[go: up one dir, main page]

SU475964A1 - Method of setting medium with negative coefficient of absorption - Google Patents

Method of setting medium with negative coefficient of absorption

Info

Publication number
SU475964A1
SU475964A1 SU64884703A SU884703A SU475964A1 SU 475964 A1 SU475964 A1 SU 475964A1 SU 64884703 A SU64884703 A SU 64884703A SU 884703 A SU884703 A SU 884703A SU 475964 A1 SU475964 A1 SU 475964A1
Authority
SU
USSR - Soviet Union
Prior art keywords
absorption
negative coefficient
explosion
setting medium
energy
Prior art date
Application number
SU64884703A
Other languages
Russian (ru)
Inventor
В.К. Аблеков
Original Assignee
Ablekov V K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablekov V K filed Critical Ablekov V K
Priority to SU64884703A priority Critical patent/SU475964A1/en
Application granted granted Critical
Publication of SU475964A1 publication Critical patent/SU475964A1/en

Links

Landscapes

  • Lasers (AREA)

Description

Изобретение относитс  к области лазерной техники.The invention relates to the field of laser technology.

Известны способы создани  среды с отрицательным коэффициентом поглощени  путем накачки световым потоком за счет создани  инверсной заселенности энергетических уровней. Коэффициент преобразовани  таких систем невелик. Дл  повышени  коэффициента использовани  энергии накачки предлагаетс  непосредственно преобразовывать энергию взрыва за счет диссоциации, в том числе фотодиссоциации, ударной диссоциации или в результате химической реакции.Methods are known for creating a medium with a negative absorption coefficient by pumping a luminous flux by creating an inverse population of energy levels. The conversion rate of such systems is small. In order to increase the utilization rate of the pump energy, it is proposed to directly transform the explosion energy by dissociation, including photodissociation, shock dissociation, or as a result of a chemical reaction.

Способ состоит в том, что рабочее вещество , например, обладающее свойством уменьшени  температуры взрывы, смешивают с взрывчатым веществом (ВВ), а также могут быть использованы соли бари , стронци , меди и др.The method consists in the fact that the working substance, for example, having the property of reducing the temperature of the explosion, is mixed with an explosive substance (EX) and barium, strontium, copper, etc. salts can also be used.

При взрыве кинетическа  энерги  продуктов распада расходуетс  на диссоциацию и излучение.In an explosion, the kinetic energy of the decay products is spent on dissociation and radiation.

Например, дл  NaCl For example, for NaCl

Na-fCl NaCl+A /iv + Na.Na-fCl NaCl + A / iv + Na.

В результате столкновени  будет создана инверсна  заселенность энергетических Зфовней. Если такую смесь поместить в толстостенный резонатор, в результате взрыва будет получена среда с отрицательным коэффициентом поглощени .As a result of the collision, the inverse population of the Zfovny energy will be created. If such a mixture is placed in a thick-walled resonator, an explosion will result in a medium with a negative absorption coefficient.

Claims (1)

Формула изобретени Invention Formula Способ создани  среды с отрицательным коэффициентом поглощени  с использованием энергии взрыва, отличающийс  тем, что, с целью создани  инверсной заселенности энергетических уровней путем диссоциации рабочего вещества оптического квантового генератора (например, NaCl), последнее смешивают с взрывчатым веществом и помещают перед взрывом в толстостенный резонатор.A method of creating an environment with a negative absorption coefficient using explosion energy, characterized in that, in order to create an inverse population of energy levels by dissociating the working substance of an optical quantum generator (e.g., NaCl), the latter is mixed with an explosive and placed in a thick-walled resonator before the explosion.
SU64884703A 1964-02-27 1964-02-27 Method of setting medium with negative coefficient of absorption SU475964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU64884703A SU475964A1 (en) 1964-02-27 1964-02-27 Method of setting medium with negative coefficient of absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU64884703A SU475964A1 (en) 1964-02-27 1964-02-27 Method of setting medium with negative coefficient of absorption

Publications (1)

Publication Number Publication Date
SU475964A1 true SU475964A1 (en) 1979-01-30

Family

ID=20437836

Family Applications (1)

Application Number Title Priority Date Filing Date
SU64884703A SU475964A1 (en) 1964-02-27 1964-02-27 Method of setting medium with negative coefficient of absorption

Country Status (1)

Country Link
SU (1) SU475964A1 (en)

Similar Documents

Publication Publication Date Title
KR930015200A (en) Infrared-to-Visible Upconversion Display System Operated at Room Temperature and Its Method
US4160956A (en) Nuclear-pumped uranyl salt laser
US3928227A (en) Liquid scintillation, counting and compositions
SU475964A1 (en) Method of setting medium with negative coefficient of absorption
GB1289655A (en)
GB992050A (en) Lasers
US3451008A (en) Shock wave optically pumped laser
Eden et al. Devices: Visible and UV lasers: Problems and promises: New families of gas lasers are expected to deliver a range of pulse intensities, durations, and wavelengths for diverse applications
Pyshkin Stimulated emission in gallium phosphide
US3454899A (en) Europium doped yttrium oxide optical maser materials
US3886482A (en) Traveling wave laser system
SU495014A1 (en) Active material for optical quantum generators
US4835787A (en) Fusion pumped light source
ORAEVSKII Chemical lasers(survey)
GB1147377A (en) Method of generating laser light
GB1121882A (en) Electric power generating system
SU576431A1 (en) Method of operation of absorption power plant
Brau Electron distribution function in electron‐beam‐excited plasmas
Miley Nuclear pumping of the iodine laser revisited
Dyachenko Prospects of nuclear-pumped lasers
Knyazev et al. Photochemical effects in a high-power flashlamp-pumpedlaser utilizing solutions of rhodamine 6G in isopropylalcohol
Bludman et al. Antineutrino pulses expected from vibrations of a newly formed hot neutron star
GB1078267A (en) Gas laser
Ciarkowski Asymptotic expression for a field in an open wave with an activated linear source
GB1274108A (en) Laser having increased energy output