、p基極層1 2的間隔(L )設爲2 μιη的情形。Np0 / Lj = 1.7x1 015 / Ap + 2xl 015cm · 3 (2) Therefore, the net doping amount Np of the P layer 14 under the gate is preferably smaller than the maximum net doping amount NpO. FIG. 30 shows the relationship between the depth Xj of the p base layer 12 and the maximum net doping amount NpO of the p layer 14 under the gate in the MOSFET structured in the first embodiment. However, it means that the doping amount of the η low-resistance layer 1 la is set to 4 X 1012cnT2, the area ratio (Ap) of the p-layer 14 under the gate is set to 50%, and the interval between the p-base layers 12 is 12 (L) is set to 2 μm.
如圖30所示,閘極下ρ層14的最大淨摻雜量NpO -38- (34) (34)200308096 則與p基極層12的深度Xj大約呈反比。亦即,閘極下p 層14的最大淨摻雜量NpO則與p基極層12的深度Xj的 倒數大約呈正比。而此是因爲當P基極層12的深度Xj變 深時,則來自汲極的電力線會被P基極層12所遮斷,因 此閘極下P層1 4變得難以空乏化而導致最大淨摻雜量 NpO變小所造成。 根據該反比關係,當將上述公式(1 )變形時,則成 爲以下公式(3 )所示。As shown in FIG. 30, the maximum net doping amount of the p-layer 14 under the gate NpO -38- (34) (34) 200308096 is approximately inversely proportional to the depth Xj of the p-base layer 12. That is, the maximum net doping amount NpO of the p-layer 14 under the gate is approximately proportional to the inverse of the depth Xj of the p-base layer 12. This is because when the depth Xj of the P base layer 12 becomes deeper, the power lines from the drain electrode will be blocked by the P base layer 12, so the P layer 14 under the gate becomes difficult to be empty, resulting in the largest Caused by a smaller net doping amount NpO. According to this inverse relationship, when the above formula (1) is modified, it becomes as shown in the following formula (3).
NpO · Xj = 3 · 6 X 1 08/Ap + 4 · 8 X 1 08 cm·1 ( 3) 因此,閘極下p層14的淨摻雜量Np最好較最大淨 摻雜量NpO爲小。 如圖9所示,閘極下p層1 4的最大淨摻雜量n p 0則 與P基極層1 2的間隔大約呈正比。在此,根據該正比關 係,當將上述公式(3 )變形時,則成爲以下公式(4 )所 不 °NpO · Xj = 3 · 6 X 1 08 / Ap + 4 · 8 X 1 08 cm · 1 (3) Therefore, the net doping amount Np of p layer 14 under the gate is preferably smaller than the maximum net doping amount NpO . As shown in FIG. 9, the maximum net doping amount n p 0 of the p-layer 14 under the gate is approximately proportional to the interval between the p-base layer 12. Here, according to this proportional relationship, when the above formula (3) is deformed, it becomes the following formula (4):
NpO · Xj/Lj = 6xl011/Ap + 8xl011cm·2 (4) 因此,閘極下p層14的淨摻雜量Np則最好較最大 淨摻雜量NpO爲小。 圖31爲表示在第1實施形態構造之MOSFET中之n 低電阻層11a的摻雜量Νη與閘極下ρ層14的最大淨摻雜 -39- (35) (35)200308096 量NpO的關係。 如圖31所示閘極下p層14的最大淨摻雜量NpO則 與η低電阻層11a的摻雜量大約呈正比,因此,η低電 阻層11a會高濃度化。於是由於閘極下ρ層14容易空乏 化,因此其最大淨摻雜量NpO會增加。 若將η低電阻層11a的摻雜量Nil與最大淨摻雜量 NpO的關係以一次近似式來表示時則成爲以下公式(5 ) 所示,NpO · Xj / Lj = 6xl011 / Ap + 8xl011cm · 2 (4) Therefore, the net doping amount Np of the p-layer 14 under the gate is preferably smaller than the maximum net doping amount NpO. FIG. 31 shows the relationship between the doping amount Nη of the n low-resistance layer 11a and the maximum net doping of the p-layer 14 under the gate -39- (35) (35) 200308096 amount NpO in the MOSFET constructed in the first embodiment. . As shown in FIG. 31, the maximum net doping amount NpO of the p-layer 14 under the gate is approximately proportional to the doping amount of the η low-resistance layer 11a, and therefore, the η low-resistance layer 11a becomes highly concentrated. Therefore, since the p-layer 14 under the gate is easily depleted, its maximum net doping amount NpO will increase. If the relationship between the doping amount Nil of the η low-resistance layer 11a and the maximum net doping amount NpO is expressed by a first-order approximation, it becomes as shown in the following formula (5),
Np0 = 0.37Nn+1.6xl012cm*2 (5) 若再將該公式(5)配合上述公式(1)而變形成包含 閘極下ρ層1 4的面積比Ap在內的形式時則成爲以下公 式(6 )所示。Np0 = 0.37Nn + 1.6xl012cm * 2 (5) If this formula (5) is combined with the above formula (1) to change to the form including the area ratio Ap of the p layer 14 under the gate, the following formula becomes (6).
Np0 = 8.4xl011/Ap + 0.34Nn + 0.015Nn/Ap-1.2xl011cm·2 (6) 因此,閘極下P層14的淨摻雜量Np最好較最大淨 摻雜量NpO爲小。 如圖9所示,閘極下ρ層14的最大淨摻雜量NpO則 與ρ基極層12的間隔Lj大約呈正比。根據該關係,當將 上述公式(6)變形時,則成爲以下公式(7)所示。Np0 = 8.4xl011 / Ap + 0.34Nn + 0.015Nn / Ap-1.2xl011cm · 2 (6) Therefore, the net doping amount Np of the P layer 14 under the gate is preferably smaller than the maximum net doping amount NpO. As shown in FIG. 9, the maximum net doping amount NpO of the p-layer 14 under the gate is approximately proportional to the interval Lj of the p-base layer 12. Based on this relationship, when the above formula (6) is modified, the following formula (7) is obtained.
Np/Lj = 1.4 xl015/Ap + 570Nn + 25Nn/Ap-2 xl014cm_3 ( 1 -40- (36) 200308096 因此,閘極下P層14的淨摻雜量N p則最好較 淨摻雜量N p 0爲小。 如圖3 0所示,閘極下p層14的最大淨摻雜量 則與P基極層12的深度Xj大約呈反比。根據該關係 將上述公式(7 )變形時,則成爲以下公式(8 )所示Np / Lj = 1.4 xl015 / Ap + 570Nn + 25Nn / Ap-2 xl014cm_3 (1 -40- (36) 200308096 Therefore, the net doping amount N p of the P layer 14 under the gate is better than the net doping amount N p 0 is small. As shown in FIG. 30, the maximum net doping amount of p layer 14 under the gate is approximately inversely proportional to the depth Xj of P base layer 12. When the above formula (7) is deformed according to this relationship, Becomes the following formula (8)
Np· Xj/Lj = 5.6x 10 1 1/Αρ + 0.2 2 8Νη + 0.01Νη/Αρ-8 χ 1 Ο1 因此,閘極下ρ層14的淨摻雜量Νρ則最好較 淨摻雜量Ν ρ 0爲小。 另一方面,當閘極下ρ層14的淨摻雜量Νρ變 而閘極下Ρ層14因爲低的汲極電壓而完全地空乏化 則無法得到已插入閘極下ρ層14的效果。亦即,當 下ρ層14的淨摻雜量過小時,則如圖8所示成爲一 往的MOSFET同等的切換損失。因此,閘極下ρ層 淨摻雜量Νρ則必須是一在施加某個程度的高汲極電 會產生空乏化的雜質量。如此般在閘極下ρ層14的 量存在有最適合於空乏化的最小値。 當將閘極下ρ層14的最小淨摻雜量設爲一成爲 往的MOSFET同等之切換損失的雜質量時,則閘極 層14的最小淨摻雜量成爲最大淨摻雜量的1/4〜1/3 最大 NpO ,當 最大 小, 時, 閘極 與以 4的 壓時 雜質 與以 下P 左右 -41 - 200308096 (37) (例如參照圖8 )。 閘極下p層1 4的最大淨摻雜量則與最大淨摻雜量的 情形同樣地是由閘極下P層1 4的空乏化的程度來決定。 亦即,閘極下P層14的最小淨摻雜量則與MOSFET之各 部分的尺寸或各部分的濃度有關。因此在設計閘極下P層 14之雜質時最重要的是要考慮到MOSFET之各部分的尺 寸以及各部分的濃度。 圖32爲表示在第1實施形態構造之MOSFET中之閘 極下P層14的尺寸(面積比Ap)與閘極下p層14的最 大淨摻雜量Np_m in的關係。但是在此是表示將η低電阻 層11a的摻雜量(Νη)設爲4xl012cm·2、ρ基極層12的 間隔(Lj )設爲6μιη的情形。 如圖3 2所示,閘極下 ρ層14的最小淨摻雜量 Np_min則與閘極下ρ層1 4的面積比Ap的倒數大約呈正 比。而與最大淨摻雜量NpO的情形同樣地,若將最小淨 摻雜量Np_min相對於閘極下ρ層14的面積比Ap的倒數 (WAp )的關係以一次近似式來表示時,則如以下公式( 9 )所示,Np · Xj / Lj = 5.6x 10 1 1 / Αρ + 0.2 2 8Νη + 0.01Νη / Αρ-8 χ 1 〇1 Therefore, the net doping amount Nρ of the ρ layer 14 under the gate is preferably better than the net doping amount N ρ 0 is small. On the other hand, when the net doping amount Nρ of the p-layer 14 under the gate changes and the p-layer 14 under the gate becomes completely empty due to the low drain voltage, the effect that the p-layer 14 under the gate has been inserted cannot be obtained. That is, when the net doping amount of the lower p-layer 14 is too small, as shown in Fig. 8, the switching loss of the conventional MOSFET is equivalent. Therefore, the net doping amount ρ of the p layer under the gate must be a heterogeneous mass that will become empty when a high level of drain voltage is applied. As such, there exists a minimum chirp in the quantity of the p-layer 14 under the gate, which is most suitable for depletion. When the minimum net doping amount of the p-layer 14 under the gate is set to an equivalent amount of switching loss of the previous MOSFET, the minimum net doping amount of the gate layer 14 becomes 1 / of the maximum net doping amount. 4 to 1/3 of the maximum NpO, when the maximum is small, the gate and impurities at a pressure of 4 and the following P are about -41-200308096 (37) (for example, refer to FIG. 8). The maximum net doping amount of the p-layer 14 under the gate is determined by the degree of depletion of the p-layer 14 under the gate in the same manner as in the case of the maximum net doping amount. That is, the minimum net doping amount of the P layer 14 under the gate is related to the size of each part of the MOSFET or the concentration of each part. Therefore, when designing the impurities of the P layer 14 under the gate, it is most important to consider the size of each part of the MOSFET and the concentration of each part. Fig. 32 shows the relationship between the size (area ratio Ap) of the P layer 14 under the gate and the maximum net doping amount Np_min of the p layer 14 under the gate in the MOSFET of the first embodiment structure. However, it is shown here that the doping amount (Nη) of the η low-resistance layer 11a is set to 4 × 1012 cm · 2, and the interval (Lj) of the ρ base layer 12 is set to 6 μm. As shown in Figure 32, the minimum net doping amount Np_min of the p-layer 14 under the gate is approximately proportional to the inverse of the area ratio Ap of the p-layer 14 under the gate. As in the case of the maximum net doping amount NpO, if the relationship between the minimum net doping amount Np_min and the inverse number of the area ratio Ap of the p-layer 14 under the gate (WAp) is expressed as a first-order approximation, then As shown in the following formula (9),
Np 一 mir^.SxlOH/Ap + SJxloHcm·2 (9) 因此,閘極下ρ層14的淨摻雜量Np則最好較最小 淨摻雜量Np_min爲大。Np-mir ^ .SxlOH / Ap + SJxloHcm · 2 (9) Therefore, the net doping amount Np of the p-layer 14 under the gate is preferably larger than the minimum net doping amount Np_min.
圖33爲表示在第1實施形態構造之MOSFET中之P -42- (38) (38)200308096 基極層12的間隔Lj與閘極下p層14的最小淨摻雜量 Np-min的關係。但是在此是表示將n低電阻層ila的摻 雜量(Nn)設爲4xlOI2cnT2、閘極下p層14的面積比 A p g受爲5 0 %的情形。 與上述最大淨摻雜量NpO的情形同樣地,閘極下p 層14的最小淨摻雜量Np_min則與p基極層12的間隔大 約呈正比。根據該正比關係,當將上述公式(a )變形時 ,則成爲以下公式(1 〇 )所示,FIG. 33 shows the relationship between P-42- (38) (38) 200308096 of the base layer 12 and the minimum net doping amount Np-min of the p-layer 14 under the gate in the MOSFET constructed in the first embodiment. . However, it is shown here that the doping amount (Nn) of the n low-resistance layer ila is set to 4xlOI2cnT2, and the area ratio A p g of the p-layer 14 under the gate is 50%. As in the case of the above-mentioned maximum net doping amount NpO, the minimum net doping amount Np_min of the p-layer 14 under the gate is approximately proportional to the interval of the p-base layer 12. According to this proportional relationship, when the above formula (a) is deformed, it becomes as shown in the following formula (10),
Np —min/Lj = 4 · 2 X 1 0 1 4/Αρ +8 · 8 X 1 0 1 4cm·3 (10) 因此,閘極下P層14的淨摻雜量Np則最好是較最 小淨摻雜量Np_min爲大。 圖34爲表示在第1實施形態之MOSFET中之p基極 層12的深度Xj與閘極下p層14的最大淨摻雜量Np_min 的關係。但是在此是表示將η低電阻層1 1 a的摻雜量( Nn)設爲4 X 1012cnT2、閘極下p層14的面積比Ap設爲 5 0 %、p基極層1 2的間隔Lj設爲2 μιη的情形。 而與上述最大淨摻雜量NpO的情形同樣地 '閘極下ρ 層丨4的最小淨摻雜量Np_min則與p基極層12的深度大 約吴反比(與P基極層1 2的深度幻的倒數大約呈正比) °锒據該反比關係’當將上述公式(9 )變形時’則成爲 以下公式(1 1 )所示, •43- (39) (39)200308096Np —min / Lj = 4 · 2 X 1 0 1 4 / Αρ +8 · 8 X 1 0 1 4cm · 3 (10) Therefore, the net doping amount Np of the P layer 14 under the gate is preferably the smallest The net doping amount Np_min is large. FIG. 34 shows the relationship between the depth Xj of the p base layer 12 and the maximum net doping amount Np_min of the p layer 14 under the gate in the MOSFET of the first embodiment. However, it is shown here that the doping amount (Nn) of the η low-resistance layer 1 1 a is set to 4 X 1012cnT2, the area ratio Ap of the p-layer 14 under the gate is set to 50%, and the interval between the p-base layers 12 is 12 When Lj is set to 2 μm. As in the case of the above-mentioned maximum net doping amount NpO, the minimum net doping amount Np_min of the p layer 4 under the gate is approximately inversely proportional to the depth of the p base layer 12 (and the depth of the p base layer 12). The inverse of the magic number is approximately proportional) ° 锒 According to the inverse relationship 'when the above formula (9) is deformed', it becomes as shown in the following formula (1 1), • 43- (39) (39) 200308096
Np —miη · Xj = 1 χ 1 08/Ap + 2.1 x 1 08cm·1 (11) 因此,閘極下P層14的淨摻雜量Np則最好是較最 小淨摻雜量Np_min爲大。 如圖3 3所示,閘極下p層14的最大淨摻雜量 Np_min則與p基極層12的間隔Lj大約呈正比。根據該 關係,當將上述公式(11)變形時,則成爲以下公式(12 )所示,Np —miη · Xj = 1 χ 1 08 / Ap + 2.1 x 1 08cm · 1 (11) Therefore, the net doping amount Np of the P layer 14 under the gate is preferably larger than the minimum net doping amount Np_min. As shown in FIG. 3, the maximum net doping amount Np_min of the p-layer 14 under the gate is approximately proportional to the interval Lj of the p-base layer 12. Based on this relationship, when the above formula (11) is modified, it becomes as shown in the following formula (12),
Np —min · Xj/Lj = 1.7xlO"/Ap + 3.5xlO"cm·2 ( 12 ) 因此,閘極下P層14的淨摻雜量Np則最好是較最 小淨摻雜量NpO爲大。 圖35爲表示在第1實施形態構造之MOSFET中之η 低電阻層1 1 a的淨摻雜量Nil與與閘極下ρ層1 4的最小淨 摻雜量Np_min的關係。但是在此是表示將p基極層12 的深度Xj設爲4μιη、閘極下ρ層14的面積比Ap設爲 5 0%、ρ基極層12的間隔Lj設爲6μιη的情形。 如圖35所示,閘極下ρ層14的最小淨摻雜量Np-m i η則與η低電阻層1 1 a的摻雜量大約呈正比,因此,η 低電阻層1 1 a會高濃度化。於是由於閘極下ρ層1 4容易 空乏化,因此其最小淨摻雜量Np_min會增加。 若將η低電阻層11a的摻雜量Nn與最小淨摻雜量 Np_min的關係以一次近似式來表示時則成爲以下公式( -44- (40) 200308096 1 3 )所示,Np —min · Xj / Lj = 1.7xlO " / Ap + 3.5xlO " cm · 2 (12) Therefore, the net doping amount Np of the P layer 14 under the gate is preferably larger than the minimum net doping amount NpO . FIG. 35 shows the relationship between the net doping amount Nil of the η low-resistance layer 1 1 a and the minimum net doping amount Np_min of the p-layer 14 under the gate in the MOSFET structured in the first embodiment. However, here is a case where the depth Xj of the p-base layer 12 is 4 μm, the area ratio Ap of the p-layer 14 under the gate is 50%, and the interval Lj of the p-base layer 12 is 6 μm. As shown in FIG. 35, the minimum net doping amount Np-m i η of the ρ layer 14 under the gate is approximately proportional to the doping amount of the η low-resistance layer 1 1 a. Therefore, the η low-resistance layer 1 1 a will High concentration. Therefore, since the p layer 14 under the gate is easily depleted, its minimum net doping amount Np_min will increase. If the relationship between the doping amount Nn of the η low-resistance layer 11a and the minimum net doping amount Np_min is expressed by a first-order approximation, it becomes the following formula (-44- (40) 200308096 1 3),
Np —min = 0 · 2Nn +3 · 4x 1 0 1 1 cm·2 (13) 若再將該公式(13)配合上述公式(9)而 含閘極下p層1 4的面積比A p在內的形式時則 公式(14 )所示。Np —min = 0 · 2Nn +3 · 4x 1 0 1 1 cm · 2 (13) If this formula (13) is further combined with the above formula (9), the area ratio A p of the p-layer 1 4 under the gate is The internal form is shown in formula (14).
Np_min = -4xl010/Ap + 0.03 75Nn + 0.0 7 5Nn/Ap + 4xl0"cm 因此,閘極下P層14的淨摻雜量Np最好 摻雜量Np_min爲大。 如圖 3 3所示,閘極下 p層 14的最小 Np_min則與p基極層12的間隔Lj大約呈正比 關係,當將上述公式(14 )變形時,則成爲以下 )所示。Np_min = -4xl010 / Ap + 0.03 75Nn + 0.0 7 5Nn / Ap + 4xl0 " cm Therefore, the net doping amount Np of the P layer 14 under the gate is preferably the doping amount Np_min is large. As shown in FIG. 33, the minimum Np_min of the p-layer 14 under the gate is approximately proportional to the interval Lj of the p-base layer 12, and when the above formula (14) is deformed, it becomes as shown below).
Np/Lj = -6.7xl013/Ap + 62.5Nn+125Nn/Ap + 6.7xl014cnT3 因此,閘極下P層14的淨摻雜量Np則最 淨摻雜量Np_min爲大。 如圖 3 4所示,閘極下p層14的最小 Np_min則與p基極層12的深度Xj大約呈反比 關係,當將上述公式(1 5 )變形時,則成爲以下 變形成包 成爲以下 2 ( 14) 較最小淨 爭摻雜量 。根據該 公式(15 (15) 好較最小 爭摻雜量 。根據該 公式(16 -45· (41) (41)200308096 )所示,Np / Lj = -6.7xl013 / Ap + 62.5Nn + 125Nn / Ap + 6.7xl014cnT3 Therefore, the net doping amount Np of the P layer 14 under the gate is the largest net doping amount Np_min. As shown in Figure 34, the minimum Np_min of the p-layer 14 under the gate is approximately inversely proportional to the depth Xj of the p-base layer 12, and when the above formula (1 5) is deformed, it becomes the following transformation into a package into the following 2 (14) Lower net contention. According to the formula (15 (15) is better than the minimum content of doping. According to the formula (16 -45 · (41) (41) 200308096),
Np · Xj/Lj = -2.7xl010/Ap + 0.225Nn+0.05Nn/Ap+2.7xl0u cm·2 (16) 因此,閘極下P層14的淨摻雜量Np則最好較最小 淨摻雜量Np_min爲大。 (第1 1實施形態) 圖36係表示本發明之第11實施形態之功率MOSFET 的構成例。此外,針對與圖1 8所示之MOSFET相同的部 分則附加相同的符號,且省略其詳細的說明。在此只針對 不同的部分來說明。 圖36係表在圖18所示之構成的功率MOSFET中, 使用閘極長度不同的第1閘極24A以及第2閘極24B作 爲閘極24d時的例子。 亦即,作爲第2半導體層的多個的p基極層12a則呈 格子狀(或鋸齒狀)地被配置在η低電阻層11a的表面 部。作爲控制電極的閘極24d則具備有被配置成格子狀之 至少一個的第1閘極(第2控制電極)24A與至少一個的 第2閘極(第1控制電極)24B。第1閘極24A例如具有 第1閘極長度(第2電極長度)Lg2。第2閘極24B則具 有例如較上述第1閘極24A的第1閘極長度Lg2爲長的 第2閘極長度(第1電極長度)Lgl。此外,作爲第5半 導體層的多個的閘極下p層1 4b則分別呈線條狀地只配置 •46- (42) (42)200308096 在位於相鄰的P基極層12a之間之與上述第2閘極24B呈 對應的部位。 在被施加低的汲極電壓時之閘極•汲極間電容則是根 據閘極長度短的部分的電容來決定。此時’閛極•汲極間 電容變小,且能夠達成高速化。 相較於此,在被施加高的汲極電壓時之閛極•汲極間 電容則會大幅地增加。而此是因爲在閘極長度長的部分的 閘極下p層14b產生空乏化所造成,藉此可以達成低雜訊 化。 在圖36所示之構成的功率MOSFET中可以改變閘極 下P層的面積來形成。 如圖3 7所示,例如針對位在相鄰之p基極層1 2a之 間之與上述第2閘極24B呈對應的部位選擇性地形成數個 的閘極下p層14b-l。如此般藉著改變閘極下P層14b-l 的面積很容易調整閘極·汲極間電容的變化。 此時則將相鄰的閘極下P層14b-l的間隔Ljp設成和 與上述第1閘極24A對應之p基極層12a的間隔Lj相同 程度。藉此藉著將與上述第2閘極24B對應的P基極層 1 2a的間隔Ljx拉長可以抑制耐壓的降低情形。 圖38係表在圖36所示之構成的功率MOSFET中, 閘極24d的一部分具有分裂闡構造時的例子。 亦即,在作爲控制電極的閘極24d中,針對閘極長度 短的第1閘極24A,藉著採用圖38所示的分裂闡構造或 圖14所示的平台闡(terrance)構造可以達到高速化。 •47- (43) (43)200308096 (第1 2實施形態)Np · Xj / Lj = -2.7xl010 / Ap + 0.225Nn + 0.05Nn / Ap + 2.7xl0u cm · 2 (16) Therefore, the net doping amount Np of the P layer 14 under the gate is better than the smallest net doping The amount Np_min is large. (Embodiment 11) FIG. 36 shows a configuration example of a power MOSFET according to an eleventh embodiment of the present invention. In addition, the same parts as those of the MOSFET shown in FIG. 18 are assigned the same reference numerals, and detailed descriptions thereof are omitted. Only the different parts are explained here. Fig. 36 shows an example when the first gate 24A and the second gate 24B having different gate lengths are used as the gate 24d in the power MOSFET having the configuration shown in Fig. 18. That is, a plurality of p base layers 12a as the second semiconductor layer are arranged in a lattice (or zigzag) manner on the surface portion of the n low-resistance layer 11a. The gate electrode 24d as the control electrode includes at least one first gate (second control electrode) 24A and at least one second gate (first control electrode) 24B arranged in a grid. The first gate electrode 24A has, for example, a first gate length (second electrode length) Lg2. The second gate 24B has, for example, a second gate length (first electrode length) Lgl which is longer than the first gate length Lg2 of the first gate 24A. In addition, the p-layers 1 4b, which are the multiple lower gates of the fifth semiconductor layer, are arranged in a line shape, respectively. 46- (42) (42) 200308096 is located between the adjacent P base layers 12a. The second gate electrode 24B has a corresponding position. The gate-drain capacitance when a low drain voltage is applied is determined based on the capacitance of the short gate length. In this case, the capacitance between the 閛 閛 and the drain becomes small, and the speed can be increased. Compared to this, the capacitance between the pole and the drain when a high drain voltage is applied increases significantly. This is because the p-layer 14b under the gate is depleted in a portion where the gate length is long, thereby reducing noise. The power MOSFET having the structure shown in FIG. 36 can be formed by changing the area of the P layer under the gate. As shown in FIG. 37, for example, a plurality of lower gate p-layers 14b-1 are selectively formed at positions corresponding to the above-mentioned second gate 24B between adjacent p-base layers 12a. In this way, it is easy to adjust the change in the capacitance between the gate and the drain by changing the area of the P layer 14b-1 under the gate. At this time, the interval Ljp between adjacent P layers 14b-1 under the gate is set to the same level as the interval Lj of the p base layer 12a corresponding to the first gate 24A. Thereby, by increasing the interval Ljx of the P base layer 12a corresponding to the second gate electrode 24B, it is possible to suppress a decrease in withstand voltage. FIG. 38 shows an example when a part of the gate electrode 24d has a split structure in the power MOSFET having the structure shown in FIG. 36. That is, in the gate 24d as the control electrode, the first gate 24A having a short gate length can be achieved by using the split structure shown in FIG. 38 or the terrace structure shown in FIG. 14. Speed up. • 47- (43) (43) 200308096 (12th embodiment)
圖40係表示本發明之第12實施形態之功率MOSFET 的構成例。此外,同圖(a)爲平面圖、同圖(b)爲斷面 圖。又,針對與圖28所示之MOSFET相同的部分附加相 同的符號,且省略其詳細的說明。此外,在此只針對不同 的部分來說明。 圖40爲在圖28所示之構成的功率MOSFET中以呈 自我整合狀態形成具有閘極長度Lg2之位在第1閘極24A 下方之閘極下p層14d時的例子。在此則表示將第1、第 2閘極24A、24B形成爲線條狀時的例子。 亦即,作爲第1單元的MOS單元52a >則具備有具 有閘極長度Lgl的第2閘極(第1控制電極)24B。又, 該MOS單元52al則將作爲第3半導體層的Π +源極層13 形成在作爲第2半導體層之p基極層12的表面部。此外 ’則在P基極層1 2之間設有作爲第7半導體層的低濃度 η層1 1 b。該低溫度n層1 1 b則具有較η低電阻層1 1 a爲 低的雜質濃度。 另一方面,作爲第2單元的M0S單元51b則具備有 具有其閘極長度較上述第2閘極24B爲短之閘極長度Lg2 的第1閘極(第2控制電極)24A。又,該M0S單元51b 則在P基極層12的表面部形成n+源極層13。此外,在p 基極層12之間則設有作爲第5半導體層的閘極下p層 14d ° -48- (44) (44)200308096 如此般,對於混合存在有分別具有不同閘極長度Lg2 、Lgl之閘極24A、24B的二種的MOS單元51b、52a /的 MOSFET而言,則可以藉由自我整合(selfalgin)來形成 閘極下p層1 4 d。 圖41爲表示圖40所示之構成的MOSFET的製程。 首先,針對具有漂移層11以及n +汲極層15的基 板(參照同圖(a ))進行離子注入與擴散。此外,則在 漂移層11的表面部形成η低電阻層11a (參照同圖( b) ) ° 接著,將硼等的P型雜質的離子注入到η低電阻層 11a的表面且實施退火。藉此在η低電阻層11a的表面部 形成低濃度η層lib (參照同圖(c))。 接著,則經由閘絕緣膜23,在低濃度η層1 lb的表 面上針對第1、第2閘極24A、24B實施圖案化(參照同 圖(d ))。之後,則藉由離子注入以及擴散而形成p基 極層12(參照同圖(e))。 此時,在第1、第2閘極24A、24B的正下方則存在 有低濃度η層lib。因此可以得到與將p基極層12的雜 質的橫方向擴散變大時同樣的效果。亦即,p基極層12 的雜質只會在η低電阻層11a的表面附近朝橫方向延伸 。P基極層12的雜質則從各閘極24A、24B的兩側大約呈 均等地延伸。因此,當閘極長度短時,則P基極層12之 間會藉由p基極層12的雜質而完全地被p層化。藉此, 可以選擇性地只在閘極長度短的第1閘極24A的下方形 -49· (45) (45)200308096 成聞極下p層14d。 當閘極長度長時,則P基極層12之間未完全被P層 化。亦即,閘極下p層1 4d並未完全地形成在閘極長度長 的第2閘極24B下方。如此會藉由自我整合(selfalgin) 地將閘極下p層14d只形成在第1閘極24A下方。 當藉由從P基極層12開始的橫方向擴散來形成閘極 下p層14d時,爲了要讓p基極層12之間完全地實施p 層化,則MOS單元51b的p基極層12的間隔最好要窄。 相反地MOS單元52a >,則p基極層12的間隔最好要寬 。爲了要能夠確實地形成圖案不同的二個的MOS單元 5 1b、52a /,則最好要讓p基極層12的間隔作2倍以上 的變化。 當爲由此過程所形成的MOSFET時,則在施加低的 汲極電壓時的閘極•汲極間電容可根據具有低濃度η層 lib的MOS單元52a<的電容來決定。又,在施加高的汲 極電壓時的閘極•汲極間電容,則MOS單元52a /的電 容會因爲加上具有閘極下P層14d的MOS單元51b的電 容而增加。藉此可以實現低雜訊化。 又,對於如此構造的MOSFET而言,則將MOS單元 5 1b相對於元件整體之單元(cell )整目的比例,或是閘 極下p層1 4d的面積相對於元件整體之閘極下面積(例如 低濃度η層1 1 b的表面積)的比例加大。藉此,可以加大 在施加高汲極電壓時的閘極•汲極間電容。結果更能夠提 高低雜訊化的效果。因此,上述MOS單元51b的比例, -50- (46) 200308096 或是上述閘極下P層1 4d的面積的比例 此外,設在MOS單元51b的閘極下 要設成要完全覆蓋閘極24A的下方。只 的P層1則閘極•汲極間電容會因爲汲極 加。因此可以得到與讓p基極層12之間 大約同樣的效果。亦即,能夠得到低雜訊 又,有關閘極下p層14d的淨摻雜量 明的値。 更且,對於圖40所示之構成的功率 夠選擇性地形成n+源極層1 3。 亦即,當爲圖42 ( a ) 、 ( b )所示 時,則作爲第3半導體層的n +源極層1 3 例如閘極長度長的第2閘極24Β呈對應之 層的Ρ基極層12的表面部。亦即,在與 1閛極24Α呈對應之ρ基極層12的表面老 極層13。此外,同圖(a)爲平面圖、[1 圖。 MOS單元51b,其中第1閘極24A的 閛極下ρ層Md所覆蓋。因此,該m〇S 流流過。因此,在與第1閘極24A呈對I 的表面部,則即使是沒有N +源極層1 3, 電阻也不會有影響。 更且,能夠抑制穿生雙埠電晶體的動 好是在30%以上 P層14d則不需 要是形成空乏化 電壓的上昇而增 完全地P層化時 化的效果。 則最好是已經說 MOSFET而言會g 的功率 MOSFET 則只被形成在與 作爲第2半導體 閘極長度短的第 P則未形成N +源 〇圖(b )爲斷面 下方則完全地被 單元51b未有電 I之P基極層12 對於元件的ON 作,且可以加大 -51 - (47) 200308096 元件的安全動作領域。 圖43爲表示本發明之第12實施形態之功 之其他的構成例。在此,對於能夠以自我整合 閘極下 p層的功率 MOSFET而言,乃以將不 的第1、第2閘極24A、24B形成爲格子狀的 〇 亦即,作爲第2半導體層的多個的p基極 格子狀(或鋸齒狀)地被配置在η低電阻層 部。又,在Ρ基極層12a的表面則形成作爲第 的n+源極層13a。作爲控制電極的閘極24d則 成格子狀之至少一個的第1閘極(第2控制電 至少一個的第2閘極(第1控制電極)24B。 24A例如具有第1閘極長度(第2電極長度) 閘極24B例如具有較上述第1閘極24A的第 Lg2的第2閘極長度 (第1電極長度)Lgl 此外,作爲第5半導體層的多個的閘極下 則藉由自我整合(selfalgin )地分別只形成在 P基極層12a之間之與上述第1閘極24A呈對 又,在位於相鄰的P基極層12之間之與上 24B呈對應的部位則形成作爲第7半導體層的 1 lb ° 即使是設成如此的構造,也能夠藉由自我 率 MOSFET 形式來形成 同閘極長度 情形爲例子 層12a則呈 1 1 a的表面 3半導體層 具有被配置 極)24A與 第1閘極 Lg2 。第 2 1閘極長度 ρ 層 1 4 d, 位於相鄰的 應的部位。 t第2閘極 低濃度η層 整合地形成 •52- (48) (48)200308096 閘極下p層1 4d,因此能夠達到低成本化。 圖44爲在圖43所示之構造的功率MOSFET中選擇 性地形成n+源極層1 3時的例子。 亦即,作爲第3半導體層的η+源極層13a則只被形 成在與閘極長度長的第2閘極24B呈對應之作爲第2半導 體層的P基極層12a的表面部。亦即,在作爲控制電極 24d中,在與閘極長度短的第1閘極24A呈對應的p基極 層12a的表面部則未形成n+源極層13a。 第1閘極24A的部分,在p基極層12a之間則被閘極 下P層14d完全地覆蓋。因此,在該部分不會有電流流過 。因此,在與第1閘極24A呈對應之p基極層12a的表面 部,即使是沒有n+源極層13a,對元件的ON電阻也沒有 影響。 更且,可以抑制穿生雙埠電晶體的動作,且能夠加大 元件的安全動作領域。 圖45係表在第12實施形態之功率MOSFET中當將 閘極配置成線條狀時之其他的例子。此外,同圖(a )係 表闡圖案(gate pattern )的平面圖、同圖(b )爲沿著同 圖(a)之45B-45B線的斷面圖、同圖(c)爲沿著同圖( a )之45C-45C線的斷面圖。 在此例中,作爲控制電極的多個的閘極24e則分別設 成線條狀。此外,多個的閘極24e則分別包含有具有第1 閘極長度(第2電極長度)Lg2的至少一個的閘極部(第 2控制電極部)24A >,以及具有較上述第1閘極長度 -53- (49) 200308096FIG. 40 shows a configuration example of a power MOSFET according to a twelfth embodiment of the present invention. The same figure (a) is a plan view, and the same figure (b) is a sectional view. The same reference numerals are given to the same parts as those of the MOSFET shown in Fig. 28, and detailed descriptions thereof are omitted. In addition, only the different parts will be described here. Fig. 40 shows an example in which the p-layer 14d below the gate having the gate length Lg2 below the first gate 24A is formed in a self-integrated state in the power MOSFET having the configuration shown in Fig. 28. Here, an example is shown when the first and second gates 24A and 24B are formed in a line shape. That is, the MOS unit 52a as the first unit is provided with a second gate (first control electrode) 24B having a gate length Lgl. The MOS cell 52a1 is formed with a Π + source layer 13 as a third semiconductor layer on a surface portion of a p-base layer 12 as a second semiconductor layer. Further, a low-concentration η layer 1 1 b as a seventh semiconductor layer is provided between the P base layers 12. The low temperature n layer 1 1 b has a lower impurity concentration than the η low resistance layer 1 1 a. On the other hand, the MOS cell 51b as the second cell is provided with a first gate (second control electrode) 24A having a gate length Lg2 which is shorter than that of the second gate 24B. The MOS cell 51 b has an n + source layer 13 formed on a surface portion of the P base layer 12. In addition, a p-layer 14d below the gate, which is a fifth semiconductor layer, is provided between the p-base layer 12. In this case, there are different gate lengths Lg2 for the mixed existence of the p-layer 14d ° -48- (44) (44) 200308096 For the two types of MOS cells 51b and 52a / of the gates 24A and 24B of Lgl, the MOSFETs under the gate can be formed by self-integration (self-algin). FIG. 41 shows a manufacturing process of the MOSFET having the structure shown in FIG. 40. First, ion implantation and diffusion are performed on a substrate having a drift layer 11 and an n + drain layer 15 (see the same figure (a)). In addition, an η low-resistance layer 11a is formed on the surface portion of the drift layer 11 (see the same figure (b)). Next, ions of P-type impurities such as boron are implanted on the surface of the η low-resistance layer 11a and annealed. Thereby, a low-concentration η layer lib is formed on the surface portion of the η low-resistance layer 11a (see the same figure (c)). Then, the first and second gate electrodes 24A and 24B are patterned on the surface of the low-concentration η layer 1 lb through the gate insulating film 23 (see the same figure (d)). Thereafter, the p-base layer 12 is formed by ion implantation and diffusion (see the same figure (e)). At this time, a low-concentration n-layer lib exists immediately below the first and second gates 24A and 24B. Therefore, the same effect as that obtained when the lateral diffusion of the impurities in the p base layer 12 is increased can be obtained. That is, the impurities in the p base layer 12 only extend in the lateral direction near the surface of the n low-resistance layer 11a. The impurities in the P base layer 12 extend approximately evenly from both sides of each of the gates 24A and 24B. Therefore, when the gate length is short, the P base layer 12 is completely p-layered by the impurities of the p base layer 12. Thereby, it is possible to selectively form only the p-layer 14d below the first gate 24A with a short gate length of -49 · (45) (45) 200308096. When the gate length is long, the P base layers 12 are not completely P-layered. That is, the p-layer 14d below the gate is not completely formed under the second gate 24B having a long gate length. In this way, the p-layer 14d under the gate is formed only under the first gate 24A by self-integration. When the p-layer 14d under the gate is formed by lateral diffusion from the P-base layer 12, in order to completely p-layer between the p-base layers 12, the p-base layer of the MOS cell 51b The interval of 12 is preferably narrow. On the other hand, the MOS cell 52a >, the interval between the p base layers 12 is preferably wide. In order to surely form two MOS cells 51b and 52a with different patterns, it is desirable to change the interval between the p-base layers 12 more than twice. In the case of a MOSFET formed by this process, the gate-drain capacitance when a low drain voltage is applied can be determined based on the capacitance of the MOS cell 52a < having a low concentration n-layer lib. In addition, the capacitance between the gate and the drain when a high drain voltage is applied increases the capacitance of the MOS cell 52a / by adding the capacitance of the MOS cell 51b having the P layer 14d under the gate. This can reduce noise. In addition, for the MOSFET structured in this way, the overall ratio of the MOS cell 51b to the entire cell of the element, or the area of the p-layer 14d under the gate relative to the area under the gate of the entire element ( For example, the ratio of the surface area of the low-concentration η layer 1 1 b) is increased. This makes it possible to increase the gate-drain capacitance when a high drain voltage is applied. As a result, the effect of noise reduction can be improved. Therefore, the proportion of the above-mentioned MOS unit 51b is -50- (46) 200308096 or the proportion of the area of the P layer 14d below the gate. In addition, the gate provided under the gate of the MOS unit 51b should be completely covered with the gate 24A. Below. Only the P-layer 1 has a gate-drain capacitance due to the drain. Therefore, about the same effect as that between the p base layer 12 can be obtained. That is, it is possible to obtain low noise, and a plutonium with a clear net doping amount of the p-layer 14d under the gate. Furthermore, it is possible to selectively form the n + source layer 13 for the power having the structure shown in FIG. 40. That is, as shown in FIGS. 42 (a) and (b), the n + source layer 1 3 as the third semiconductor layer, for example, the second gate 24B having a long gate length is a P group of a corresponding layer. The surface portion of the electrode layer 12. That is, the old electrode layer 13 is formed on the surface of the p base layer 12 corresponding to the first electrode 24A. In addition, the same figure (a) is a plan view and [1 figure. The MOS cell 51b is covered with the p-layer Md below the second pole of the first gate 24A. Therefore, the m0S flow flows through. Therefore, in the surface portion facing I with the first gate electrode 24A, even if there is no N + source layer 1 3, the resistance is not affected. Furthermore, it is possible to suppress the movement of the through-throw dual-port transistor. For example, when the P layer 14d is more than 30%, the effect of complete P-layer aging is not required to increase the formation of a depletion voltage. It is better that the power MOSFET that has been said to be g is only formed on the P-th part which is shorter than the length of the second semiconductor gate. The N + source is not formed. Figure (b) is completely below the cross-section. The unit 51b does not have the P base layer 12 of the electrical I for turning on the element, and can increase the area of -51-(47) 200308096 safe operation of the element. Fig. 43 is a diagram showing another configuration example of the power of the twelfth embodiment of the present invention. Here, for a power MOSFET capable of self-integrating the p-layer under the gate, the first and second gates 24A and 24B are formed in a grid-like shape, that is, the second semiconductor layer is mostly Each p base is arranged in a lattice (or zigzag) manner at the η low-resistance layer portion. An n + source layer 13a is formed on the surface of the P base layer 12a. The gate electrode 24d serving as the control electrode has at least one first gate electrode (at least one second gate electrode (first control electrode) 24B of the second control circuit). 24A has, for example, a first gate length (second (Electrode length) The gate 24B has, for example, a second gate length (first electrode length) Lgl which is longer than the first Lg2 of the first gate 24A. In addition, a plurality of gates as the fifth semiconductor layer are self-integrated (Selfalgin) are formed only between the P base layers 12a and are opposite to the first gate 24A, respectively, and are located between adjacent P base layers 12 and corresponding to the upper 24B. 1 lb ° of the seventh semiconductor layer can be formed with the same gate length by self-rate MOSFET even if it has such a structure. For example, the layer 12a has a surface of 1 1 a. 3 The semiconductor layer has a configured electrode.) 24A and the first gate Lg2. The 21st gate length ρ layer 14d is located at the adjacent corresponding part. tSecond gate Low-concentration η layer Integratedly formed • 52- (48) (48) 200308096 The p-layer under the gate 14d, which can reduce cost. Fig. 44 shows an example when the n + source layer 13 is selectively formed in the power MOSFET having the structure shown in Fig. 43. That is, the η + source layer 13a as the third semiconductor layer is formed only on the surface portion of the P base layer 12a as the second semiconductor layer corresponding to the second gate 24B having a long gate length. That is, in the control electrode 24d, the n + source layer 13a is not formed on the surface portion of the p base layer 12a corresponding to the first gate electrode 24A having a short gate length. The portion of the first gate 24A is completely covered by the p-layer 14d under the gate between the p-base layers 12a. Therefore, no current will flow in this part. Therefore, the surface portion of the p base layer 12a corresponding to the first gate electrode 24A does not affect the ON resistance of the device even if the n + source layer 13a is absent. Furthermore, it is possible to suppress the operation of the dual-port transistor, and to increase the field of safe operation of the device. Fig. 45 shows another example when the gate is arranged in a line shape in the power MOSFET of the twelfth embodiment. In addition, the same figure (a) is a plan view illustrating a gate pattern, the same figure (b) is a cross-sectional view taken along line 45B-45B of the same figure (a), and the same figure (c) is along the same Figure (a) is a sectional view taken along line 45C-45C. In this example, a plurality of gate electrodes 24e as control electrodes are provided in a line shape. In addition, each of the plurality of gates 24e includes a gate portion (second control electrode portion) 24A having at least one of the first gate length (second electrode length) Lg2, and a gate portion 24A having more than the first gate length (second control electrode portion). Pole length -53- (49) 200308096
Lg2爲長之第2閘極長度(第1電極長度)Lgl的 個的第2閘極部(第1控制電極部)24B >。 圖46係表在第12實施形態之功率MOSFET 閘極配置成格子狀時之其他的例子。此外,同圖( 表闡圖案(gate pattern)的平面圖、同圖(b)爲 圖(a)之46B-46B線的斷面圖、同圖(c)爲沿著 a)之46C-46C線的斷面圖。 在此例中,作爲控制電極的多個的閘極24f則 含有具有第1閘極長度(第2電極長度)Lg2的至 的閘極部(第2控制電極部)24A /,以及具有較 1閘極長度Lg2爲長之第2閘極長度(第1電極 Lg 1的至少一個的第2閘極部(第1控制電極部) 。此外,多個的閘極24f則分別將上述第1閘極部 此地組裝成格子狀。 圖47係表在第12實施形態之功率MOSFET 閘極配置成格子狀時之其他的例子。此外,同圖( 表闡圖案(gate pattern)的平面圖、同圖(b)爲 圖(a)之47B-47B線的斷面圖、同圖(c)爲沿著 a)之47C-47C線的斷面圖。 〇 在此例中,作爲控制電極的多個的閘極24 g則 含有具有第1閘極長度(第2電極長度)Lg2的至 的閘極部(第2控制電極部)24A#,以及具有較 1閘極長度Lg2爲長之第2閘極長度(第1電極 至少一 中當將 :a)係 沿著同 同圖( 分別包 少一個 上述第 長度) 24B / 24彼 中當將 :a )係 沿著同 同圖( 分別包 少一個 上述第 長度) -54- (50) 200308096Lg2 is the second gate portion (first control electrode portion) 24B of the long second gate length (first electrode length) Lgl. Fig. 46 shows another example when the gates of the power MOSFETs of the twelfth embodiment are arranged in a grid pattern. In addition, the same figure (plan pattern illustrating the gate pattern), the same figure (b) is a cross-sectional view of line 46B-46B in figure (a), and the same figure (c) is line 46C-46C along a) Section view. In this example, the plurality of gate electrodes 24f serving as the control electrodes include a gate portion (second control electrode portion) 24A / having a gate length (second electrode length) Lg2 of up to, and The gate length Lg2 is a long second gate length (the second gate portion (the first control electrode portion) of at least one of the first electrodes Lg 1). In addition, a plurality of gates 24f respectively separate the first gates. The poles are assembled here in a grid pattern. Fig. 47 shows another example when the gates of the power MOSFETs of the twelfth embodiment are arranged in a grid pattern. In addition, the same figure (a plan view of a gate pattern) and the same figure ( b) is a sectional view taken along line 47B-47B in Fig. (a), and (c) is a sectional view taken along line 47C-47C in a). 〇 In this example, a plurality of The gate 24 g includes a gate portion (second control electrode portion) 24A # having a length of the first gate length (second electrode length) Lg2, and a second gate having a length longer than 1 gate length Lg2. Length (at least one of the first electrode: a) is along the same figure (including one less than the above first length) 24B / 24 Along the same figure (respectively include one less than the above-mentioned length) -54- (50) 200308096
Lgl的至少一個的第2閘極部(第1控制電極部)24B / 。此外’多個的閘極24g則分別將上述第1閘極部24A 一 彼此組裝成格子狀。 如圖45〜圖47所示,乃讓各閘極24e、24f、24g的 閘極長度局部地作變化。此時,藉著讓閘極長度短的第1 閘極部24A>闡寬度的比例變化,不管是那種情形都可以 讓閘極下P層14d的面積自由地變化。 此外,在圖45〜圖47所示之各功率MOSFET中,則 與圖42以及圖44所示之功率MOSFET同樣也,可以省 略掉在與閘極長度短的第1閘極部24A#對應的p基極層 12的表面部上形成n +源極層13。 (第1 3實施形態) 圖48爲表示本發明之第13實施形態之功率MOSFET 的構成例。此外,針對與圖40所示之MOSFET相同的部 分則附加相同的符號,且省略其詳細的說明。在此,則只 針對不同的部分來說明。 圖4 8係在可以自我整合地形成閘極下p層的功率 MOSFET中,以在閘極長度有某種程度長的第2閘極24B 下可形成閘極下P層1 4d的情形爲例。 亦即,作爲第2半導體層的多個的p基極層12則選 擇地被配置在η低電阻層11a的表面部。又,在p基極 層12的表面則形成作爲第3半導體層的n+源極層13, 更且,在位於相鄰的P基極層12之間的上述η低電阻層 -55- (51) 200308096 11a的表面部設有作爲第7半導體層的低溫度11層llb。 在控制電極中,例如閘極24B則具有某種長的閘極 度(例如Lgl )。 在此例中,作爲第5半導體層的多個的閘極下p 1 4d則分別藉由自我整合地(p型雜質的橫方向擴散) 形成在相鄰的p基極層12之間。閘極下p層14d則分 被連接到各P基極層12。又,閘極下p層14d則分別 成爲不會將相鄰的P基極層12之間完全地加以覆蓋。 如上所述,對於藉由自我整合而形成閘極下p層 MOSFET而言,例如圖48所示,在閘極長度有某種程 長的閘極24B的下方形成不會將p基極層12之間完全 加以覆蓋的P層14d。該閘極下p層14d結果閘極•汲 間電容會因爲汲極電壓的上昇而增加。因此可以得到與 p基極層1 2之間完全地作p層化時大約同樣的效果, 即,低雜訊化的效果。 當P型雜質的摻雜量變多時,則容易形成閘極下p 1 4d。但是此時,則讓低濃度η層1 1 b的電阻常數增加 且讓ON電阻增加。 在此,用來形成閘極下P層14d以及低濃度η層1 的雜質的摻雜量與閘極24Β的閘極長度(ρ基極層12 間的間隔必須要適當地設計。亦即,爲了要抑制ON電 的增加,乃將P基極層12的間隔設爲約相當於ρ基極 12之深度的寬度。又,最好將閘極下P層14d的間隔 爲其一半左右。 長 層 而 別 形 的 度 地 極 將 亦 層 lb 之 阻 層 設 -56- (52) (52)200308096 此外,如本實施形態般之在閘極長度有某種程度長的 閘極24B下方可以形成不會將p基極層12之間完全地加 以覆蓋之P層14d的MOSFET,則也可以是在圖40所示 之MOSFET以外的MOSFET。例如也可以同樣地適用在能 夠省略掉在與閘極長度短的第1閘極24A呈對應之p基 極層12的表面部形成n +源極層13的MOSFET。 又,如圖43或圖44所示,對於將p基極層12a配置 成格子狀之構造的MOSFET而言,例如可以將p層14d 形成爲能夠將位在閘極長度短的閘極24A下方之p基極 層1 2之間完全地覆蓋,但不會將位在閘極長度長的閘極 24B下方之p基極層12a之間完全地加以覆蓋。 更且,在第12實施形態中並不限於閘極的聞極長度 不同的2種的MOSFET混合存在的MOSFET,也可以是只 具備一種閘極長度爲某種程度長之MOSFET的MOSFET。 (第1 4實施形態) 圖49爲表示本發明之第14實施形態之功率MOSFET 的構成例。此外,針對圖1所示之MOSFET相同的部分 則附加相同的符號,且省略其詳細的說明。此外,在此只 針對不同的部分來說明。 在圖49中,作爲第2半導體層的多個的p基極層 12a則呈格子狀(或鋸齒狀)地配置在η低電阻層11a的 表面部。此外,作爲第5半導體層的多個的閘極下p層 14a則分別被配置在相鄰的4個的p基極層12a之間。 •57· (53) 200308096 又,作爲第3半導體層的多個的n+源極層13a則呈 環狀地形成在上述各p基極層12a的表面部。此外,則在 分別與上述P基極層12a以及上述n+源極層13a呈對應 的部位則設有作爲第1主電極之矩形的源極22a。 作爲控制電極的閘極24h則呈格子狀地被設在除了上 述各源極22a以外的部位。該閘極24h則具有分別在不與 上述閘極下p層14a對應的部位,亦即,與位於閘極下p 層14a之間之η低電阻層11a對應的部位設有開口 24ha 的分裂闡構造。 根據本實施形態的MOSFET可以減少在施加低汲極 電壓時的閘極•汲極間電容。藉此可以達到高速化。 此外,該構造的MOSFET,則並不限於分裂闡構造, 即使如圖14所示般閘極採用平台(terrance )闡構造,也 能夠期待同樣的效果。 (第1 5實施形態) 圖50爲表示本發明之第15實施形態之功率MOSFET 的構成例。此外,針對圖1所示之MOSFET相同的部分 則附加相同的符號,且省略其詳細的說明。此外,在此只 針對不同的部分來說明。 在圖50中,作爲第2半導體層的多個的p基極層 1 2a則呈格子狀(或鋸齒狀)地配置在n低電阻層1 1 a的 表面部。此外,作爲第5半導體層的多個的閘極下P層 1 4a則分別被配置在相鄰的4個的p基極層1 2a之間。 -58- (54) (54)200308096 又,作爲第3半導體層的多個的n +源極層13a則呈 選擇性地被形成在上述各p基極層12a的表面部。該n + 源極層1 3 a則只被設在除了閘極下p層1 4 a對應之部位以 外的上述p基極層12a的表面部。亦即,在p基極層i2a 之表面之與閘極下p層14a對應的部位並未形成n +源極 層 1 3 a 〇 此外,在分別與上述p基極層12a以及上述n +源極 層1 3 a對應的部位則設有作爲第1主電極的矩形的源極 22a。又,作爲控制電極的閘極24i則呈格子狀地設在除 了上述各源極22a以外的部位。 根據本實施形態構造的MOSFET,在不使ON電阻變 化的情形下即能夠抑制寄生雙埠電晶體的動作。藉此能夠 加大元件的安全動作領域。 此外,在該構造的MOSFET中,閘極24i可以採用圖 49所示之分裂闡構造(或是圖14所示之平台闡( trorrance gate )構造)。此時,能夠實現一高速且元件之 安全動作領域大的MOSFET。 (第1 6實施形態) 圖51係表本發明之第16實施形態之功率MOSFET 的構成例。此外,針對與圖49所示的MOSFET相同的部 分則附加相同的符號,且省略其詳細的說明。此外,在此 只針對不同的部分來說明。 圖51係表在圖49所示之構造的MOSFET中將閘極 -59- (55) 200308096 下P層彼此加以連接時的例子。 亦即’作爲桌2半導體層的多個的p基極層12a則呈 格子狀(或鋸齒狀)地被配置在η低電阻層11a的表面 部。此外,作爲第5半導體層的多個的閘極下p層1 4 a / 則分別被配置在相鄰的4個的p基極層1 2 a之間。又,分 別被配置在相鄰的二個的p基極層12a之間的多個的閘極 下P層14a<彼此局部地加以連接。又,作爲第3半導體 層的多個的n +源極層13a則呈環狀地被形成在上述各p 基極層12a的表面部。 此外,在分別與上述p基極層12a以及上述n +源極 層1 3 a對應的部位則設有作爲第1主電極之矩形的源極 22a。又,作爲控制電極的閘極24i則呈格子狀地被設在 除了上述各源極22a以外的部位。 藉著設成如此的構造,本實施形態構造的MOSFET, 在不使MOS通道崩潰的情形下可以形成閘極下p層 1 4a /。結果能夠抑制ON電阻的增加情形。 此外,該構造的MOSFET,如圖52所示,同樣地適 用在將閘極配置成線條狀之構造的MOSFET。 亦即,作爲第2半導體層的多個的p基極層12則呈 線條狀地被配置在η低電阻層1 1 a的表面部。此外,作 爲第5半導體層的閘極下p層則分別被配置在相鄰的二個 的p基極層12之間。又,分別被配置在相鄰的二個的p 基極層1 2之間的閘極下p層1 4 /則分別局部地與相鄰的 二個的P基極層12連接。又,作爲第3半導體層的至少 -60- (56) (56)200308096 一個的n +源極層13則呈線條狀地形成在上述各p基極層 12的表面部。 此外,在分別與上述P基極層12以及上述n +源極層 1 3對應的部位則設有作爲第1至電極之線條狀的源極22 。又,作爲控制電極的閘極24,則經由闡絕緣膜23呈線 條狀地設在除了上述各源極22以外的部位。 該構造的MOSFET可以減小被連接到MOS通道之閘 極下p層14 /的面積,而能夠抑制MOS通道之有效闡寬 度的減少情形,結果可以抑制ON電阻的增加情形。 此外,上述本實施形態之構造的MOSFET,如第11 以及第1 2的各實施形態所示,同樣地可以適用在分別具 備有閘極長度不同之閘極之構造的MOSFET。 此外,在上述各實施形態中係針對將第1導電型設成 η型,將第2導電型設成p型的情形來說明,但並不限於 此,任何一個的實施形態也可以將第1導電型設爲ρ型, 將第2導電型設爲η型。 又,在各實施形態中均是以使用Si的情形來說明, 但並不限於此,也可以適用於使用例如碳矽化合物(SiC )及氮化鎵(GaN )或氮化鋁(A1N )等的化合物半導體 或鑽石的元件。 更且,各實施形態並不限於具有Super Junction構造 的 MOSFET及縱向型的切換元件。例如只要是橫向型 MOSFET或IGBT等的MOS或MIS闡元件同樣可以實現 -61 · (57) (57)200308096 此外,本發明並不限於上述(各)實施形態,在實施 階段只要在不脫離其主旨的範圍內可以作各種的變形。更 且,在上述(各)實施形態也包含有各種階段的發明,藉 由將已開示之多個的構成要件加以適當的組合可以抽得各 種的發明。例如即使是將在(各)實施形態中所示之全部 的構成要件的數個要件刪除,也能夠解決在發明所要解決 之課題乙段中所述的課題(的至少一者),當能夠得到在 發明之效果乙段中所述的效果(的至少一者)時,則刪除 該構成要件的構成即可以抽出作爲發明。 【圖式簡單說明】 圖1爲將本發明之第1實施例之縱型功率MOSFET 的構成例的一部分切開表示的立體圖。 圖2爲將圖1所示之MOSFET中之閘極•汲極間電 容的閘極•汲極間電壓依存性與習知構造的Μ O S F E T進 行比較來表示的特性圖。 圖3爲將圖1所示之MOSFET在TURN OFF時的汲 極電壓波形以及汲極電流波形分別與習知構造的Μ Ο S F E T 進行比較來表示的特性圖。 圖4爲將本發明之第1實施例之縱型功率MOSFET 的其他構成例的一部分切開表示的立體圖。 圖5爲將本發明之第1實施例之縱型功率MOSFET 的又一其他構成例的一部分切開表示的立體圖。The second gate portion (first control electrode portion) of at least one of the Lgls is 24B /. In addition, the plurality of gate electrodes 24g are each assembled with the first gate portions 24A in a grid pattern. As shown in FIGS. 45 to 47, the gate lengths of the gates 24e, 24f, and 24g are locally changed. At this time, by changing the ratio of the width of the first gate portion 24A with a short gate length, the area of the P layer 14d under the gate can be freely changed in either case. In addition, each of the power MOSFETs shown in FIGS. 45 to 47 is the same as the power MOSFETs shown in FIGS. 42 and 44, and can be omitted from the first gate portion 24A # corresponding to the short gate length. An n + source layer 13 is formed on a surface portion of the p base layer 12. (Thirteenth Embodiment) Fig. 48 shows a configuration example of a power MOSFET according to a thirteenth embodiment of the present invention. In addition, the same reference numerals are assigned to the same parts as those of the MOSFET shown in FIG. 40, and detailed descriptions thereof are omitted. Here, only the different parts will be explained. Fig. 48 is a case in which a p-layer under the gate can be self-integrated to form a p-layer under the gate. A case in which the p-layer under the gate 14 d can be formed under the second gate 24B having a certain gate length is taken as an example . That is, a plurality of p base layers 12 as the second semiconductor layer are selectively arranged on the surface portion of the n low-resistance layer 11a. In addition, an n + source layer 13 as a third semiconductor layer is formed on the surface of the p base layer 12, and the η low-resistance layer -55- (51) located between adjacent P base layers 12 is formed. 200308096 The surface portion of 11a is provided with a low-temperature 11 layer 11b as a seventh semiconductor layer. In the control electrode, for example, the gate electrode 24B has a certain long gate electrode (for example, Lgl). In this example, p 1 4d, which is a plurality of gates of the fifth semiconductor layer, is formed between adjacent p base layers 12 by self-integration (lateral type diffusion of p-type impurities). The p-layer 14d below the gate is connected to each of the P-base layers 12 separately. In addition, the p-layers 14d under the gates do not completely cover the adjacent P base layers 12 respectively. As described above, for forming a p-layer MOSFET under the gate by self-integration, for example, as shown in FIG. 48, forming the p-base layer 12 under the gate 24B having a gate length of a certain range does not increase the p-base layer 12 The P layer 14d is completely covered therebetween. As a result of the p-layer 14d under the gate, the gate-drain capacitance will increase due to the rise in the drain voltage. Therefore, approximately the same effect as when the p-layer is completely p-layered between the p-base layers 12 can be obtained, that is, the effect of reducing noise. When the doping amount of the P-type impurity increases, p 1 4d under the gate is easily formed. However, at this time, the resistance constant of the low-concentration η layer 1 1 b is increased and the ON resistance is increased. Here, the doping amount of impurities used to form the under-gate P layer 14d and the low-concentration η layer 1 and the gate length of the gate 24B (the interval between the p base layers 12 must be appropriately designed. In order to suppress the increase in the ON electricity, the interval between the P base layers 12 is set to a width approximately equal to the depth of the ρ base 12. It is also preferable to set the interval between the P layers 14d under the gate to about half. The layered and grounded poles will also have a resistance layer of lb. -56- (52) (52) 200308096 In addition, as in this embodiment, it can be formed under the gate 24B, which has a certain gate length. The MOSFET of the P layer 14d that does not completely cover the p-base layers 12 may be a MOSFET other than the MOSFET shown in FIG. 40. For example, the MOSFET can be similarly applied to a case where the gate and the gate can be omitted. The first gate electrode 24A having a short length is a MOSFET in which the n + source layer 13 is formed on the surface portion of the corresponding p base layer 12. As shown in FIG. 43 or FIG. 44, the p base layer 12a is arranged in a grid. For a MOSFET with a similar structure, for example, the p-layer 14d can be formed so that it can be positioned below the gate 24A with a short gate length. The p-base layers 12 and 2 are completely covered, but the p-base layers 12a located below the gate 24B with a long gate length are not completely covered. Furthermore, in the twelfth embodiment, The MOSFET is not limited to a MOSFET in which two types of MOSFETs having different gate lengths are mixed, and may be a MOSFET including only one type of MOSFET having a certain gate length. (Fourteenth Embodiment) FIG. 49 shows the present invention. A configuration example of a power MOSFET according to a fourteenth embodiment of the present invention. In addition, the same reference numerals are assigned to the same parts of the MOSFET shown in FIG. 1, and detailed descriptions thereof are omitted. In addition, only different parts will be described here. In FIG. 49, a plurality of p base layers 12a as the second semiconductor layer are arranged in a lattice (or zigzag) manner on the surface portion of the n low-resistance layer 11a. In addition, a plurality of fifth base layers The p-layer 14a under the gate is disposed between four adjacent p-base layers 12a. • 57 · (53) 200308096 In addition, a plurality of n + source layers 13a as the third semiconductor layer are It is formed in a ring shape on the surface portion of each of the p base layers 12a. A rectangular source electrode 22a as a first main electrode is provided at a position corresponding to each of the P base layer 12a and the n + source layer 13a. The gate electrode 24h as a control electrode is provided in a grid pattern. The portions other than the above-mentioned respective source electrodes 22a. The gate electrode 24h has a portion which does not correspond to the p-layer 14a below the gate, that is, corresponds to an η low-resistance layer 11a located between the p-layer 14a below the gate There is a split structure with an opening of 24ha in the part. The MOSFET according to this embodiment can reduce the gate-drain capacitance when a low drain voltage is applied. This can increase speed. In addition, the MOSFET of this structure is not limited to the split structure, and the same effect can be expected even if the gate adopts a terrace structure as shown in FIG. 14. (Fifteenth Embodiment) Fig. 50 shows a configuration example of a power MOSFET according to a fifteenth embodiment of the present invention. In addition, the same reference numerals are assigned to the same parts of the MOSFET shown in FIG. 1, and detailed descriptions thereof are omitted. In addition, only the different parts will be described here. In FIG. 50, a plurality of p base layers 1 2a as the second semiconductor layer are arranged in a lattice (or zigzag) manner on the surface portion of the n low-resistance layer 1 1 a. In addition, a plurality of lower gate P layers 14a, which are the fifth semiconductor layers, are respectively disposed between four adjacent p base layers 12a. -58- (54) (54) 200308096 Furthermore, a plurality of n + source layers 13a as the third semiconductor layer are selectively formed on the surface portion of each of the p base layers 12a. The n + source layer 1 3 a is provided only on the surface portion of the p base layer 12 a except for a portion corresponding to the p layer 1 4 a under the gate. That is, the n + source layer 1 3 a is not formed on the surface of the p base layer i2a corresponding to the p layer 14a under the gate. In addition, the p base layer 12a and the n + source are respectively formed. A rectangular source electrode 22a is provided as a first main electrode at a portion corresponding to the electrode layer 1a. The gate electrodes 24i serving as control electrodes are provided in a grid pattern at locations other than the respective source electrodes 22a. The MOSFET constructed according to this embodiment can suppress the operation of the parasitic dual-port transistor without changing the ON resistance. This makes it possible to increase the safe operation area of components. In addition, in the MOSFET of this structure, the gate electrode 24i may adopt a split gate structure shown in FIG. 49 (or a trorrance gate structure shown in FIG. 14). In this case, it is possible to realize a high-speed MOSFET with a large field of component safety operation. (16th embodiment) Fig. 51 shows a configuration example of a power MOSFET according to a 16th embodiment of the present invention. The same reference numerals are assigned to the same parts as those of the MOSFET shown in FIG. 49, and detailed descriptions thereof are omitted. In addition, only the different parts will be described here. FIG. 51 shows an example in which the gate layers of the gate -59- (55) 200308096 are connected to each other in the MOSFET having the structure shown in FIG. 49. That is, a plurality of p base layers 12a, which are semiconductor layers of the table 2, are arranged in a lattice (or zigzag) manner on the surface portion of the n low-resistance layer 11a. In addition, a plurality of p-layers under the gate 1 4 a / which are the fifth semiconductor layer are arranged between the four adjacent p-base layers 1 2 a. Further, a plurality of lower gate P layers 14a < respectively arranged between two adjacent p base layers 12a are locally connected to each other. Further, a plurality of n + source layers 13a as the third semiconductor layer are formed in a ring shape on the surface portion of each of the p base layers 12a. A rectangular source electrode 22a is provided as a first main electrode at portions corresponding to the p base layer 12a and the n + source layer 1 3a. The gate electrodes 24i serving as control electrodes are provided in a grid pattern at locations other than the above-mentioned respective source electrodes 22a. With such a structure, the MOSFET structured in this embodiment can form a p-layer 14 a / under the gate without breaking the MOS channel. As a result, an increase in the ON resistance can be suppressed. In addition, as shown in FIG. 52, the MOSFET having this structure is also applicable to a MOSFET having a structure in which gates are arranged in a line shape. That is, a plurality of p base layers 12 as the second semiconductor layer are arranged in a line shape on the surface portion of the η low-resistance layer 1 1a. In addition, p-layers under the gate serving as the fifth semiconductor layer are respectively disposed between two adjacent p-base layers 12. Further, the p-layers under the gate 14 / which are respectively disposed between the two adjacent p-base layers 12 are partially connected to the two adjacent p-base layers 12 respectively. Further, at least -60- (56) (56) 200308096 one n + source layer 13 as a third semiconductor layer is formed in a line shape on the surface portion of each of the p base layers 12 described above. In addition, linear source electrodes 22 as first to electrodes are provided at positions corresponding to the P base layer 12 and the n + source layer 13 respectively. In addition, the gate electrode 24 serving as a control electrode is provided in a line shape via the insulating film 23 at positions other than the respective source electrodes 22 described above. This structure of the MOSFET can reduce the area of the p-layer 14 / under the gate connected to the MOS channel, and can suppress the reduction of the effective width of the MOS channel. As a result, the increase of the ON resistance can be suppressed. In addition, the MOSFET having the structure of the present embodiment described above can be similarly applied to MOSFETs having structures having gates having different gate lengths, as shown in each of the eleventh and twelfth embodiments. In addition, in each of the above embodiments, the case where the first conductivity type is set to the η type and the second conductivity type is set to the p type is described, but it is not limited to this, and any of the embodiments may also be the first type The conductivity type is a ρ-type, and the second conductivity type is a η-type. In each of the embodiments, the case of using Si is described, but it is not limited to this. For example, it can be applied to a carbon silicon compound (SiC), gallium nitride (GaN), or aluminum nitride (A1N). Of compound semiconductor or diamond components. Furthermore, the embodiments are not limited to MOSFETs having a super junction structure and vertical switching elements. For example, as long as it is a MOS or MIS device such as a lateral MOSFET or IGBT, the same can be achieved -61 · (57) (57) 200308096 In addition, the present invention is not limited to the above (each) embodiment, as long as it does not depart from it Various modifications can be made within the scope of the subject. Furthermore, the embodiments described above also include inventions in various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed components. For example, even if several elements of all the constituent elements shown in the (each) embodiment are deleted, the problem (at least one) described in the second paragraph of the problem to be solved by the invention can be solved. When the effect (at least one) described in the second paragraph of the effect of the invention is removed, the structure that deletes the constituent elements can be extracted as the invention. [Brief Description of the Drawings] FIG. 1 is a perspective view showing a part of a configuration example of a vertical power MOSFET according to a first embodiment of the present invention. FIG. 2 is a characteristic diagram comparing the gate-drain voltage dependency of the gate-drain capacitance in the MOSFET shown in FIG. 1 with a conventional structure of MOSFET S E T. FIG. 3 is a characteristic diagram in which the drain voltage waveform and the drain current waveform of the MOSFET shown in FIG. 1 when the TURN is OFF are compared with a conventionally constructed MOSFET S E T. FIG. 4 is a perspective view showing a part of another configuration example of the vertical power MOSFET according to the first embodiment of the present invention. FIG. 5 is a perspective view cut away and showing a part of still another configuration example of the vertical power MOSFET according to the first embodiment of the present invention.
圖6爲本發明之第1實施例之MOSFET的TURN OFF -62- (58) (58)200308096 波形與習知構造的MO SFET進行比較來表示的特性圖。 圖7爲在本發明之第1實施例之MOSFET中,表示 在讓閘極下P層的面積變化時之TURN OFF損失之變化的 特性圖。 圖8爲在本發明之第1實施例之MOSFET中,表示 在讓閘極下P層的淨摻雜量變化時TURN OFF損失之變化 的特性圖。 圖9爲在本發明之第1實施例之MOSFET中,表示p 基極間隔與閘極下P層的最大淨滲雜量的關係的特性圖。 圖10爲表示本發明之第2實施例之功率MOSFET的 構成例之主要部份的斷面圖。 圖11爲表示本發明之第3實施例之功率MOSFET的 構成例之主要部份的斷面圖。 圖12爲表示本發明之第3實施例之功率MOSFET的 其他構成例之主要部份的斷面圖。 圖13爲表示本發明之第4實施例之功率MOSFET的 構造例之主要部份的斷面圖。 圖14爲表示本發明之第4實施例之功率MOSFET的 其他構成例之主要部份的斷面圖。 圖15爲將本發明之第5實施例之功率MOSFET的構 成例的一部分切開表示的立體圖。 圖16爲將本發明之第6實施例之功率MOSFET的構 成例的一部分切開表示的立體圖。 圖17爲將本發明之第6實施例之功率MOSFET的其 -63- (59) (59)200308096 他構成例的一部分切開表示的立體圖。 圖18爲將本發明之第6實施例之功率MOSFET的又 一其他構成例的一部分切開表示的立體圖。 圖19爲在本發明之第6實施例之功率MOSFET中’ 表示閘極下P層之配置圖案之一例平面圖。 圖20爲在本發明之第6實施例之功率MOSFET中’ 表示閘極下P層之配置圖案之其他例平面圖。 圖21爲將本發明之第6實施例之功率MOSFET中, 表示閘極下P層之配置圖案之又一其他例平面圖。 圖22爲在發明之第7實施例之當應用在IGBT時之 一例之主要部分的斷面圖。 圖23爲在發明之第7實施例之IGBT之其他構成例 主要部分的斷面圖。 圖24爲在本發明之第7實施例之IGBT之又一其他 構成例之主要部分的斷面圖。 圖25爲表示本發明之第8實施例之功率MOSFET的 構成例之主要部份的斷面圖。 圖26爲在本發明之第8實施例之當應用在IGBT時 之一例之主要部份的斷面圖。 圖27爲表示本發明之第9實施例之功率MOSFET的 構成例之主要部份的斷面圖。 圖28爲表示本發明之第9實施例之功率MOSFET的 其他構成例之主要部份的斷面圖。 圖29爲表示本發明之第1〇實施例,係在圖1所示構 -64- (60) 200308096 成之MOSFET中,表示閘極下p層的面積比與閘極下?層 的最大淨摻雜量的關係的持性圖。 圖30爲在圖1所示構成之MOSFET中,表示p基極 層的深度與閘極下p層的最大淨摻雜量的關係的特性圖。 圖31爲在圖1所示構成之MOSFET中,表示η低電 阻層的滲雜量與閘極下ρ層的最大淨滲雜量的關係的特性 圖。 圖32爲在圖1所示構成之MOSFET中,表示閘極下 P層的面積比與閘極下ρ層的最小淨滲雜量的關係的特性 圖。 圖33爲在圖1所示構成之MOSFET中,表示ρ基極 層的間隔與閘極下ρ層的最小淨滲雜量的關係的特性圖。 圖34爲在圖1所不構成之MOSFET中,表示ρ基極 層的深度與閘極下P層的最小淨滲雜量的關係的特性圖。 圖35爲在圖1所示構成之MOSFET中,表示η低電 阻層的滲雜量與閘極下Ρ層的最小淨滲雜量的關係的特性 圖。 圖36爲本發明之第11實施例之功率MOSFET的構 成例將閘極的一部分切開表示的平面圖。 圖37爲本發明之第11實施例之功率MOSFET的其 他構成例將閘極的一部分切開表示的平面圖。 圖38爲本發明之第1 1實施例之功率MOSFET的又 一其他構成例將閘極的一部分切開表示的平面圖。 圖39爲本發明之第11實施例之功率MOSFET的又 •65- (61) 200308096 一其他構成例將閘極的一部分切開表示的平面圖。 圖40爲本發明之第12實施例之功率MOSFET之一 例的構成圖。 圖41爲用於說明圖40所示之功率MOSFET之製程 的過程斷面圖。 圖42爲本發明之第12實施例之功率MOSFET之其 他例的構成圖。 圖43爲本發明之第12實施例之功率MOSFET的又 一其他構成例將閘極的一部分切開表示的平面圖。 圖44爲本發明之第12實施例之功率MOSFET的又 一其他構成例將閘極的一部分切開表示的平面圖。 圖45爲在圖12所示構成之功率MOSFET中,當將 閘極配置成線條狀時之其他例的構成圖。 圖46爲在圖12所示構成之功率MOSFET中,當將 閘極配置成格子狀時之其他例的構成圖。 圖47爲在圖12所示構成之功率MOSFET中,當將 閘極配置成格子狀時之又一其他例的構成圖。 圖48爲本發明之第13實施例之功率MOSFET之構 成例的斷面圖。 圖49爲本發明之第14實施例之功率MOSFET的構 成例將閘極的一部分切開表示的平面圖。 圖50爲本發明之第15實施例之功率MOSFET的構 成例將閘極的一部切開表示的平面圖。 圖51爲本發明之第16實施例之功率MOSFET的構 -66- (62) (62)200308096 成例將閘極的一部分切開表示的平面圖。 圖52爲本發明之第16實施例之功率MOSFET的其 他構成例將閘極的一部分切開表示的平面圖。 【主要元件對照表】 1 1 η -漂移層 11a η低電阻層 11b 低濃度η層 12、12a p基極層 1 3、1 3 a η +源極層 14、 14' 、 14a、 14a' 、 14b、 14b-l、 14c、 14d p層( 閘極下p層) 15 n+汲極層 21 汲極 22、22a、22A 源極 2 3、2 3 a、2 3 d 閘絕緣膜FIG. 6 is a characteristic diagram showing a waveform of TURN OFF -62- (58) (58) 200308096 of the MOSFET of the first embodiment of the present invention in comparison with a conventionally constructed MO SFET. Fig. 7 is a characteristic diagram showing the change in TURN OFF loss when the area of the P layer under the gate is changed in the MOSFET according to the first embodiment of the present invention. Fig. 8 is a characteristic diagram showing the change in TURN OFF loss when the net doping amount of the P layer under the gate is changed in the MOSFET according to the first embodiment of the present invention. FIG. 9 is a characteristic diagram showing the relationship between the p-base interval and the maximum net impurity amount of the P layer under the gate in the MOSFET according to the first embodiment of the present invention. Fig. 10 is a sectional view of a main part showing a configuration example of a power MOSFET according to a second embodiment of the present invention. Fig. 11 is a sectional view of a main part showing a configuration example of a power MOSFET according to a third embodiment of the present invention. Fig. 12 is a sectional view of a main part showing another configuration example of the power MOSFET according to the third embodiment of the present invention. Fig. 13 is a sectional view of a main part showing a structural example of a power MOSFET according to a fourth embodiment of the present invention. Fig. 14 is a sectional view of a main part showing another configuration example of a power MOSFET according to the fourth embodiment of the present invention. Fig. 15 is a perspective view showing a part of a configuration example of a power MOSFET according to a fifth embodiment of the present invention. Fig. 16 is a perspective view showing a part of a configuration example of a power MOSFET according to a sixth embodiment of the present invention. Fig. 17 is a perspective view of a power MOSFET according to a sixth embodiment of the present invention, which is partially cut away and showing another configuration example of -63- (59) (59) 200308096. Fig. 18 is a perspective view showing a part of still another configuration example of the power MOSFET according to the sixth embodiment of the present invention. Fig. 19 is a plan view showing an example of the arrangement pattern of the P layer under the gate in the power MOSFET according to the sixth embodiment of the present invention. Fig. 20 is a plan view showing another example of the arrangement pattern of the P layer under the gate in the power MOSFET according to the sixth embodiment of the present invention. 21 is a plan view showing still another example of a layout pattern of the P layer under the gate in the power MOSFET according to the sixth embodiment of the present invention. Fig. 22 is a sectional view of a main part of an example when applied to an IGBT in the seventh embodiment of the invention. Fig. 23 is a sectional view of a main part of another example of the configuration of an IGBT according to the seventh embodiment of the invention. Fig. 24 is a cross-sectional view of a main part of still another configuration example of the IGBT according to the seventh embodiment of the present invention. Fig. 25 is a sectional view of a main part showing a configuration example of a power MOSFET according to an eighth embodiment of the present invention. Fig. 26 is a sectional view of a main part of an example when applied to an IGBT in the eighth embodiment of the present invention. Fig. 27 is a sectional view of a main part showing a configuration example of a power MOSFET according to a ninth embodiment of the present invention. Fig. 28 is a sectional view of a main part showing another configuration example of the power MOSFET according to the ninth embodiment of the present invention. FIG. 29 shows the tenth embodiment of the present invention, which is based on the structure shown in FIG. 1 -64- (60) 200308096 MOSFET, showing the area ratio of the p-layer under the gate and the gate? Persistence diagram of the relationship between the maximum net doping amount of the layers. Fig. 30 is a characteristic diagram showing the relationship between the depth of the p base layer and the maximum net doping amount of the p layer under the gate in the MOSFET configured as shown in Fig. 1. Fig. 31 is a characteristic diagram showing the relationship between the impurity amount of the η low resistance layer and the maximum net impurity amount of the p-layer under the gate in the MOSFET configured as shown in Fig. 1. Fig. 32 is a characteristic diagram showing the relationship between the area ratio of the P layer under the gate and the minimum net impurity amount of the p layer under the gate in the MOSFET configured as shown in Fig. 1. Fig. 33 is a characteristic diagram showing the relationship between the interval between the p-base layer and the minimum net impurity amount of the p-layer under the gate in the MOSFET configured as shown in Fig. 1. Fig. 34 is a characteristic diagram showing the relationship between the depth of the p base layer and the minimum net impurity amount of the P layer under the gate in the MOSFET not constituted in Fig. 1. Fig. 35 is a characteristic diagram showing the relationship between the amount of impurity of the η low resistance layer and the minimum net amount of impurity of the P layer under the gate in the MOSFET having the structure shown in Fig. 1. Fig. 36 is a plan view showing a configuration example of a power MOSFET according to the eleventh embodiment of the present invention with a part of the gate electrode cut away. Fig. 37 is a plan view showing another example of the configuration of the power MOSFET according to the eleventh embodiment of the present invention, with a part of the gate electrode cut away. Fig. 38 is a plan view showing another example of the configuration of the power MOSFET according to the eleventh embodiment of the present invention with a part of the gate electrode cut away. Fig. 39 is a plan view showing another example of the power MOSFET according to the eleventh embodiment of the present invention, with a part of the gate electrode cut away. Fig. 40 is a configuration diagram of an example of a power MOSFET according to a twelfth embodiment of the present invention. FIG. 41 is a process cross-sectional view for explaining a process of manufacturing the power MOSFET shown in FIG. 40. FIG. Fig. 42 is a configuration diagram of another example of a power MOSFET according to the twelfth embodiment of the present invention. Fig. 43 is a plan view showing another example of the configuration of the power MOSFET according to the twelfth embodiment of the present invention with a part of the gate electrode cut away. Fig. 44 is a plan view showing another example of the configuration of the power MOSFET according to the twelfth embodiment of the present invention with a part of the gate electrode cut away. Fig. 45 is a configuration diagram of another example when the gate is arranged in a line shape in the power MOSFET having the configuration shown in Fig. 12. Fig. 46 is a configuration diagram of another example when the gates are arranged in a grid shape in the power MOSFET having the configuration shown in Fig. 12. Fig. 47 is a configuration diagram of still another example when the gates are arranged in a grid shape in the power MOSFET having the configuration shown in Fig. 12. Fig. 48 is a sectional view of a configuration example of a power MOSFET according to a thirteenth embodiment of the present invention. Fig. 49 is a plan view showing a configuration example of a power MOSFET according to a fourteenth embodiment of the present invention with a part of the gate electrode cut away. Fig. 50 is a plan view showing a configuration example of a power MOSFET according to a fifteenth embodiment of the present invention with a part of the gate electrode cut away. Fig. 51 is a plan view showing a structure of a power MOSFET according to a sixteenth embodiment of the present invention, with a part of the gate electrode cut away as an example. Fig. 52 is a plan view showing another example of the configuration of the power MOSFET according to the sixteenth embodiment of the present invention with a part of the gate electrode cut away. [Comparison table of main components] 1 1 η-drift layer 11a η low resistance layer 11b low concentration η layer 12, 12a p base layer 1 3, 1 3 a η + source layer 14, 14 ', 14a, 14a', 14b, 14b-1, 14c, 14d p-layer (p-layer under gate) 15 n + drain layer 21 drain 22, 22a, 22A source 2 3, 2 3 a, 2 3 d gate insulation film
24 、 24d 、 24e 、 24f 、 24g 、 24h 、 24i 、 24A 、 24A-1 、 24B 閘極(平面閘構造) 24ha 開口 24A / 第1閘極部 24B /第2閘極部 24a 閘極(深溝闡構造) 24b 閘極(分裂闡構造) 24c 閘極(平台闡構造) •67- (63) (63)200308096 3 1 p +汲極層 32 η +緩衝層 4 1 假單元 42 正常單元 51、 51a、51b MOS 單元(有 p 層) 52、 52a、52a ^ MOS 單元(無 p 層)24 、 24d 、 24e 、 24f 、 24g 、 24h 、 24i 、 24A 、 24A-1 、 24B Gate (planar gate structure) 24ha opening 24A / 1st gate part 24B / 2nd gate part 24a gate (deep groove analysis Structure) 24b gate (split structure) 24c gate (platform structure) • 67- (63) (63) 200308096 3 1 p + drain layer 32 η + buffer layer 4 1 dummy cell 42 normal cell 51, 51a , 51b MOS unit (with p-layer) 52, 52a, 52a ^ MOS unit (without p-layer)
Id 汲極電流 V d s 汲極電壓Id Drain current V d s Drain voltage
Eoff turn off 損失 Lgl 第2閘極長度Eoff turn off Loss Lgl 2nd gate length
Lg2 第1閘極長度 -68-Lg2 1st gate length -68-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002127334 | 2002-04-26 | ||
JP2002298838A JP3935042B2 (en) | 2002-04-26 | 2002-10-11 | Insulated gate semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200308096A true TW200308096A (en) | 2003-12-16 |
TWI246773B TWI246773B (en) | 2006-01-01 |
Family
ID=29272379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092108822A TWI246773B (en) | 2002-04-26 | 2003-04-16 | Insulation gate type semiconductor device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3935042B2 (en) |
KR (1) | KR100564895B1 (en) |
CN (1) | CN1231978C (en) |
TW (1) | TWI246773B (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4832731B2 (en) * | 2004-07-07 | 2011-12-07 | 株式会社東芝 | Power semiconductor device |
US7265415B2 (en) * | 2004-10-08 | 2007-09-04 | Fairchild Semiconductor Corporation | MOS-gated transistor with reduced miller capacitance |
JP4627272B2 (en) * | 2006-03-09 | 2011-02-09 | 三菱電機株式会社 | Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device |
DE102007063721B4 (en) * | 2006-03-22 | 2014-05-08 | Denso Corporation | Circuit having a transistor and a drive circuit for driving the transistor |
JP5061538B2 (en) * | 2006-09-01 | 2012-10-31 | 株式会社デンソー | Semiconductor device |
US7476591B2 (en) * | 2006-10-13 | 2009-01-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lateral power MOSFET with high breakdown voltage and low on-resistance |
KR100832718B1 (en) * | 2006-12-27 | 2008-05-28 | 동부일렉트로닉스 주식회사 | Trench gate MOS device and manufacturing method thereof |
JP5040387B2 (en) | 2007-03-20 | 2012-10-03 | 株式会社デンソー | Semiconductor device |
JP5119806B2 (en) * | 2007-08-27 | 2013-01-16 | 三菱電機株式会社 | Silicon carbide semiconductor device and manufacturing method thereof |
WO2009110229A1 (en) | 2008-03-07 | 2009-09-11 | 三菱電機株式会社 | Silicon carbide semiconductor device and manufacturing method thereof |
US7982253B2 (en) | 2008-08-01 | 2011-07-19 | Infineon Technologies Austria Ag | Semiconductor device with a dynamic gate-drain capacitance |
US8039897B2 (en) * | 2008-12-19 | 2011-10-18 | Fairchild Semiconductor Corporation | Lateral MOSFET with substrate drain connection |
JP5462020B2 (en) * | 2009-06-09 | 2014-04-02 | 株式会社東芝 | Power semiconductor device |
CN102439727B (en) * | 2009-07-15 | 2015-05-20 | 富士电机株式会社 | Super-junction semiconductor device |
JP5665567B2 (en) | 2011-01-26 | 2015-02-04 | 株式会社東芝 | Semiconductor element |
JP2015128184A (en) * | 2011-03-10 | 2015-07-09 | 株式会社東芝 | Semiconductor device |
JP5680460B2 (en) * | 2011-03-23 | 2015-03-04 | 株式会社東芝 | Power semiconductor device |
CN102856192B (en) * | 2011-06-27 | 2015-05-13 | 中国科学院微电子研究所 | IGBT device and manufacturing method thereof |
CN102856193B (en) * | 2011-06-27 | 2015-05-13 | 中国科学院微电子研究所 | IGBT device and manufacturing method thereof |
JP6278549B2 (en) * | 2012-03-30 | 2018-02-14 | 富士電機株式会社 | Semiconductor device |
US9142668B2 (en) | 2013-03-13 | 2015-09-22 | Cree, Inc. | Field effect transistor devices with buried well protection regions |
US9240476B2 (en) * | 2013-03-13 | 2016-01-19 | Cree, Inc. | Field effect transistor devices with buried well regions and epitaxial layers |
US9214572B2 (en) | 2013-09-20 | 2015-12-15 | Monolith Semiconductor Inc. | High voltage MOSFET devices and methods of making the devices |
US9991376B2 (en) | 2013-09-20 | 2018-06-05 | Monolith Semiconductor Inc. | High voltage MOSFET devices and methods of making the devices |
CN106533163A (en) * | 2016-01-22 | 2017-03-22 | 东莞市清能光伏科技有限公司 | Photovoltaic power converter |
JP6977273B2 (en) * | 2016-06-16 | 2021-12-08 | 富士電機株式会社 | Semiconductor devices and manufacturing methods |
JP6753951B2 (en) | 2017-06-06 | 2020-09-09 | 三菱電機株式会社 | Semiconductor devices and power converters |
US10424660B2 (en) * | 2017-12-21 | 2019-09-24 | Cree, Inc. | Power silicon carbide based MOSFET transistors with improved short circuit capabilities and methods of making such devices |
JP7029364B2 (en) | 2018-08-20 | 2022-03-03 | 株式会社東芝 | Semiconductor device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5550661A (en) * | 1978-10-07 | 1980-04-12 | Mitsubishi Electric Corp | Insulated gate type field effect semiconductor device |
JPS60258967A (en) * | 1984-06-05 | 1985-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Insulation gate type fet |
JPS6442177A (en) * | 1987-08-10 | 1989-02-14 | Hitachi Ltd | Insulated gate transistor |
JPH01293669A (en) * | 1988-05-23 | 1989-11-27 | Nec Corp | Vertical MOS field effect transistor |
JPH06283718A (en) * | 1993-03-30 | 1994-10-07 | Nec Kansai Ltd | Mos semiconductor device |
JPH09213939A (en) * | 1996-01-30 | 1997-08-15 | Nec Corp | Semiconductor device |
EP0958601A1 (en) * | 1996-06-19 | 1999-11-24 | Abb Research Ltd. | A method for producing a channel region layer in a voltage controlled semiconductor device |
JP3460585B2 (en) * | 1998-07-07 | 2003-10-27 | 富士電機株式会社 | Method for manufacturing silicon carbide MOS semiconductor device |
JP4830184B2 (en) * | 1999-08-04 | 2011-12-07 | 富士電機株式会社 | Manufacturing method of semiconductor device |
KR20010040186A (en) * | 1999-10-27 | 2001-05-15 | 인터실 코포레이션 | Technique for minimizing gate charge and gate to drain capacitance in power mos devices such as dmos, igbts, and mosfets |
JP3740008B2 (en) * | 2000-10-11 | 2006-01-25 | 株式会社日立製作所 | In-vehicle igniter, insulated gate semiconductor device and engine system |
-
2002
- 2002-10-11 JP JP2002298838A patent/JP3935042B2/en not_active Expired - Fee Related
-
2003
- 2003-04-16 TW TW092108822A patent/TWI246773B/en not_active IP Right Cessation
- 2003-04-25 KR KR1020030026418A patent/KR100564895B1/en not_active Expired - Fee Related
- 2003-04-28 CN CNB031306160A patent/CN1231978C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
TWI246773B (en) | 2006-01-01 |
KR20030084780A (en) | 2003-11-01 |
JP2004006598A (en) | 2004-01-08 |
CN1231978C (en) | 2005-12-14 |
KR100564895B1 (en) | 2006-03-30 |
JP3935042B2 (en) | 2007-06-20 |
CN1453881A (en) | 2003-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200308096A (en) | Insulation gate type semiconductor device | |
JP3954493B2 (en) | A method of manufacturing a power MOSFET using a power MOSFET and a self-aligned body injection process. | |
JP3964819B2 (en) | Insulated gate semiconductor device | |
JP6311723B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP7180402B2 (en) | semiconductor equipment | |
US8890238B2 (en) | Power semiconductor devices, structures, and related methods | |
CN103943668B (en) | The semiconductor devices of 3D RESURF with reinforcement | |
JP3979258B2 (en) | MIS semiconductor device and manufacturing method thereof | |
EP2342753B1 (en) | Insulated gate bipolar transistor | |
US20120168856A1 (en) | Trench-type semiconductor power devices | |
US6700156B2 (en) | Insulated gate semiconductor device | |
CN102376762B (en) | Super junction LDMOS(Laterally Diffused Metal Oxide Semiconductor) device and manufacturing method thereof | |
JPH08316479A (en) | Insulated gate type semiconductor device and manufacturing method thereof | |
US11888022B2 (en) | SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof | |
CN102097327A (en) | Dual channel trench LDMOS transistors and BCD process with deep trench isolation | |
TW200843102A (en) | Integrated latch-up free insulated gate bipolar transistor | |
CN101320710A (en) | Lateral DMOS device structure and manufacturing method thereof | |
CN114503279A (en) | High Density Power Components with Selectively Shielded Recessed Field Effect Panels | |
JP2012089824A (en) | Semiconductor element and manufacturing method thereof | |
Lin et al. | Lateral superjunction reduced surface field structure for the optimization of breakdown and conduction characteristics in a high-voltage lateral double diffused metal oxide field effect transistor | |
KR20150061201A (en) | Power semiconductor device and method of fabricating the same | |
CN118198134A (en) | A top-bottom split-gate silicon carbide field effect transistor structure and manufacturing method thereof | |
CN108305893B (en) | semiconductor device | |
JP2009060064A (en) | Semiconductor device and manufacturing method thereof | |
TWI503972B (en) | Lateral insulated gate bipolar transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |