[go: up one dir, main page]

SK4382000A3 - METHOD FOR PRODUCING ERGOSTEROL AND INTERMEDIATE PRODUCTS THEREOFì (54) BY MEANS OF RECOMBINANT YEASTS - Google Patents

METHOD FOR PRODUCING ERGOSTEROL AND INTERMEDIATE PRODUCTS THEREOFì (54) BY MEANS OF RECOMBINANT YEASTS Download PDF

Info

Publication number
SK4382000A3
SK4382000A3 SK438-2000A SK4382000A SK4382000A3 SK 4382000 A3 SK4382000 A3 SK 4382000A3 SK 4382000 A SK4382000 A SK 4382000A SK 4382000 A3 SK4382000 A3 SK 4382000A3
Authority
SK
Slovakia
Prior art keywords
gene
ergosterol
plasmid
sat1
hmg
Prior art date
Application number
SK438-2000A
Other languages
Slovak (sk)
Inventor
Alfred Weber
Uwe Klages
Mario Kennecke
Christine Lang
Ulf Stahl
Thomas Polakowski
Original Assignee
Schering Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Ag filed Critical Schering Ag
Publication of SK4382000A3 publication Critical patent/SK4382000A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Steroid Compounds (AREA)

Abstract

The invention relates to a method for producing ergosterol and intermediate products thereof by means of recombinant yeasts and plasmids for transforming yeasts.

Description

Tento vynález sa týka postupu výroby ergosterolu a jeho medziproduktov pomocou rekombinantných kvasiniek a plazmidov na transformáciu kvasiniek.The present invention relates to a process for producing ergosterol and its intermediates using recombinant yeast and yeast transformation plasmids.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Ergosterol je konečným produktom syntézy sterolov v kvasinkách a v hubách. Hospodársky význam tejto látky spočíva jednak v získavaní vitamínu D2 z ergosterolu pôsobením UV-žiarenia a jednak v získavaní steroidných hormónov pomocou biotransformácie, pričom sa vychádza z ergosterolu. Skvalén sa používa ako základný syntetický materiál na syntézu terpénov. Jeho hydrogenovaná forma skvalan sa používa v dermatológii a v kozmetike spolu s rôznymi derivátmi ako súčasť prostriedkov na starostlivosť o pleť a vlasy. Hospodársky význam majú i medziprodukty látkovej premeny ergosterolu. Najdôležitejší z týchto medziproduktov sú farnezol, geraniol a skvalén. Hospodársky využiteľné sú i ďalšie steroly, ako napr. zymosterol a lanosterol, pričom lanosterol je kľúčovou prírodnou i syntetickou látkou požívanou na chemickú syntézu saponinov a steroidných hormónov. Lanosterol dobre preniká do pokožky a dobre sa roztiera, a preto sa používa ako emulgačný prostriedok a ako účinná zložka pleťových krémov.Ergosterol is the end product of the synthesis of sterols in yeast and fungi. The economic importance of this substance lies both in obtaining vitamin D 2 from ergosterol by UV-radiation and secondly in obtaining steroid hormones by biotransformation, starting from ergosterol. Squalene is used as a basic synthetic material for the synthesis of terpenes. Its hydrogenated form of squalane is used in dermatology and cosmetics along with various derivatives as part of skin and hair care products. The intermediates of ergosterol metabolism are also of economic importance. The most important of these intermediates are farnesol, geraniol and squalene. Other sterols, such as e.g. zymosterol and lanosterol, with lanosterol being a key natural and synthetic substance used for the chemical synthesis of saponins and steroid hormones. Lanosterol penetrates well into the skin and spreads well and is therefore used as an emulsifying agent and as an active ingredient in skin creams.

Gény riadiace látkovú premenu ergosterolu v kvasinkách sú dostatočne známe a klonované, ako napr.The genes controlling the metabolism of ergosterol in yeast are well known and cloned, such as e.g.

HMG-CoA-reduktáza (HMG1) (Basson a spol., 1988), skvalénsyntetáza (ERG9) (Feguer a spol., 1991),HMG-CoA reductase (HMG1) (Basson et al., 1988), squalene synthetase (ERG9) (Feguer et al., 1991),

Acyl-CoA: sterol-acyltransferáza (SAT1) (Yu a spol., 1996) a skvalénepoxidáza (ERG1) (Jandrositz a spol., 1991).Acyl-CoA: sterol acyltransferase (SAT1) (Yu et al., 1996) and squalene epoxidase (ERG1) (Jandrositz et al., 1991).

Skvalénsyntetáza katalyzuje reakciu farnezylpyrofosfátu cez preskvalénpyrofosfát na skvalén. Reakčné mechanizmy sterolacyltransferázy nie sú dosiaľ celkom preskúmané. Vysoká expresia génu týchto uvedenýchSqualene synthetase catalyzes the reaction of farnesyl pyrophosphate via presqualene pyrophosphate to squalene. The reaction mechanisms of sterolacyltransferase have not been fully investigated. High gene expression of these

31430/H enzýmov bola už overovaná, neviedla však k žiadnemu podstatnému zvýšeniu množstva získaného ergosterolu. V prípade HMG1-vysokej expresie bola popísaná zvýšená produkcia skvalénu, pri tejto reakcii boli okrem toho zavádzané mutácie na prerušenie ďalšej reakcie po získaní skvalénu (EP-0 486 290). Zvýšená produkcia geraniolu a farnezolu bola rovnako popísaná, tu však nedochádzalo k žiadnej vysokej expresii génov látkovej premeny ergosterolu, ale k prerušeniu reakčného sledu v smere tvorby geraniolu a farnezolu (EP-0 313 465).The 31430 / H enzymes were already verified, but did not lead to any significant increase in the amount of ergosterol recovered. In the case of HMG1-high expression, an increase in squalene production has been described, in addition to this, mutations have been introduced to interrupt the further reaction upon obtaining squalene (EP-0 486 290). The increased production of geraniol and farnesol has also been described, but there has been no high expression of ergosterol metabolism genes but interruption of the reaction sequence in the direction of geraniol and farnesol formation (EP-0 313 465).

Špecifické inhibítory biosyntézy ergosterolu môžu viesť i k nahromadeniu väčšieho množstva určitých medziproduktov, napríklad alylamínov, ktoré bránia premene skvalénu na skvalénepoxid. Tak je možné dosiahnuť podstatné zvýšenie množstva skvalénu (až 600 -násobok normálneho množstva) (Jandrositz a spol., 1991).Specific inhibitors of ergosterol biosynthesis may also lead to the accumulation of larger amounts of certain intermediates, such as allylamines, that prevent the conversion of squalene to squalene epoxide. Thus, a substantial increase in the amount of squalene (up to 600 times the normal amount) can be achieved (Jandrositz et al., 1991).

Použitie inhibítorov síce umožňuje dosiahnuť podstatné zvýšenie množstva napr. skvalénu, napriek tomu nie je pridávanie týchto látok výhodné, lebo rovnaké účinky majú v organizme už ich nepatrné množstvá, a preto je spôsob výroby produktov biosyntézy ergosterolu spôsobom zvýšenej produkcie výhodnejší.Although the use of inhibitors makes it possible to achieve a substantial increase in the amount of e.g. squalene, however, the addition of these substances is not advantageous because the same effects are already present in the body in small amounts, and therefore the method of producing ergosterol biosynthesis products by the method of increased production is more advantageous.

Cieľom tohto vynálezu je vypracovanie mikrobiologického postupu výroby ergosterolu a jeho medziproduktov, na to potrebných mikroorganizmov ako sú kmene kvasiniek, ktoré syntetizujú zvýšené množstvá ergosterolu resp. potrebných medziproduktov a príprava plazmidov potrebných na transformáciu kmeňov kvasiniek.It is an object of the present invention to provide a microbiological process for the production of ergosterol and its intermediates, the microorganisms necessary for this, such as yeast strains, which synthesize increased amounts of ergosterol and / or ergosterol. intermediate and preparation of plasmids necessary for transformation of yeast strains.

Podstata vynálezuSUMMARY OF THE INVENTION

Teraz bolo zistené, že je možné zvýšiť množstvo ergosterolu a jeho medziproduktov, ak sa vložia gény HMG1 (Basson a spol., 1988), ERG9 (Fegueur a spol., 1991, Current Genetics 20:365-372), SAT1 (Yu a spol., 1996) a ERG1 (Jandrositz a spol., 1991) v premenenej forme do mikroorganizmov ako sú napr. kvasinky, pričom sú tieto gény vkladané jednotlivo do jedného plazmidu alebo v kombinácii do jedného alebo viac plazmidov a do hostiteľských buniek sa vkladajú súčasne alebo postupne.It has now been found that it is possible to increase the amount of ergosterol and its intermediates by inserting the HMG1 genes (Basson et al., 1988), ERG9 (Fegueur et al., 1991, Current Genetics 20: 365-372), SAT1 (Yu and et al., 1996) and ERG1 (Jandrositz et al., 1991) in converted form into microorganisms such as e.g. yeast, wherein these genes are inserted individually into a single plasmid or in combination into one or more plasmids and inserted into the host cells simultaneously or sequentially.

3I430/H3I430 / H

Predmetom predloženého vynálezu je spôsob, ktorého podstata spočíva v tom, žeIt is an object of the present invention to provide a process comprising:

a) sa najprv vytvorí piazmid, do ktorého sa vkladá v premenenej forme niekoľko génov vhodných na látkovú premenu ergosterolu alebo(a) first, a plasmid is formed into which several genes suitable for the metabolism of ergosterol are inserted in a converted form; or

b) sa najskôr vytvorí piazmid, do ktorého sa vkladá v premenenej forme vždy jeden z génov vhodných na látkovú premenu ergosterolu,b) first, a plasmid is formed into which one of the genes suitable for the metabolism of ergosterol is inserted in a transformed form,

c) takto pripraveným plazmidom sa transformujú mikroorganizmy, pričom sa tieto mikroorganizmy transformujú jedným plazmidom podfa a) alebo niekoľkými plazmidmi podľa b) súčasne alebo postupne.c) transforming the microorganisms with the plasmid thus produced, wherein the microorganisms are transformed with one or more of the plasmids according to (a) simultaneously or sequentially.

d) s takto pripravenými mikroorganizmami sa uskutoční fermentácia na ergosterol,d) fermentation to ergosterol is carried out with the microorganisms thus prepared,

e) po uskutočnenej fermentácii sa ergosterol a jeho medziprodukty z buniek extrahujú a analyzujú a nakoniec(e) after fermentation, ergosterol and its intermediates are extracted and analyzed from the cells and finally

f) takto získaný ergosterol a jeho medziprodukty sa čistia a izolujú pomocou stĺpcovej chromatografie.(f) the ergosterol thus obtained and its intermediates are purified and isolated by column chromatography.

Predmetom tohto vynálezu je najmä spôsob, ktorého podstata spočíva v tom, že a-i) sa najprv vytvorí piazmid, do ktorého sa vkladajú nasledujúce gény:In particular, it is an object of the present invention to provide a plasmid into which the following genes are inserted:

i) gén HMG-CoA-reduktázy (t-HMG), ii) gén skvalénsyntetázy (ERG9), iii) gén acyl-CoA:sterol-acyltransferázy (SAT1) a iv) gén skvalénepoxidázy (ERG1), alebo a-ii) sa najprv vytvorí piazmid, do ktorého sa vkladajú nasledujúce gény:(i) the HMG-CoA reductase (t-HMG) gene; (ii) the squalene synthetase (ERG9) gene; (iii) the acyl-CoA: sterol acyltransferase (SAT1) gene; and (iv) the squalene epoxidase (ERG1) gene; first creates a plasmid into which the following genes are inserted:

i) gén HMG-CoA-reduktázy (t-HMG), a ii) gén skvalénsyntetázy (ERG9), alebo a-iii) sa najprv vytvorí piazmid, do ktorého sa vkladajú nasledujúce gény :(i) the HMG-CoA reductase (t-HMG) gene; and (ii) the squalene synthetase (ERG9) gene; or, (a-iii) a plasmid is first formed into which the following genes are inserted:

i) gén HMG-CoA-reduktázy (t-HMG)(i) HMG-CoA reductase (t-HMG) gene

31430/H a31430 / H a

iii) gén acyl-CoA:sterol-acyltransferázy (SAT1), alebo a-iv) sa najprv vytvorí plazmid, do ktorého sa vkladajú nasledujúce gény :(iii) the acyl-CoA: sterol-acyltransferase (SAT1) gene; or (a-iv), a plasmid is first generated into which the following genes are inserted:

i) gén HMG-CoA-reduktázy (t-HMG) a(i) HMG-CoA reductase (t-HMG) gene; and

iv) gén skvalénepoxidázy (EKG1), alebo a-v) sa najprv vytvorí plazmid, do ktorého sa vkladajú nasledujúce gény:(iv) the squalene epoxidase (EKG1) gene, or a-v), is first produced a plasmid into which the following genes are inserted:

ii) gén skvalénsyntetázy (ERG9) athe squalene synthetase (ERG9) gene; and

iii) gén acyl-CoA:sterol-acyltransferázy (SAT1) alebo a-vi) sa najprv vytvorí plazmid, do ktorého sa vkladajú nasledujúce gény :(iii) the acyl-CoA: sterol-acyltransferase (SAT1) or a-vi) gene is first generated into a plasmid into which the following genes are inserted:

ii) gén skvalénsyntetázy (ERG9) athe squalene synthetase (ERG9) gene; and

iv) gén skvalénepoxidázy (ERG1), alebo a-vii) sa najprv vytvorí plazmid, do ktorého sa vkladajú nasledujúce gény:(iv) the squalene epoxidase (ERG1) gene, or a-vii), first generates a plasmid into which the following genes are inserted:

iii) gén acyl-CoA:sterol-acyltransferázy (SAT1) a(iii) the acyl-CoA gene: sterol acyltransferase (SAT1); and

iv) gén skvalénepoxidázy (ERG1), alebo(iv) the squalene epoxidase (ERG1) gene; or

b) sa najprv vytvorí plazmid, do ktorého sa vkladá vždy jeden z génov uvedených pod a-i, a(b) a plasmid is constructed first into which one of the genes listed under a-i is inserted, and

c) pomocou takto pripravených plazmidov sa transformujú mikroorganizmy, pričom tieto mikroorganizmy sa transformujú jedným plazmidom uvedeným pod a-i) až a-vii) alebo niekoľkými plazmidmi uvedenými pod b) súčasne alebo postupne,(c) transforming microorganisms with the plasmids thus prepared, wherein said microorganisms are transformed with one or more of the plasmids mentioned under (a) (i) to (a) (v) simultaneously or sequentially;

31430/H31430 / H

d) s takto získanými mikroorganizmami sa uskutoční fermentácia na ergosterol,(d) fermentation to ergosterol is carried out with the micro-organisms thus obtained,

e) po uskutočnenej fermentácii sa ergosterol a jeho medziprodukty vyextrahujú z buniek a analyzujú a nakoniec(e) after fermentation, ergosterol and its intermediates are extracted from the cells and analyzed and finally

f) takto získaný ergosterol a jeho medziprodukty sa čistia a izolujú pomocou stĺpcovej chromatografie.(f) the ergosterol thus obtained and its intermediates are purified and isolated by column chromatography.

Do plazmidov uvedených v a-ii), a-iii) a a-v) je možné dodatočne vložiť gén skvalénepoxidázy (ERG1) a do plazmidu uvedeného v a-ii je možné dodatočne vložiť gén acyl-CoA:sterol-acyltransferázy (SAT1). Tieto plazmidy sú rovnako predmetom tohto vynálezu.The squalene epoxidase (ERG1) gene can be additionally inserted into the plasmids listed in a-ii), a-iii) and a-v) and the acyl-CoA: sterol-acyltransferase (SAT1) gene can be additionally inserted into the plasmid mentioned in a-ii. These plasmids are also an object of the present invention.

K medziproduktom patria skvalén, farnezol, geraniol, lanosterol, zymosterol, 4,4-dimetylzymosterol, ergost-7-enol a ergosta-5,7-dienol, najmä steroly s 5,7-diénovou štruktúrou.Intermediates include squalene, farnesol, geraniol, lanosterol, zymosterol, 4,4-dimethylzymosterol, ergost-7-enol and ergosta-5,7-dienol, especially sterols with a 5,7-diene structure.

Použitými plazmidmi sú prednostne plazmid YepH2, ktorý obsahuje stredný (mittler) ADH-promótor, t-HMG (premenný variant HMG1) a TRPterminátor (viď obr. 1), plazmid YDpUHK3, ktorý obsahuje stredný ADHpromótor, t-HMG (premenný variant HMG1) a TRP-termínátor, gén pre kanamycínovú rezistenciu a gén ura3 (viď obr. 2) a plazmid pADL-SAT1, ktorý obsahuje gén SAT1 a gén LEU2 zYep13.The plasmids used are preferably the plasmid YepH2, which contains the mittler ADH promoter, the t-HMG (variable variant HMG1) and the TRPterminator (see Fig. 1), the plasmid YDpUHK3, which contains the intermediate ADH promoter, the t-HMG (variable variant HMG1). and the TRP-terminator, the kanamycin resistance gene and the ura3 gene (see FIG. 2) and the plasmid pADL-SAT1, which contains the SAT1 gene and the LEU2 gene from Yep13.

Tieto plazmidy a ich použitie na výrobu ergosterolu a jeho medziproduktov, ako sú skvalén, farnezol, geraniol, lanosterol, zymosterol, 4,4dimetylzymosterol, 4-metylzymosterol, ergost-7-enol a ergosta-4,7-dienol, najmä steroly s 5,7-diénovou štruktúrou, sú rovnako predmetom tohto vynálezu.These plasmids and their use for the production of ergosterol and its intermediates, such as squalene, farnesol, geraniol, lanosterol, zymosterol, 4,4-dimethylzymosterol, 4-methylzymosterol, ergost-7-enol and ergosta-4,7-dienol, in particular sterols with 5 The 7-diene structure is also an object of the present invention.

Hostiteľom pre zavedenie plazmidov podľa tohto vynálezu môžu byť v podstate akékoľvek mikroorganizmy, najmä však kvasinky.The host for introduction of the plasmids of the present invention can be essentially any microorganism, especially yeast.

Prednostne je možné používať druh S.cerevisiae, najmä kmeňPreferably, a S. cerevisiae species, in particular a strain, may be used

S.cerevisiae AH22.S.cerevisiae AH22.

Predmetom tohto vynálezu je i kmeň kvasiniek S.cerevisiae AH22, ktorý obsahuje plazmid pADL-SAT 1.The present invention also relates to the yeast strain S. cerevisiae AH22, which contains the plasmid pADL-SAT 1.

Rovnako je preferovaná kombinovaná transformácia mikroorganizmov s plazmidmi pADL-SAT1 a YDpUHK3, najmä transformácia kvasiniek ako napr.Also preferred is the combined transformation of microorganisms with the plasmids pADL-SAT1 and YDpUHK3, especially the transformation of yeasts such as e.g.

S.cerevisiae AH22.S.cerevisiae AH22.

31430/H31430 / H

Sled látkovej premeny ergosterolu je všeobecne ovplyvňovaný nasledovne :The sequence of metabolism of ergosterol is generally affected as follows:

Reakčný sled v smere ergosterol je maximalizovaný, pričom aktivita niekoľkých úzkoprofilových (flaschenhals) enzýmov sa zároveň zvyšuje. Rozhodujúcu úlohu pritom majú rôzne enzýmy, pričom rozhodujúci vplyv na zvýšení výťažku ergosterolu má kombinácia deregulácie resp. vysokej expresie. Ako kombinácie sa používajú enzýmy resp. ich gény HMG1 (Basson a spol., 1988), ERG9 (Fegueur a spol., 1991), acyl-CoA:sterol-acyltransferáza (SAT1) (Yu a spol., 1996) a/alebo skvalénepoxidáza (ERG1) (Jandrositz a spol., 1991) vložené v pozmenenej forme do kmeňa kvasiniek, pričom vkladanie génov sa uskutočňuje pomocou jedného alebo viac plazmidov a tento plazmid (tieto plazmidy) obsahujú DNAsekvenciu buď jednotlivo, alebo v kombinácii. „Pozmenený“ znamená v prípade génu HMG1, že z príslušného génu sa exprimuje iba jeho katalytická oblasť bez domény viazanej na membránu. Táto premena už bola popísaná (EP- 0486 290). Cieľom premeny HMG1 je zabrániť spätnej (feed-back) regulácii spôsobenej medziproduktami biosyntézy ergosterolu. To znamená, že ak u HMG1, tak i u oboch ostatných uvedených génov nedôjde k transkripčnej regulácii. Okrem toho je promótor génov nahradený „stredným (mittler)“ promótorom ADH1. Tento promótorový fragment ADH1-promótoru sa vyznačuje približne konštitutívnou expresiou (Ruohonen a spol., 1995), takže transkripčná regulácia už ďalej cez medziprodukty biosyntézy ergosterolu neprebieha.The reaction sequence in the ergosterol direction is maximized, while the activity of several flaschenhals enzymes increases at the same time. Various enzymes play a decisive role in this, the decisive influence on the increase in ergosterol yield being due to the combination of deregulation and resp. high expression. Enzymes resp. their HMG1 genes (Basson et al., 1988), ERG9 (Fegueur et al., 1991), acyl-CoA: sterol acyltransferase (SAT1) (Yu et al., 1996) and / or squalene epoxidase (ERG1) (Jandrositz and et al., 1991) inserted in altered form into a yeast strain, wherein the insertion of the genes is carried out by means of one or more plasmids and the plasmid (s) contain the DNA sequence either singly or in combination. "Altered" in the case of the HMG1 gene means that only its catalytic region without the membrane-bound domain is expressed from the gene of interest. This transformation has already been described (EP-0486 290). The goal of HMG1 conversion is to prevent feed-back regulation caused by ergosterol biosynthesis intermediates. This means that both HMG1 and the other two genes will not have transcriptional regulation. In addition, the gene promoter is replaced by the "mittler" ADH1 promoter. This ADH1-promoter fragment is characterized by approximately constitutive expression (Ruohonen et al., 1995), so that transcriptional regulation is no longer via ergosterol biosynthesis intermediates.

Produkty vznikajúce pri vysokej expresii je možno využívať na biotransformáciu resp. iné chemické a terapeutické účely, napr. na získavanie vitamínu D2 z ergosterolu pôsobením UV-žiarenia a na získavanie steroidných hormónov z ergosterolu s použitím biotransformácií.High-expression products can be used for biotransformation or biotransformation. other chemical and therapeutic purposes, e.g. for the recovery of vitamin D 2 from ergosterol by UV radiation and for the recovery of steroid hormones from ergosterol using biotransformations.

Predmetov tohto vynálezu sú i mikroorganizmy, najmä kmene kvasiniek, ktoré s použitím vysokej expresie pri postupe s génmi uvedenými pod a-i) umožňujú výrobu zvýšeného množstva ergoserolu a ergosterolu v kombinácii so zvýšeným množstvom skvalénu.Microorganisms, particularly yeast strains, which, by using high expression in the process of the genes mentioned under a-i), allow the production of increased amounts of ergoserol and ergosterol in combination with increased amounts of squalene, are also objects of the present invention.

Preferovaný je premenný variant génu HMG1, v ktorom bolaPreferred is the variable variant of the HMG1 gene in which it was

31430/H exprimovaná iba katalytická oblasť bez domény viazanej na membránu. Táto premena bola popísaná (EP- 0486 290).31430 / H expressed only the catalytic region without the membrane bound domain. This conversion has been described (EP-0486 290).

Predmetom tohto vynálezu je i postup výroby ergosterolu a medziproduktu vznikajúcich pri tejto reakcii, ktorý sa vyznačuje tým, že gény uvedené v postupe pod a), najmä v postupe pod a-i) až a-vii) (dvojnásobná, trojnásobná, štvornásobná kombinácia génov) sa spolu splazmidmi najprv nezávisle na sebe vloží do mikroorganizmov rovnakého druhu, s nimi sa uskutoční fermentácia na ergosterol a takto získaný ergosterol sa z buniek extrahuje, analyzuje, čistí a izoluje pomocou stĺpcovej chromatografie.***The present invention also relates to a process for the production of ergosterol and an intermediate resulting from this reaction, characterized in that the genes mentioned under process (a), in particular under process (ai) to (a-vii) (double, triple, quadruple combination of genes) are together with the plasmids, are first introduced independently of each other into microorganisms of the same species, with which the ergosterol is fermented and the ergosterol thus obtained is extracted, analyzed, purified and isolated by column chromatography.

Predmetom tohto vynálezu sú rovnako expresné kazety, zahrňujúce stredný ADH-promótor, gén t-HMG, TRP- terminátor a gén SAT1 so stredným ADH-promótorom a TRP-terminátorom a expresné kazety zahrňujúce stredný ADH-promótor, gén t-HMG, TRP-terminátor, gén SAT1 so stredným ADHpromótorom a TRP-terminátorom a gén ERG9 so stredným ADH-promótorom a TRP-terminátorom.The present invention also provides expression cassettes comprising the middle ADH promoter, the t-HMG gene, the TRP terminator and the SAT1 gene with the middle ADH promoter and the TRP terminator, and expression cassettes comprising the middle ADH promoter, the t-HMG gene, TRP- a terminator, the SAT1 gene with the middle ADH promoter and the TRP terminator, and the ERG9 gene with the middle ADH promoter and the TRP terminator.

Predmetom tohto vynálezu je i kombinácia expresných kaziet, pričom túto kombináciu tvoriaIt is also an object of the invention to provide a combination of expression cassettes

a) prvá expresná kazeta, na ktorej je lokalizovaný ADH-promótor, gén tHMG a TRP-terminátora) first expression cassette on which the ADH promoter, tHMG gene and TRP terminator are located

b) druhá expresná kazeta, na ktorej je lokalizovaný ADH-promótor, génb) a second expression cassette on which the ADH promoter is located, a gene

SAT 1 a TRP-terminátor, aSAT 1 and TRP terminator, a

c) tretia expresná kazeta, na ktorej je lokalizovaný ADH-promótor, génc) a third expression cassette on which the ADH promoter is located, a gene

ERG9 s TRP-terminátorom.ERG9 with TRP terminator.

3I430/H3I430 / H

Ďalej je predmetom tohto vynálezu použitie týchto expresných kaziet natransformáciu mikroorganizmov používaných na fermentáciu na ergosterol, pričom týmito mikroorganizmami sú prednostne kvasinky.It is a further object of the present invention to use these expression cassettes for the transformation of microorganisms used for fermentation to ergosterol, wherein the microorganisms are preferably yeast.

Predmetom tohto vynálezu sú i mikroorganizmy, ako sú kvasinky, ktoré obsahujú tieto expresné kazety a rovnako ich použitie pri fermentácii na ergosterol a jeho medziprodukty.The present invention also relates to microorganisms, such as yeast, which contain these expression cassettes as well as their use in fermentation to ergosterol and its intermediates.

Nasledujúce príklady sú určené na objasnenie uskutočňovaných postupov.The following examples are intended to illustrate the procedures employed.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

1. Reštrikcia1. Restriction

Reštrikcia plazmidu (1 až 30 pg) bola uskutočňovaná v šaržách po 30 pl. Pritom boli k DNA obsiahnutej v 24 pl H2O pridané 3 pl príslušného pufru, 1 pl RSA (hovädzí sériový albumín) a 2 pl enzýmu. Koncentrácia enzýmu bola 1 jeden./ pl alebo 5 jed./ pl podľa množstva DNA. V niektorých prípadoch bol pridaný ešte 1 pl enzýmu RNasa, aby sa odbúrala tRNA. Táto reštrikčná reakčná zmes bola inkubovaná 2 hodiny pri teplote 37 °C. Reštrikcia bola kontrolovanás použitím Minigélu.Plasmid restriction (1-30 µg) was performed in batches of 30 µl. 3 µl of the appropriate buffer, 1 µl RSA (bovine serial albumin) and 2 µl enzyme were added to the DNA contained in 24 µl H 2 O. The enzyme concentration was 1 single / µl or 5 single / µl according to the amount of DNA. In some cases, 1 µl of RNase enzyme was added to break down the tRNA. This restriction reaction mixture was incubated at 37 ° C for 2 hours. Restriction was controlled using Minigel.

2. Gélová elektroforéza2. Gel electrophoresis

Gélové elektroforézy boli uskutočňované v aparatúrach Minigél (Minigelapparatur) alebo Wide-Minigél. Minigély (cca 20 ml, 8 jamiek) a WideMinigély (50 ml, 15 alebo 30 jamiek) sa skladali z 1 % agarózy vTAE. Ako pufor bol použitý 1 x TAE. Do vzoriek (10 pl) boli pridané 3 pl roztoku stopéru a vzorky boli nanesené. Ako štandard bola použitá l-DNA s A7/nd111 (pásy: 23,1 kb; 9,4 kb; 6,6 kb; 4,4 kb; 2,3 kb; 2,0 kb; 0,6 kb). Delenie bolo uskutočňované pri napätí 80 V počas 45 až 60 minút. Potom bol gél vyfarbený v roztoku etídiumbromidu a vyhodnocovaný v UV-svetle pomocou videodokumentačného systému INTAS alebo fotografovaný s použitím oranžového filtra.Gel electrophoresis was performed in Minigel (Minigelapparatur) or Wide-Minigel apparatuses. Minigels (ca. 20 ml, 8 wells) and Wide Minigels (50 ml, 15 or 30 wells) consisted of 1% agarose inTAE. 1 x TAE was used as a buffer. To the samples (10 µl) 3 µl of the stopper solution was added and the samples were loaded. A7 / nd111 1-DNA (bands: 23.1 kb; 9.4 kb; 6.6 kb; 4.4 kb; 2.3 kb; 2.0 kb; 0.6 kb) was used as standard. The separation was carried out at a voltage of 80 V for 45 to 60 minutes. The gel was then stained in a solution of ethidium bromide and evaluated in UV light using the INTAS video documentation system or photographed using an orange filter.

3. Elucia gélu3. Gel elution

Požadované fragmenty boli izolované eluovaním gélu. Reštrikčná reakčná zmes bola nanesená na niekoľko jamôk Minigélu a rozdelená.The desired fragments were isolated by eluting the gel. The restriction reaction mixture was applied to several wells of Minigel and split.

V roztoku etídiumbromidu boli vyfarbené iba lambda-H/ndlII a stopa nejakejOnly lambda-H / ndII and a trace of some were stained in the ethidium bromide solution

31430/H látky, tieto látky boli sledované v UV-svetle a požadovaný fragment bol označený. Tým sa zabránilo poškodeniu DNA v ostatných jamkách pôsobením etídiumbromidu a UV-žiarenia. Požadovaný fragment bolo možné vďaka označeniu vyrezať z nevyfarbeného gélu po položení vyfarbených a nevyfarbených častí gélu na seba. Podiel agarózy s izolovaným fragmentom bol vložený do dialyzačnej trubice, bolo pridané trochu TAE-pufru bez vzduchových bublín a tento podiel bol vložený do aparatúry RioRad Minigél. Ako premývací pufor bol použitý 1 x TAE, napätie bolo 100 V počas 40 minút. Potom bola na 2 minúty zmenená polarita elektrického prúdu, aby sa uvolnila DNA priľnutá na dialyzačnú trubicu. Pufor z dialyzačnej trubice obsahujúci DNA-fragmenty bol prevedený do reakčnej nádobky a bol zrážaný etanolom. Pritom boli do roztoku DNA pridané 1/10 objemu 3M octanu sodného, tRNA (1 μΙ na 50 μΙ roztoku) a dvaapolnásobný objem ľadového studeného 96 % -ného etanolu. Táto reakčná zmes bola inkubovaná počas 30 minút pri teplote -20 °C a potom bola odstreďovaná pri 12 000 1/min počas 30 minút pri teplote 4 °C. Peleta DNA bola vysušená a vybratá do 10 až 50 μΙ vody (podľa množstva DNA).The 31430 / H compounds were monitored under UV light and the desired fragment was labeled. This prevented DNA damage in the other wells by exposure to ethidium bromide and UV radiation. The desired fragment was able to be excised from the unstained gel by placing the stained and unstained portions of the gel on top of each other. An aliquot of the isolated fragment was placed in a dialysis tube, a little TAE buffer without air bubbles was added, and this portion was placed in an RioRad Minigel apparatus. The wash buffer used was 1 x TAE, the voltage was 100 V for 40 minutes. The polarity of the electric current was then changed for 2 minutes to release the DNA adhered to the dialysis tube. The dialysis tube buffer containing the DNA fragments was transferred to the reaction vessel and precipitated with ethanol. 1/10 volume of 3M sodium acetate, tRNA (1 μΙ per 50 μΙ solution) and two and a half times the volume of ice cold 96% ethanol were added to the DNA solution. This reaction mixture was incubated for 30 minutes at -20 ° C and then centrifuged at 12,000 rpm for 30 minutes at 4 ° C. The DNA pellet was dried and removed into 10 to 50 μΙ of water (depending on the amount of DNA).

4. Úprava podľa Klenowa4. Klenow adjustment

Postupom podľa Klenová boli prečnievajúce konce DNA-fragmentov vyplnené, takže vznikli „tupé konce“ (bluntends). Na 1 pg DNA boli pipetované nasledujúce zložky:Following the Klenova procedure, the protruding ends of the DNA fragments were filled, resulting in bluntends. The following components were pipetted per 1 µg of DNA:

Peleta DNA + 11 μΙ H2O + 1,5 μΙ 10x pufor Klenow + 1 μΙ 0,1 M DTT + 1 μΙ nukleotid (dNTP 2 mM) + 1 μΙ Klenow - polymeráza (1 jedn./ μΙ)DNA pellet + 11 μΙ H 2 O + 1.5 μΙ 10x Klenow buffer + 1 μΙ 0.1 M DTT + 1 μΙ nucleotide (dNTP 2 mM) + 1 μΙ Klenow polymerase (1 unit / μΙ)

DNA je potrebné pripraviť zrážaním etanolom, aby sa zabránilo inhibíciiDNA should be prepared by ethanol precipitation to prevent inhibition

Klenow-polymerázy spôsobenej nečistotami. Inkubácia bola uskutočnená počas 30 minút pri teplote 37 °C, nasledujúcim záhrevom počas 5 minút na teplotu 70 °C bola reakcia zastavená. DNA bola z tejto reakčnej zmesi získaná zrážaním etanolom a bola vybratá do 10 μΙ H2O.Klenow polymerases caused by impurities. Incubation was carried out for 30 minutes at 37 ° C, followed by heating for 5 minutes at 70 ° C to stop the reaction. DNA was recovered from this reaction mixture by ethanol precipitation and was removed to 10 μΙ H 2 O.

31430/H31430 / H

5. Ligácia5. Ligation

Fragmenty DNA určené na naviazanie boli spojené. V konečnom objemeThe DNA fragments to be bound were pooled. In the final volume

13,1 μΙ bolo obsiahnuté cca 0,5 μΙ DNA s vektorovým pomerom 1 : 5. Táto vzorka bola inkubovaná počas 45 sekúnd pri teplote 70 °C, schladená na laboratórnu teplotu (cca 3 minúty) a potom boia počas 10 minút ochladzovaná na ľade. Potom bol pridaný ligačný pufor: 2,6 μΙ 500 mM Tris. HCI pH 7,5 a 1,3 μ1100 mM MgCfe a táto zmes bola po ďalších 10 minút inkubovaná na ľade. Po prídavku 1 μΙ 500 mM DTT a 1 μ110 mM ATP a ďalších 10 minútach inkubácie na ľade bol pridaný 1 μΙ ligázy (1 jedn./ μΙ). Celý reakčný postup bol uskutočnený pokiaľ možno bez otrasov, aby sa konce DNA ležiace pri sebe opäť neodďaľovali. Ligácia bola uskutočňovaná cez noc pri teplote 14 °C.The sample was incubated for 45 seconds at 70 ° C, cooled to room temperature (about 3 minutes) and then cooled on ice for 10 minutes. . Ligation buffer was then added: 2.6 μΙ 500 mM Tris. HCl pH 7.5 and 1.3 µ1100 mM MgCl 2 and this mixture was incubated on ice for a further 10 minutes. After addition of 1 μΙ 500 mM DTT and 1 μ110 mM ATP and an additional 10 min incubation on ice, 1 μΙ ligase (1 unit / μΙ) was added. The whole reaction procedure was carried out as far as possible, without shaking, so that the ends of the superimposed DNA did not move away again. The ligation was carried out overnight at 14 ° C.

6. Transformácia E.coli6. Transformation of E.coli

Príslušné bunky Escherichia coli (E.coli) NM522 boli transformované DNA z ligačnej reakcie. Ako pozitívna kontrola bola súčasne uskutočnená reakcia s 50 ng plazmidu pScL3 a ako nulová kontrola bola uskutočnená reakcia bez prídavku DNA. Pri každej transformačnej reakcii bolo pipetované 100 μΙ 8 % roztoku PEG, 10 μΙ DNA a 200 μΙ kompetentných buniek (E.coli NM522) do skúmavky stolnej odstredivky. Reakčné zmesi boli na 30 minút vložené do ľadu a občas pretrepané. Potom bol uskutočnený tepelný šok: 1 minúta pri 42 °C. Na regeneráciu bol k bunkám pridaný 1 ml LB-média a reakčná zmes bola inkubovaná počas 90 minút pri teplote 37 °C na trepačke. Na LB + Ampicilínové dosky bolo nanesené po 100 μΙ neriedenej reakčnej zmesi, reakčné zmesi zriedené 1:10a1:100a kultivácia bola uskutočnená cez noc pri teplote 37 °C.Appropriate Escherichia coli (E.coli) NM522 cells were transformed with DNA from the ligation reaction. As a positive control, a reaction with 50 ng of plasmid pScL3 was simultaneously performed and as a zero control, a reaction without addition of DNA was performed. For each transformation reaction, 100 μΙ of 8% PEG solution, 10 μΙ DNA and 200 μΙ competent cells (E.coli NM522) were pipetted into a centrifuge tube. The reaction mixtures were placed on ice for 30 minutes and shaken occasionally. Heat shock was then performed: 1 minute at 42 ° C. For regeneration, 1 ml of LB medium was added to the cells and the reaction mixture was incubated for 90 minutes at 37 ° C on a shaker. The LB + Ampicillin plates were coated with 100 µL of undiluted reaction mixture, diluted 1: 10 and 1:10, and cultured overnight at 37 ° C.

7. Izolácia plazmidu z E.coli (minipreparácia)7. Isolation of plasmid from E. coli (miniprep)

Kolónie E.coli boli vložené cez noc do 1,5 ml média LB+Ampicilín do skúmavky do stolnej odstredivky pri 37 °C a 120 1/min. Nasledujúci deň boli bunky odstreďované počas 5 minút pri 5000 1/min. a teplote 4 °C, získanáE. coli colonies were placed overnight in 1.5 ml LB + Ampicillin medium in a centrifuge tube at 37 ° C and 120 rpm. The following day, cells were centrifuged for 5 minutes at 5000 rpm. and 4 ° C, obtained

31430/H peleta bola vybratá do 50 μΙ TE- pufru. Do každej reakčnej zmesi bolo pridané 100 μ! 0,2 N NaOH, 1 % roztoku SDS, zmes bola premiešaná a vložená na 5 minút na ľad (lýza buniek). Potom bolo pridané 400 μΙ roztoku Na-acetát/NaCI (230 μΙ H2O, 130 μΙ 3 M Na-acetát, 40 μΙ 5 M NaCl), reakčná zmes bola premiešaná a na ďalších 15 minút vložená na ľad (zrážanie proteínu). Po 15minútovom odstredení pri 11 000 1/min. bol supernatant obsahujúci plazmidDNA prevedený do Eppendorfovej nádobky. Ak supernatant nebol celkom číry, bolo odstreďovanie uskutočnené znovu. Do supernatantu bolo pridané 360 μΙ ľadovo studeného izopropanolu a zmes bola inkubovaná počas 30 minút pri teplote-20 °C (zrážanie DNA). DNA bola odstredená (15 min., 12000 1/min., 4 ’C), supernatant bol odstránený, peleta bola premytá 100 μΙ ľadového 96 % etanolu, 15 minút inkubovaná pri - 20 °C a opäť odstredená (15 min., 12 000 1/min., 4 °C). Získaná peleta bola vysušená v sušiarni Speed Vac a potom bola vybratá do 100 μΙ H2O. Plazmid - DNA bol charakterizovaný reštrikčnou analýzou. Pritom bola vždy uskutočnená reštrikcia s 10 μΙ reakčnej zmesi a delenie bolo uskutočnené elektroforézou na géli Wide-Minigél (viď hore).The 31430 / H pellet was removed into 50 μΙ TE buffer. 100 µl was added to each reaction mixture. 0.2 N NaOH, 1% SDS, the mixture was stirred and placed on ice for 5 minutes (cell lysis). Then, 400 μΙ Na-acetate / NaCl solution (230 μΙ H2O, 130 μΙ 3 M Na-acetate, 40 μΙ 5 M NaCl) was added, the reaction mixture was stirred and placed on ice for 15 minutes (protein precipitation). After centrifugation for 15 minutes at 11,000 rpm. the supernatant containing the plasmid DNA was transferred to an Eppendorf flask. If the supernatant was not completely clear, centrifugation was performed again. 360 μΙ of ice-cold isopropanol was added to the supernatant and the mixture was incubated for 30 minutes at -20 ° C (DNA precipitation). The DNA was centrifuged (15 min, 12000 rpm, 4 ° C), the supernatant was removed, the pellet was washed with 100 µL of ice-cold 96% ethanol, incubated for 15 min at -20 ° C and centrifuged again (15 min, 12 min). 000 rpm, 4 ° C). The obtained pellet was dried in a Speed Vac oven and then removed to 100 μΙ H2O. Plasmid DNA was characterized by restriction analysis. Restriction was always performed with 10 μΙ of the reaction mixture and separation was performed by Wide-Minigel electrophoresis (see above).

8. Spracovanie plazmidu z E.coli (maxipreparácia)8. Processing of plasmid from E. coli (maxiprep)

Na izoláciu väčšieho množstva plazmid-DNA bola použitá metóda maxipreparácia (Maxipräp). Dve banky obsahujúce po 100 mi média LB+Ampicilín boli zaočkované kolóniou resp. 100 μΙ zmrazenej kultúry nesúcej izolovaný plazmid a boli kultivované cez noc pri 37 ’Ca 120 l/min. Táto kultúra (200 ml) bola nasledujúci deň vliata do GSA-nádobky a odstreďovaná pri 4000 l/min. (2600 x g) počas 10 minút. Peleta buniek bola vybratá do 6 ml TE-pufru. Na natrávenie (Abdau) bunkovej steny bolo pridané 1,2 ml roztoku lyzozýmu (20 mg/ml TE-pufru) a reakčná zmes bola inkubovaná počas 10 minút pri laboratórnej teplote. Nakoniec bola uskutočnená lýza buniek pôsobením 12 ml 0,2 N NaOH, 1 % roztoku SDS a inkubácia bola uskutočnená ďalších 5 minút pri laboratórnej teplote. Proteíny boli vyzrážané prídavkom 9 ml schladeného 3 M roztoku Na-acetátu (pH 4,8) pri pätnásťminútovej inkubácii na ľade. Po odstredení (GSA:13000 1/min. (27500 x g), 20 min., 4 °C) bol supernatantMaxiprep (Maxipräp) was used to isolate larger amounts of plasmid DNA. Two flasks containing 100 ml of LB + Ampicillin medium each were inoculated with the colony, respectively. 100 μΙ frozen cultures carrying the isolated plasmid and were cultured overnight at 37 Ca Ca 120 l / min. This culture (200 ml) was poured into a GSA vial the next day and centrifuged at 4000 l / min. (2600 x g) for 10 minutes. The cell pellet was removed into 6 ml TE buffer. For digestion (Abdau) of the cell wall, 1.2 ml of lysozyme solution (20 mg / ml TE buffer) was added and the reaction mixture was incubated for 10 minutes at room temperature. Finally, the cells were lysed with 12 ml of 0.2 N NaOH, 1% SDS solution and incubated for an additional 5 minutes at room temperature. Proteins were precipitated by the addition of 9 ml of cooled 3 M Na-acetate solution (pH 4.8) in a 15 minute incubation on ice. After centrifugation (GSA: 13000 rpm (27500 x g), 20 min, 4 ° C), the supernatant was

31430/H obsahujúci DNA prevedený do inej GSA-nádobky a DNA bola vyzrážaná 15 ml ľadového izopropanolu pri 30-minútovej inkubácii pri teplote - 20 °C. Peleta DNA bola premytá 5 ml ľadového etanolu a vysušená na vzduchu (cca 30 — 60 minút). Potom bola vybratá do 1 ml H2O. Kontrola plazmidu bola uskutočnená reštrikčnou analýzou. Koncentrácia bola určená nanášaním zrieďovaného roztoku na Minigél. Na zníženie obsahu solí bola uskutočnená 30 až 60 minútová mikrodialýza (veľkosť pórov 0,025 pm).31430 / H containing DNA transferred to another GSA-vial and DNA was precipitated with 15 ml of ice isopropanol by incubation for 30 minutes at -20 ° C. The DNA pellet was washed with 5 ml of ice-cold ethanol and air dried (about 30-60 minutes). It was then taken up in 1 ml H 2 O. Plasmid control was performed by restriction analysis. The concentration was determined by applying the diluted solution to Minigel. A 30-60 minute microdialysis (pore size 0.025 µm) was performed to reduce the salt content.

9. Transformácia kvasiniek9. Transformation of yeast

Na transformáciu kvasiniek bola použitá predpestovaná kultúra (Voranzucht) kmeňa Saccharomyces cerevisiae (S.cerevisiae) AH22. Banka s 20 ml YE-média bola zaočkovaná 100 μΙ zmrazenej kultúry a kultivovaná cez noc pri 28 °C a 12 l/min. Hlavná kultivácia bola uskutočnená za rovnakých podmienok v banke so 100 ml YE-média, zaočkovaného 10 μΙ, 20 μΙ alebo 50 μΙ predpestovanej kultúry.A pre-cultured culture (Voranzucht) of Saccharomyces cerevisiae (S. cerevisiae) AH22 was used to transform the yeast. A flask of 20 ml YE-medium was seeded with 100 μΙ frozen culture and cultured overnight at 28 ° C and 12 L / min. The main culture was performed under the same conditions in a flask with 100 ml YE-medium inoculated with 10 μΙ, 20 μΙ or 50 μΙ of the pre-cultured culture.

9.1. Príprava kompetentných buniek9.1. Preparation of competent cells

Nasledujúci deň bol obsah baniek vyhodnotený pomocou Thomovej komôrky (Thomakammer) a naďalej bola spracovaná banka s obsahom 3 5x107 buniek/ml. Bunky boli získané odstredením (GSA: 5000 1/min. (4000 xThe next day, the contents of the flasks were evaluated by Thom's chamber (Thomakammer) and the flask was maintained at 35x10 7 cells / ml. Cells were harvested by centrifugation (GSA: 5000 rpm (4000 x

g), 10 minút). Peleta buniek bola vybratá do 10 ml TE-pufru a rozdelená do dvoch skúmaviek stolnej odstredivky (po 5 ml). Bunky boli odstreďované 3 minúty pri 6000 l/min. a ešte dvakrát premyté po 5 ml TE-pufru. Nakoniec bola peleta buniek vybratá do 330 μΙ lítiumacetátového pufru na 109 buniek, prevedená do sterilnej 50 ml Erlenmeyerovej banky a jednu hodinu pretrepávaná pri teplote 28 °C. Týmto spôsobom boli získané kompetentné bunky na transformáciu.g), 10 minutes). The cell pellet was taken up in 10 ml TE buffer and divided into two centrifuge tubes (5 ml each). Cells were centrifuged for 3 minutes at 6000 l / min. and washed twice more with 5 ml TE buffer. Finally, the cell pellet was taken up in 330 μL of lithium acetate buffer per 10 9 cells, transferred to a sterile 50 ml Erlenmeyer flask and shaken at 28 ° C for one hour. In this way, competent cells for transformation were obtained.

9.2. Transformácia2.9 transformation

Pri každej transformačnej reakcii bolo do skúmavky stolnej odstredivky napipetované 15 μΙ DNA sledieho spermatu (Heringssperma DNA) (10 mg/ml),For each transformation reaction, 15 μΙ herring sperm DNA (10 mg / ml) was pipetted into the centrifuge tube,

31430/H μΙ transformovanej DNA (cca 0,5 pg) a 330 μΙ kompetentných buniek a táto zmes bola inkubovaná počas 30 minút pri teplote 28 °C (bez trepania !). Potom bolo pridané 700 μΙ 50 % PEG 6000 a inkubácia bola uskutočnená ďalšiu hodinu pri 28 °C bez trepania. Potom nasledoval tepelný šok počas 5 minút pri 42 °C.31430 / H μΙ of transformed DNA (approx. 0.5 µg) and 330 μΙ of competent cells and this mixture was incubated for 30 minutes at 28 ° C (without shaking!). Then, 700 μΙ of 50% PEG 6000 was added and incubated for an additional hour at 28 ° C without shaking. This was followed by a thermal shock for 5 minutes at 42 ° C.

100 μΙ tejto suspenzie bolo nanesené na selekčné médium (YNB, Difco), aby bolo možné uskutočniť selekciu na leucinprototrofiu. Pri selekcii na G418rezistencii bola po tepelnom šoku uskutočnená regenerácia buniek (viď Fáza regenerácie, časť 9.3).100 μΙ of this suspension was applied to selection medium (YNB, Difco) to allow selection for leucine prototrophy. On selection for G418 resistance, cell regeneration was performed after heat shock (see Regeneration Phase, section 9.3).

9.3. Fáza regenerácie9.3. Regeneration phase

Vzhľadom na to, že selekčný marker znamená rezistenciu proti G418, potrebovali bunky čas na expresiu rezistenčného génu. Do transformačnej reakčnej zmesi boli pridané 4 mi YE-média a táto reakčná zmes bola kultivovaná cez noc pri 28 °C na trepačke (120 l/min.). Nasledujúci deň boli bunky odstredené (6000 l/min, 3 min.), vybraté do 1 ml YE- média a z tejto zmesi bolo nanesené 100 μΙ resp. 200 μΙ na dosky YE-G418. Tieto dosky boli kultivované niekoľko dní pri teplote 28 °C.Since the selectable marker represents resistance to G418, the cells needed time to express the resistance gene. 4 ml of YE-medium was added to the transformation reaction mixture and the reaction mixture was cultured overnight at 28 ° C on a shaker (120 L / min). The next day, the cells were centrifuged (6000 L / min, 3 min), taken up in 1 ml YE-medium and 100 µL and 100 µL were added from this mixture. 200 μΙ on YE-G418 boards. These plates were cultured for several days at 28 ° C.

10. Reakčné podmienky pre PCR10. Reaction conditions for PCR

Reakčné podmienky na polymerázovú reťazovú reakciu (Polymerase Chain Reaction - PCR) bolo nutné optimalizovať pre každý pokus, takže nie sú všeobecne platné na každú reakčnú zmes. Okrem iného je možné meniť množstvo DNA, koncentráciou solí a teplotu rozpustenia (Schmelztemperatur). Na naše podmienky bolo vhodné použiť klobúčik Ependorf, určený pre zariadenie Thermocycler, do ktorého boli dané nasledujúce látky : Do 2 μΙ (cca 0,1 U) polymerázy Super Taq Polymerázie bolo pridané 5 μΙ pufru Super Buffer, 8 μΙ dNTP (po 0,625 μΜ), 5'-primér, 3'-primér a 0,2 pg matrice DNA rozpustenej vtákom množstve vody, aby sa získal celkový objem reakčnej zmesi pre PCR 50 μΙ. Táto reakčná zmes bola krátko odstredená a prevrstvená kvapkou oleja. Na amplifikáciu bolo používané 37 až 40 cyklov.Polymerase Chain Reaction (PCR) reaction conditions had to be optimized for each experiment, so they are not generally valid for each reaction mixture. Among other things, it is possible to vary the amount of DNA, salt concentration and dissolution temperature (Schmelztemperatur). For our conditions, it was appropriate to use an Ependorf cap designed for the Thermocycler to which the following substances were given: To 2 μΙ (approx. 0.1 U) of Super Taq Polymerase, 5 μΙ of Super Buffer, 8 μΙ of dNTP (0.625 μ po each) ), 5'-primer, 3'-primer, and 0.2 µg of DNA matrix dissolved in the amount of water to obtain a total PCR reaction volume of 50 μΙ. The reaction mixture was centrifuged briefly and overlaid with a drop of oil. 37 to 40 cycles were used for amplification.

31430/H31430 / H

Ďalej uvedené príklady uskutočnenia popisujú prípravu plazmidov podľa tohto vynálezu, prípravu kmeňov kvasiniek a ich použitie, tento vynález sa však na uvedené príklady nijako neobmedzuje.The following Examples illustrate the preparation of plasmids of the present invention, the preparation of yeast strains and their use, but the present invention is not limited thereto.

Príklad 1Example 1

Expresia tHMG v S.cerevisiae AH22Expression of tHMG in S. cerevisiae AH22

DNA-sekvencia na tHMG (Basson a spol., 1988) bola amplifikovaná štandardnými spôsobmi pomocou PCR z genomickej DNA zo Saccharomyces cerevisiae S288C (Mortimer a Johnston, 1986). Použitými primérmi boli DNA oligoméry tHMG-5'a tHMG-3' (viď sekv. ID č. 1 a 2). Získaný fragment DNA bol po úprave podľa Klenowa vložený do klonovacieho vektora pUC19 (YanishPerron a spol., 1985) a poskytol tak vektor pUC19-tHMG. Po izolácii plazmidu a reštrikcii pUC19-tHMG pomocou endonukleáz EcoRI a BamHI bol získaný fragment vložený do expresného vektora kvasiniek pPT2b (Lang a Looman, 1995), ktorý bol rovnako upravený pomocou EcoRI a BamHI. Vzniknutý plazmid pPT2b-tHMG obsahoval ADH1-promótor (Bennetzen a Halí, 1982) a TRP1terminátor (Tschumper a Carbon, 1980), medzi ktoré bol vložený fragment tHMG-DNA. Z vektora pPT2b-tHMG bol pomocou endonukleáz EcoRV a Nru\ izolovaný úsek DNA, ktorý obsahoval tzv. stredný ADH 1-promótor obsahujúci tHMG a TRRf-terminátor. Tento úsek DNA bol vložený do kvasinkového vektora YEp13 (Fischhoff a spol., 1984), upraveného endonukleázou Sph\ a DNA-polymerázou. Takto vzniknutý vektor YEpH2 (obr. 1) bol upravený endonukleázou EcoRV a Λ/rul. Vznikol tak DNA-fragment s nasledujúcimi oblasťami : transkripčne-aktívna oblasť z tetracyklín-rezistentného génu (Sidhu a Bollon, 1990), zo stredného ADH1-promótoru, z tHMG a z TRP- terminátora (expresná kazeta). Tento DNA-fragment bol vložený do vektora YdpU (Berben a spol., 1991), upraveného Sŕul. Takto vzniknutý vektor YdpUH2/12 bol upravený endonukleázou Smal a naviazaný na DNA-sekvenciu kódujúcu kanamycínovú rezistenciu (Webster a Dickson, 1983). Tento vzniknutý konštrukt (YDpUHK3, obr. 2) bol upravený pomocou EcoRV. Týmto konštruktom bol transformovaný kmeň kvasiniek Saccharomyces cerevisiae AH22. Táto transformácia kvasiniek pôsobením linearizovaného vektora podľaThe DNA sequence on tHMG (Basson et al., 1988) was amplified by standard methods by PCR from genomic DNA from Saccharomyces cerevisiae S288C (Mortimer and Johnston, 1986). The primers used were the DNA oligomers tHMG-5 'and tHMG-3' (see SEQ ID NOs 1 and 2). The DNA fragment obtained, after Klenow treatment, was inserted into the pUC19 cloning vector (YanishPerron et al., 1985) to give the pUC19-tHMG vector. After plasmid isolation and restriction of pUC19-tHMG with EcoRI and BamHI endonucleases, the fragment was inserted into the yeast expression vector pPT2b (Lang and Looman, 1995), which was also engineered with EcoRI and BamHI. The resulting plasmid pPT2b-tHMG contained an ADH1 promoter (Bennetzen and Hali, 1982) and a TRP1terminator (Tschumper and Carbon, 1980), in which a tHMG-DNA fragment was inserted. From the vector pPT2b-tHMG, a DNA fragment containing the so-called DNA fragment was isolated using EcoRV and Nru I endonucleases. a middle ADH 1-promoter containing tHMG and a TRRf-terminator. This DNA strand was inserted into the yeast vector YEp13 (Fischhoff et al., 1984), treated with SphI endonuclease and DNA polymerase. The resulting vector YEpH2 (Fig. 1) was treated with EcoRV and Λ / rul endonuclease. This resulted in a DNA fragment with the following regions: the transcriptionally active region from the tetracycline-resistant gene (Sidhu and Bollon, 1990), the middle ADH1 promoter, the tHMG and the TRP terminator (expression cassette). This DNA fragment was inserted into the YdpU vector (Berben et al., 1991) modified by SuI. The resulting vector YdpUH2 / 12 was engineered with SmaI and ligated to a DNA sequence encoding kanamycin resistance (Webster and Dickson, 1983). This resulting construct (YDpUHK3, Fig. 2) was treated with EcoRV. This construct transformed the yeast strain Saccharomyces cerevisiae AH22. This transformation of yeasts by the action of the linearized vector of

31430/H tohto príkladu vedie k chromozomálnej integrácii celého vektora v mieste génu (Genlocus) URA3. Aby bolo možné z integrovaného vektora eliminovať oblasti ktoré nepatria do expresnej kazety (pochádzajúcej zE.coli, E.co//-Ampicilínrezistentného génu, TEF-promótora a kanamycí n rezistentného génu), boli transformované kvasinky vystavené selekčnému tlaku (Selektionsdruck) pomocou FOA-selekcie (Boeke a spol., 1987), ktorú pozitívne ovplyvňovali uracil-auxotrofné kvasinky. Uracil-auxotrofný kmeň vzniknutý touto selekciou nesie označenie AH22/tH3ura8 a obsahuje tHMG1 -expresnú kazetu ako chromozomálnu integráciu v URA2-génu.31430 / H of this example results in chromosomal integration of the entire vector at the gene site (Genlocus) of URA3. In order to eliminate regions that do not belong to the expression cassette (derived from E. coli, E.co//- anmpicillin resistant gene, TEF promoter and kanamycin n resistant gene) from the integrated vector, transformed yeasts were subjected to selection pressure (Selektionsdruck) by FOA- a selection (Boeke et al., 1987) positively influenced by uracil-auxotrophic yeast. The uracil-auxotrophic strain produced by this selection is designated AH22 / tH3ura8 and contains the tHMG1-expression cassette as chromosomal integration in the URA2 gene.

Kmeň kvasiniek AH22/tH3ura8 a východiskový kmeň AH22 boli kultivované počas 48 hodín v YE pri teplote 28 °C pri 160 l/min v kultivačných bankách (Schikanekolben).The yeast strain AH22 / tH3ura8 and the starting strain AH22 were cultured for 48 hours in YE at 28 ° C at 160 l / min in culture flasks (Schikanekolben).

Podmienky pri kultivácii:Conditions for cultivation:

Násada pre predpestovanú kultúru WMVIII bola nasledujúca : zmes 20 ml WMVIII + histidín (20 pg/ml) + uracil (20 pg/ml) bola zaočkovaná 100 μΙ zmrazenej kultúry a táto zmes bola inkubovaná 2 dni pri 28 °C a 120 l/min (vratný pohyb). Touto predpestovanou kultúrou s objemom 20 ml bola zaočkovaná zmes 100 ml WMVIII + histidín (20 pg/ml) + uracil (20 pg/ml). Pri hlavnej kultivácii bolo 50 ml YE (v 250 ml kultivačných bankách) zaočkované 1 x 109 buniek. Tieto banky boli inkubované pri 160 l/min na kruhovej trepačke pri 28 °C počas 48 hodín. Potom bola stanovená HMG-CoA-reduktázová aktivita (postup Quareshi a spol., 1981) a boli získané nasledujúce hodnoty:The pre-cultured WMVIII culture was as follows: a mixture of 20 ml WMVIII + histidine (20 pg / ml) + uracil (20 pg / ml) was inoculated with 100 μΙ of frozen culture and incubated for 2 days at 28 ° C and 120 l / min. (reciprocating movement). This pre-cultured 20 ml culture was seeded with a mixture of 100 ml WMVIII + histidine (20 pg / ml) + uracil (20 pg / ml). In the main culture, 50 ml YE (in 250 ml culture flasks) were seeded with 1 x 10 9 cells. These flasks were incubated at 160 L / min on a circular shaker at 28 ° C for 48 hours. HMG-CoA reductase activity was then determined (Quareshi et al., 1981) and the following values were obtained:

Tabuľka 1Table 1

špecifická HMG-CoA- reduktázová aktivita * (jedn./mg proteínu) specific HMG-CoA- reductase activity * (single / mg protein) AH22 AH22 3,99 3.99 AH22/tH3ura8 AH22 / tH3ura8 11,12 11,12

Jednotka je definovaná ako premena 1 nmol NADPH za minútuA unit is defined as a conversion of 1 nmol NADPH per minute

31430/H v jednom mililitri reakčnej zmesi. Merania boli uskutočňované s celými proteínovými izolátmi.31430 / H in one milliliter of reaction mixture. Measurements were performed with whole protein isolates.

Steroly boli vyextrahované (Parks a spol., 1985) a analyzované plynovou chromatografiou. Boli získané nasledujúce hodnoty:Sterols were extracted (Parks et al., 1985) and analyzed by gas chromatography. The following values were obtained:

Tabuľka 2Table 2

Skvalén (% hmotn.) Squalene (% by weight) Ergosterol (% hmotn.) Ergosterol (wt.%) AH22 AH22 0,01794 0.01794 1,639 1,639 AH22/tH3ura8 AH22 / tH3ura8 0,8361 .8361 1,7024 1.7024

Percentuálne údaje sú vztiahnuté na sušinu kvasiniek.The percentages are based on yeast dry matter.

Príklad 2Example 2

Expresia SAT1 v S.cerevisiae AH22Expression of SAT1 in S. cerevisiae AH22

Sekvencia pre Acyl-CoA:steroltransferázu (SAT1; Yang a spol., 1996) bola získaná postupom uvedeným skôr pomocou PCR z genomickej DNA zo Saccharomyces cerevisiae S288C. Použitými primérmi boli DNA-oligoméry SAT1- 5'a SAT1- 3' (viď sekv. ID č. 3 a 4). Získaný DNA-fragment bol klonovaný vklónovacom vektore pGEM-T (Mezei a Storts, 1994) za vzniku vektora pGEM-SAT1. Po úprave pGEM-SAT1 pôsobením EcoRI bol získaný fragment klonovaný v expresnom vektore kvasiniek pADH1001, ktorý bol rovnako upravený EcoRI. Takto vzniknutý vektor pADH-SAT1 bol upravený pôsobením endonukleázy Nru\ a naviazaný na fragment zYep 13, ktorý obsahoval LEC/2-gén.The sequence for Acyl-CoA: steroltransferase (SAT1; Yang et al., 1996) was obtained as described above by PCR from genomic DNA from Saccharomyces cerevisiae S288C. The primers used were DNA oligomers of SAT1-5 'and SAT1-3' (see SEQ ID Nos. 3 and 4). The obtained DNA fragment was cloned in the pGEM-T cloning vector (Mezei and Storts, 1994) to give the pGEM-SAT1 vector. After treatment with pGEM-SAT1 with EcoRI, the obtained fragment was cloned in the yeast expression vector pADH1001, which was also EcoRI-treated. The resulting pADH-SAT1 vector was treated with Nru I endonuclease and ligated to the zYep 13 fragment containing the LEC / 2 gene.

Tak vznikol expresný vektor kvasiniek pADL-SAT1 (obr. 3), ktorý bol vložený do kmeňa kvasiniek AH22. Takto pripravený kmeň AH2/pADL-SAT1 bol inkubovaný počas 7 dní vWMVIII (Lang a Looman, 1995) na Minimalmédiu. Podmienky kultivácie: (predpestovaná kultúra viď skôr). Hlavná kultivácia: zmes 50 ml WMVIII + histidín (20 pg/ml) + uracil (20 pg/ml) (v 250 ml kultivačných bankách) bola zaočkovaná 1 x 109 buniek. Banky boli inkubované pri 160 1/min na kruhovej trepačke pri 28 °C počas 7 dní. Vzniknuté steroly boli analyzované plynovou chromatografiou (vid’Tab. 3).This resulted in the yeast expression vector pADL-SAT1 (Fig. 3), which was inserted into the yeast strain AH22. The AH2 / pADL-SAT1 strain thus prepared was incubated for 7 days in WMVIII (Lang and Looman, 1995) for Minimalmedia. Culture conditions: (pre-cultivated culture see above). Main culture: a mixture of 50 ml WMVIII + histidine (20 µg / ml) + uracil (20 µg / ml) (in 250 ml culture flasks) was seeded with 1 x 10 9 cells. The flasks were incubated at 160 L / min on a circular shaker at 28 ° C for 7 days. The resulting sterols were analyzed by gas chromatography (see Table 3).

31430/H31430 / H

Tabuľka 3Table 3

Skvalén (% hmotn.) Squalene (% by weight) Ergosterol (% hmotn.) Ergosterol (wt.%) AH22 AH22 nemožno stanoviť cannot be determined 1,254 1,254 AH22/pADL-SAT1 AH22 / Paddles-SAT1 nemožno stanoviť cannot be determined 1,831 1,831

Percentuálne údaje sú vztiahnuté na sušinu kvasiniek.The percentages are based on yeast dry matter.

Príklad 3Example 3

Kombinovaná expresia skrátenej 3-hydroxy-3-metylglutaryl-CoA-reduktázy (tHMG) a acyl-CoA:sterol-acyltransferázy (SAT1)Combined expression of truncated 3-hydroxy-3-methylglutaryl-CoA-reductase (tHMG) and acyl-CoA: sterol-acyltransferase (SAT1)

Príklad 3.1Example 3.1

Kmeň kvasiniek AH22/tH3ura8 bol transformovaný SA Tí-expresným vektorom pADL-SAT1 za vzniku AH22/tH3ura8/pADL-SAT1. Tento kombinovaný kmeň bol kultivovaný počas 7 dní vWMVIII. Steroly boli vyextrahované (viď skôr) a analyzované plynovou chromatografiou. Boli získané nasledujúce hodnoty (viď Tab. 4).The AH22 / tH3ura8 yeast strain was transformed with the SA-expression vector pADL-SAT1 to give AH22 / tH3ura8 / pADL-SAT1. This combined strain was cultured for 7 days in WWVIII. Sterols were extracted (see above) and analyzed by gas chromatography. The following values were obtained (see Table 4).

Tabuľka 4Table 4

Skvalén (% hmotn.) Squalene (% by weight) Ergosterol (% hmotn.) Ergosterol (wt.%) AH22/tH3ura8 AH22 / tH3ura8 1,602 1,602 3,798 3,798 AH22/tH3ura/PADL-SAT1 AH22 / tH3ura / Paddles-SAT1 1,049 1,049 5,540 5,540

Percentuálne údaje sú vztiahnuté na sušinu kvasiniek.The percentages are based on yeast dry matter.

Príklad 3.2Example 3.2

Kvasinkové kultúry boli kultivované počas 7 dní v WMVIII, do kultúr však boli pridávané rôzne množstvá uracilu. Množstvo uracilu v médiu bolo nastavené na 10, 20, 40 a 100 pg/ml. Množstvo ergosterolu a skvalénu bolo maximálne pri suplementácii 20 pg/ml uracilu. Výsledky sú uvedené v obr. 4. Z výsledkov vyplýva, že výťažky ergosterolu a skvalénu v kmeni AH22/tH3ura/pADL-SAT1 bolí značne zvislé od množstva uracilu pridaného do média WMVIII.Yeast cultures were cultured for 7 days in WMVIII, but different amounts of uracil were added to the cultures. The amount of uracil in the medium was set at 10, 20, 40 and 100 pg / ml. The amount of ergosterol and squalene was maximal when supplemented with 20 pg / ml uracil. The results are shown in FIG. 4. The results show that the yields of ergosterol and squalene in the AH22 / tH3ura / pADL-SAT1 strain hurt significantly from the amount of uracil added to WMVIII medium.

31430/H31430 / H

Príklad 3.3Example 3.3

Kvasinkové kultúry boli kultivované počas 7 dní v WMVIII. Potom bolo postupom uvedeným skôr stanovené celkové množstvo sterolov. Voľné steroly boli extrahované n-hexánom z kvasiniek rozrušených pomocou sklenených perál.Yeast cultures were cultured for 7 days in WMVIII. The total amount of sterols was then determined as described above. Free sterols were extracted with n-hexane from yeast disrupted by glass beads.

Výsledky sú uvedené v Tab. 5.The results are shown in Tab. 5th

Z týchto výsledkov vyplýva, že enzým sterol-acyl-transferáza (Satí) spôsobuje vysoko efektívnu reesterifikáciu predovšetkým pri tých steroloch, ktoré nemajú 4,4-dimetylskupinu. To znamená, že tento postup by bolo možné použiť na oddeľovanie 4,4-dimetylsterolov od ich príslušných demetylovaných foriem.These results indicate that the enzyme sterol-acyl transferase (Sate) causes highly efficient re-esterification, especially for those sterols that do not have a 4,4-dimethyl group. Thus, this process could be used to separate 4,4-dimethylsterols from their respective demethylated forms.

Tabuľka 5Table 5

Percentuálny podiel voľných sterolov. Každý sterol bol stanovovaný ako voľný sterol (bez zmydelnenia) a táto hodnota bola vztiahnutá na celkové množstvo tohto sterolu V zátvorkách sú uvedené príslušné absolútne hodnoty celkového obsahu sterolov vztiahnuté na plochu/g sušiny. Lanosterol a 4,4dimetylzymosterol sú steroly obsahujúce 4,4-dimetylskupinu.Percentage of free sterols. Each sterol was determined as free sterol (no saponification) and this value was based on the total amount of sterol. The brackets show the respective absolute values of the total sterol content per area / g dry matter. Lanosterol and 4,4-dimethylzymosterol are sterols containing 4,4-dimethyl.

% voľných sterolov % free sterols Kontrola inspection AH22/tH3ura/pADL-SAT1 AH22 / tH3ura / Paddles-SAT1 Lanosterol lanosterol 54 (0,99) 54 (0.99) 59 (2,90) 59 (2.90) 4,4-dimetylzymosterol 4,4-dimethylzymosterol 58 (0,77) 58 (0.77) 84 (2,37) 84 (2.37) 4-metylzymosterol 4-metylzymosterol 7 (2,43) 7 (2.43) 10(7,62) 10 (7.62) zymosterol zymosterol 10(1,67) 10 (1.67) 11 (5,85) 11 (5.85) ergost-7-enol,ergosta-5,7-dienol ergost-7-enol, ergosta-5,7-dienol 24 (4,55) 24 (4.55) 12 (9,00) 12 (9.00)

Vysvetlenie obrázkov na výkresochExplanation of the drawings

Na obr. 1 je zobrazený plazmid YEpH2 s príslušnými miestami rozhrania.In FIG. 1 is a plasmid YEpH2 with respective interface sites.

Na obr. 2 je zobrazený plazmid YDpUHK3 s príslušnými miestami rozhrania. Na obr. 3 je zobrazený plazmid pADL-SAT1 s príslušnými miestami rozhrania.In FIG. 2 shows plasmid YDpUHK3 with respective interface sites. In FIG. 3 shows plasmid pADL-SAT1 with respective interface sites.

31430/H31430 / H

Na obr. 4 je zachytené chovanie pri kultivácii a obsahy ergosterolu a skvalénu pri rôznom dávkovaní uracilu. Na tomto obrázku znamená :In FIG. 4 shows the culture behavior and the contents of ergosterol and squalene at different dosages of uracil. In this picture it means:

OD = optická hustota, cultivation time = doba kultivácie, yeast dry weight = sušina kvasiniek, uracil supplementation = dávkovanie uracilu.OD = optical density, cultivation time = yeast dry weight, yeast dry weight, uracil supplementation = uracil dosage.

PREHĽAD SEKVENCIÍSEQUENCE OVERVIEW

(1) (1) VŠEOBECNÉ INFORMÁCIE GENERAL INFORMATION (i) (I) ŽIADATEĽ : APPLICANT: (A) (A) NÁZOV: TITLE: Schering AG Schering AG (B) (B) ULICA: STREET: Mullerstrasse 178 Mullerstrasse 178 (C) (C) MESTO: THE CITY: Berlín Berlin (E) (E) KRAJINA: COUNTRY: Nemecko Germany (F) (F) PSČ: Zip: D-13342 D-13342 (G) (G) TELEFÓN: PHONE: (030)-4681 2085 (030) -4681 2085 (H) (H) FAX: FAX: (030)-4681 2058 (030) -4681 2058 (ii) (Ii) NÁZOV VYNÁLEZU : NAME OF THE INVENTION:

POSTUP VÝROBY ERGOSTEROLU A JEHO MEDZIPRODUKTOV POMOCOU REKOMBINANTNÝCH KVASINIEK (iii) POČET SEKVENCIÍ: 4 (iv) FORMA SPRACOVATEĽNÁ NA POČÍTAČI:PROCEDURE FOR THE PRODUCTION OF ERGOSTEROL AND ITS INTERMEDIATES BY RECOMBINANT YEAST (iii) NUMBER OF SEQUENCES: 4 (iv) COMPUTER-FORMATABLE FORM:

(A) TYP MÉDIA: disketa (B) POČÍTAČ: IBM PC kompatibilný (C) OPERAČNÝ SYSTÉM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release # 1.0,(A) MEDIA TYPE: diskette (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS / MS-DOS (D) SOFTWARE: Patentin Release # 1.0,

Verzia #1.25 (EPO) (2) INFORMÁCIE PRE SEKV. ID Č.1:Version # 1.25 (EPO) (2) INFORMATION FOR SEQ. ID # 1:

31430/H (i) CHARAKTERISTIKA SEKVENCIE :31430 / H (i) SEQUENCE CHARACTERISTICS:

(A) DÍŽKA 25 báz (B) TYP: nukleová kyselina (C) USPORIADANIE REŤAZCOV (strandedness): jednoduché (D) TOPOLÓGIA: lineárna (ii) HYPOTETICKÁ SEKVENCIA (HYPOTHETICAL): nie (iii) POPIS SEKVENCIE: SEKV. IDČ.1:(A) 25 bases long (B) TYPE: nucleic acid (C) STRUCTURE (strandedness): simple (D) TOPOLOGY: linear (ii) HYPOTHETICAL SEQUENCE: no (iii) SEQUENCE DESCRIPTION: SEQ. IDČ.1:

5'- ACTATGGACCAATTGGTGAAAACTG (2) INFORMÁCIA PRE SEKV. ID Č.2:5'- ACTATGGACCAATTGGTGAAAACTG (2) INFORMATION FOR SEQ. ID 2:

(i) CHARAKTERISTIKA SEKVENCIE:(i) SEQUENCE CHARACTERISTICS:

(A) DĹŽKA 23 báz (B) TYP: nukleová kyselina (C) USPORIADANIE REŤAZCOV: jednoduché (D) TOPOLÓGIA: lineárna (ii) HYPOTETICKÁ SEKVENCIA: nie (iii) POPIS SEKVENCIE: SEKV. ID Č.2:(A) 23 base length (B) TYPE: nucleic acid (C) CHAIN ORGANIZATION: simple (D) TOPOLOGY: linear (ii) HYPOTHETICAL SEQUENCE: no (iii) SEQUENCE DESCRIPTION: SEQ. ID 2:

R'- AGTCACATGGTGCTGTTGTGCTT (2) INFORMÁCIE PRE SEKV. ID. Č.3 :R'- AGTCACATGGTGCTGTTGTGCTT (2) INFORMATION FOR SEQ. ID. No.3:

(i) CHARAKTERISTIKA SEKVENCIE :(i) SEQUENCE CHARACTERISTICS:

(A) DĹŽKA 25 báz (B) TYP: nukleová kyselina (C) USPORIADANIE REŤAZCOV: jednoduché (D) TOPOLÓGIA: lineárna (ii) HYPOTETICKÁ SEKVENCIA: nie (iii) POPIS SEKVENCIE: SEKV. ID Č.3:(A) 25 base length (B) TYPE: nucleic acid (C) CHAIN ORGANIZATION: simple (D) TOPOLOGY: linear (ii) HYPOTHETICAL SEQUENCE: no (iii) SEQUENCE DESCRIPTION: SEQ. ID 3:

5'- GAATTCAACCATGGACAAGAAGAAG (2) INFORMÁCIE PRE SEKV. ID. Č.4 :5'- GAATTCAACCATGGACAAGAAGAAG (2) INFORMATION FOR SEQ. ID. No.4:

31430/H (i) CHARAKTERISTIKA SEKVENCIE :31430 / H (i) SEQUENCE CHARACTERISTICS:

(A) DĹŽKA 24 báz (B) TYP: nukleová kyselina (C) USPORIADANIE REŤAZCOV: jednoduché (D) TOPOLÓGIA: lineárna (ii) HYPOTETICKÁ SEKVENCIA: nie (iii) POPIS SEKVENCIE: SEKV. ID Č.4:(A) 24 base length (B) TYPE: nucleic acid (C) CHAIN ORGANIZATION: simple (D) TOPOLOGY: linear (ii) HYPOTHETICAL SEQUENCE: no (iii) SEQUENCE DESCRIPTION: SEQ. ID # 4:

5'- AGAATTCCACAGAACAGTTGCAGG5'- AGAATTCCACAGAACAGTTGCAGG

Prehľad citovanej literatúryLiterature cited

Basson, M.E., Thorsness, M., Finer-Moore, J., Stroud, R.M., Rine, J. (1988) Structural and functional conservation between yeast and human 3-hydroxy-3metylgluataryl coenzyme A reductases, the rate-limiting enzýme of sterol biosynthesis. Mol, Celí. Biol. 8: 3793-3808.Basson, ME, Thorsness, M., Finer-Moore, J., Stroud, RM, Rine, J. (1988) Structural and functional conservation between yeast and human 3-hydroxy-3-methylgluataryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol, Cell. Biol. 8: 3793-3808.

Bennetzen, J. L., Halí, B. D. (1982) The primary structure of theBennetzen, J.L., Halí, B. D. (1982) The primary structure of the

Saccharomyces cerevisiae gene for alcohol dehydrogenase. J. Biol, Chem. 257: 3018-3025.Saccharomyces cerevisiae gene for alcohol dehydrogenase. J. Biol. Chem. 257: 3018-3025.

Berben, G., Dumont, J., Gilliquet, V., Bolle, P. A., Hilger, F. (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7: 475-477.Berben, G., Dumont, J., Gilliquet, V., Bolle, P. A., Hilger, F. (1991) The YDp plasmids: a uniform set of vector bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7: 475-477.

Boeke, J.D., Trueheart, J., Natsoulis, G., Fink, G. (1987) 5-Fluorootic acid as a selective agent in yeast molecular genetics. Methods in Enzymology 154:164175.Boeke, J.D., Trueheart, J., Natsoulis, G., Fink, G. (1987) 5-Fluorootic acid and a selective agent in yeast molecular genetics. Methods in Enzymology 154: 164175.

Fegueur, M., Richard, L., Charles, A. D., Karst, F. (1991) isolation ans primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Currrent Genetics 20: 365-372.Fegueur, M., Richard, L., Charles, A. D., Karst, F. (1991) isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Currrent Genetics 20: 365-372.

Fischhoff, D. A., Waterston, R. H., Olson, M. V. (1984) The yeast cloning vectorFischhoff, D.A., Waterston, R.H., Olson, M.V. (1984) The yeast cloning vector

31430/H31430 / H

YEp13 contains a tRNALeu3 gene that can mutate to an amber suppressor. Gene 27: 239-251.YEp13 contains a tRNALeu3 gene that can be mutated to an amber suppressor. Gene 27: 239-251.

Jandrositz, A., Turnowsky, F., Hôgenauer, G. (1991) The gene encoding squalen epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene 107: 155-160.Jandrositz, A., Turnowsky, F., and Hôgenauer, G. (1991) The gene encoding squalene epoxide from Saccharomyces cerevisiae: cloning and characterization. Gene 107: 155-160.

Mezei, L. M., Storts, D. R. (1994) in. PCR technology: current innovations, Griffin, H. G. and Griffin, A.M., eds. CRC Press, Boca Raton, 21.Mezei, L.M., Storts, D.R. (1994) in. PCR technology: current innovations, Griffin, H.G. and Griffin, A.M., eds. CRC Press, Boca Raton 21.

Mortimer, R. K., Johnston, J. R. (1986) Genealogy of principál strains of the yeast genetic stock center. Genetics 113: 35-43.Mortimer, R.K., Johnston, J.R. (1986) Genealogy of Principal Strains of the Yeast Genetic Stock Center. Genetics 113: 35-43.

Lang C., Looman A.C. (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccaromyces cerevisiae. Appl. Microbiol. Biotechnol. 44: 147-156.Lang C., Looman A.C. (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccaromyces cerevisiae. Appl. Microbiol. Biotechnol. 44: 147-156.

Parks LW, Bottema CDK, Rodriguez RJ, Lewis TA (1985) Yeast sterols: yeast mutants as tools for the study of sterol metabolism. Meth. Enzymol. 111: 333346.Parks LW, Bottema CDK, RJ Rodriguez, Lewis TA (1985) Yeast sterols: yeast mutants as tools for the study of sterol metabolism. Meth. Enzymol. 111: 333346.

Qureshi, N., Nimmannit, S., Porter, J. W. (1981)Qureshi, N., Nimmannit, S., Porter, J.W. (1981)

3-Hydroxy-3-methylgluraryl-CoA reductase from Yeast, Meth. Enzymol. 71: 455-461.3-Hydroxy-3-methylgluraryl-CoA reductase from Yeast, Meth. Enzymol. 71: 455-461.

Ruohonen, L., Aalto, M. K., Keranen, S. (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. Journal of Biotechnology 39: 193-203.Ruohonen, L., Aalto, M.K., Keranen, S. (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. Journal of Biotechnology 39: 193-203.

Siduh, R. S., Bollon, A. P. (1990) Bacterial plasmid pBR322 sequences serve as upstream activating sequences in Saccharomyces cerevisiae. Yeast 6: 221229.Siduh, R. S., Bollon, A. P. (1990) The bacterial plasmid pBR322 sequences serve as upstream activating sequences in Saccharomyces cerevisiae. Yeast 6: 221229.

31430/H31430 / H

Tschumper, G., Carbon, J. (1980) Sequence of a yeast DNA fragment containing a chromosomal replicator and theTRPI gene. Gene 10:157-166.Tschumper, G., Carbon, J. (1980) Sequence of a DNA fragment containing a chromosomal replicator and the TRPI gene. Gene 10: 157-166.

Webster, T. D., Dickson, R. C. (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene 26: 243-252.Webster, T. D., Dickson, R. C. (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene 26: 243-252.

Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T. M., Rothstein, R., Sturley, S. L. (1996) Sterol esterification in yeast: a two-gene process. Science 272:1353-1356.Yang, H., Bard, M., Bruner, DA, Gleeson, A., Deckelbaum, RJ, Aljinovic, G., Pohl, TM, Rothstein, R., Sturley, SL (1996) Sterol esterification in yeast: a two -gene process. Science 272: 1353-1356.

Yanisch-Perron, C., Vieira, J., Messing, J. Gene 33 (1985) 103-119.Yanisch-Perron, C., Vieira, J., Messing, J. Gene. 33 (1985) 103-119.

Yu, C., Rothblatt, J. A. Cloning and characterisation of the Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase (1996), The Journal of Biological Chemistry, 271: 24157-24163.Yu, C., Rothblatt, J.A. Cloning and characterization of Saccharomyces cerevisiae acyl-CoA: sterol acyltransferase (1996), The Journal of Biological Chemistry, 271: 24157-24163.

31430/H31430 / H

-2&>o náhradná strana-2 &> o spare page

Claims (24)

1. Spôsob výroby ergosterolu a jeho medziproduktov, vyznačujúci sa tým, žeProcess for the production of ergosterol and its intermediates, characterized in that: a) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladá niekoľko génov vhodných na látkovú premenu ergosterolu alebo(a) the construction of a plasmid into which several genes suitable for the metabolism of ergosterol is inserted, or b) sa najskôr uskutoční konštrukcia plazmidu, do ktorého sa vkladá vždy jeden z génov vhodných na látkovú premenu ergosterolu,(b) a plasmid is constructed first, in which one of the genes suitable for the metabolism of ergosterol is inserted, d) takto pripraveným plazmidom sa transformujú mikroorganizmy, pričom sa tieto mikroorganizmy transformujú jedným plazmidom podľa a) alebo niekoľkými plazmidmi podľa b) súčasne alebo postupne.d) transforming the microorganisms with the plasmid thus produced, wherein the microorganisms are transformed with one or more plasmids according to a) or several plasmids simultaneously or sequentially. d) s takto pripravenými mikroorganizmami sa uskutoční fermentácia na ergosterol,d) fermentation to ergosterol is carried out with the microorganisms thus prepared, e) po uskutočnenej fermentácii sa ergosterol a jeho medziprodukty z buniek extrahujú a analyzujú a nakoniec(e) after fermentation, ergosterol and its intermediates are extracted and analyzed from the cells and finally f) takto získaný ergosterol a jeho medziprodukty sa čistia a izolujú pomocou stĺpcovej chromatografie.(f) the ergosterol thus obtained and its intermediates are purified and isolated by column chromatography. 2. Spôsob podľa nároku 1, vyznačujúci sa tým, že a-i) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:Method according to claim 1, characterized in that a-i) is first carried out the construction of a plasmid into which the following genes are inserted: i) gén HMG-CoA-reduktázy (t-HMG), ii) gén skvalénsyntetázy (ERG9), iii) gén acyl-CoA:sterol-acyltransferázy (SAT1) a iv) gén skvalénepoxidázy (ERG1), alebo a-ii) sa najprv uskutočni konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:(i) the HMG-CoA reductase (t-HMG) gene; (ii) the squalene synthetase (ERG9) gene; (iii) the acyl-CoA: sterol acyltransferase (SAT1) gene; and (iv) the squalene epoxidase (ERG1) gene; first construct the plasmid into which the following genes are inserted: i) gén HMG-CoA-reduktázy (t-HMG), ai) the HMG-CoA reductase (t-HMG) gene; and 31430/H náhradná strana ii) gén skvalénsyntetázy (ERG9), alebo a-iii) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:31430 / H replacement page ii) the squalene synthetase (ERG9) gene, or a-iii) first construct the plasmid into which the following genes are inserted: i) gén HMG-CoA-reduktázy (t-HMG) a(i) HMG-CoA reductase (t-HMG) gene; and iii) gén acyl-CoA:sterol-acyltransferázy (SAT1), alebo a-iv) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:(iii) the acyl-CoA: sterol-acyltransferase (SAT1) gene; or (a-iv), a plasmid construct is inserted first into which the following genes are inserted: i) gén HMG-CoA-reduktázy (t-HMG) a iv) gén skvalénepoxidázy (ERG1), alebo a-v) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:(i) the HMG-CoA reductase (t-HMG) gene; and (iv) the squalene epoxidase (ERG1) gene; or (a-v), the construction of a plasmid into which the following genes are inserted is carried out: ii) gén skvalénsyntetázy (ERG9) a iii) gén acyl-CoA:sterol-acyltransferázy (SAT1) alebo a-vi) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:(ii) the squalene synthetase (ERG9) gene; and (iii) the acyl-CoA: sterol-acyltransferase (SAT1) gene; or (a-vi), a plasmid is constructed first, into which the following genes are inserted: ii) gén skvalénsyntetázy (ERG9) a iv) gén skvalénepoxidázy (ERG1), alebo a-vii) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladajú nasledujúce gény:(ii) the squalene synthetase (ERG9) gene; and (iv) the squalene epoxidase (ERG1) gene; or (a-vii), a plasmid construct is inserted into which the following genes are inserted: iii) gén acyl-CoA:sterol-acyltransferázy (SAT1) a iv) gén skvalénepoxidázy (ERG1),(iii) the acyl-CoA gene: sterol acyltransferase (SAT1); and (iv) the squalene epoxidase (ERG1) gene; 31430/H náhradná strana alebo31430 / H replacement side or b) sa najprv uskutoční konštrukcia plazmidu, do ktorého sa vkladá vždy jeden z génov uvedených pod a-i, a(b) a plasmid is constructed first, in which one of the genes listed under a-i is inserted, and c) pomocou takto pripravených plazmidov sa transformujú mikroorganizmy, pričom tieto mikroorganizmy sa transformujú jedným plazmidom uvedeným pod a-ί) až a-vii) alebo niekoľkými plazmidmi uvedenými pod b) súčasne alebo postupne,(c) transforming microorganisms with the plasmids thus prepared, the microorganisms being transformed by one or more of the plasmids listed under (a) to (a) (v) or several plasmids listed under (b) simultaneously or sequentially; d) s takto získanými mikroorganizmami sa uskutoční fermentácia na ergosterol,(d) fermentation to ergosterol is carried out with the micro-organisms thus obtained, e) po uskutočnenej fermentácii sa ergosterol a jeho medziprodukty vyextrahujú z buniek a analyzujú a nakoniec(e) after fermentation, ergosterol and its intermediates are extracted from the cells and analyzed and finally f) takto získaný ergosterol a jeho medziprodukty sa čistia a izolujú pomocou stĺpcovej chromatografie.(f) the ergosterol thus obtained and its intermediates are purified and isolated by column chromatography. 3. Spôsob podľa nároku 2, vyznačujúci sa tým, že sa do plazmidu pod a-ii), a-iii) a a-v) naviac vkladá gén skvalénepoxidázy (ERG1) a do plazmidu aii) sa vkladá naviac gén acyl-CoA: sterol-acyl-transferázy.Method according to claim 2, characterized in that the squalene epoxidase (ERG1) gene is additionally inserted in the plasmid under a-ii), a-iii) and av) and in addition the acyl-CoA gene: sterol- acyl-transferase. 4. Spôsob výroby ergosterolu a jeho medziproduktov, vyznačujúci sa tým, že gény s plazmidmi, uvedené v nároku 1 pod a), v nároku 2 pod a-i) až avii) a v nároku 3 pod a-ii), a-iii) a a-v), sa najprv nezávisle na sebe zavedú do mikroorganizmov rovnakého druhu a spolu s nimi sa uskutoční fermentácia na ergosterol a takto získaný ergosterol sa z buniek extrahuje, analyzuje, čistí a izoluje pomocou stĺpcovej chromatografie.A process for the production of ergosterol and its intermediates, characterized in that the plasmid genes mentioned in claim 1 under a), in claim 2 under ai) to avii) and in claim 3 under a-ii), a-iii) and av ), are first introduced independently into microorganisms of the same species and fermented to ergosterol, and the ergosterol thus obtained is extracted, analyzed, purified and isolated by column chromatography. 5. Spôsob podľa nárokov 1 až 4, vyznačujúci sa tým, že medziprodukty sú skvalén, farnezol, geraniol, lanosterol, zymosterol, 4,4-dimetylzymosterol, 4-metylzymosterol, ergost-7-enol a ergosta-5,7-dienol.Process according to claims 1 to 4, characterized in that the intermediates are squalene, farnesol, geraniol, lanosterol, zymosterol, 4,4-dimethylzymosterol, 4-methylzymosterol, ergost-7-enol and ergosta-5,7-dienol. 6. Spôsob podľa nárokov 1 až 4, vyznačujúci sa tým, že medziprodukty sú steroly s 5,7-diénovou štruktúrou.Process according to claims 1 to 4, characterized in that the intermediates are sterols with a 5,7-diene structure. 7. Spôsob podľa nárokov 1 až 4, vyznačujúci sa tým, že plazmidy sú YEpH2 (obr. 1), YDpUHK3 (obr.2) a pADL-SAT1 (obr. 3).Method according to claims 1 to 4, characterized in that the plasmids are YEpH2 (Fig. 1), YDpUHK3 (Fig. 2) and pADL-SAT1 (Fig. 3). 31430/H náhradná strana31430 / H replacement page ΠΠ 8. Spôsob podľa nárokov 1 až 4, vyznačujúci sa tým, že mikroorganizmy sú kvasinky.Process according to claims 1 to 4, characterized in that the microorganisms are yeasts. 9. Spôsob podľa nároku 8, vyznačujúci sa tým, že použitým druhom súMethod according to claim 8, characterized in that the species used are S.cerevisiae.S. cerevisiae. 10. Spôsob podľa nároku 9, vyznačujúci sa tým, že použitým kmeňom je S.cerevisiae AH22.Method according to claim 9, characterized in that the strain used is S. cerevisiae AH22. 11. Kmeň kvasiniek S.cerevisiae AH22, obsahujúci jeden alebo viac génov uvedených v spôsobe pod a-i).A yeast strain of S. cerevisiae AH22, comprising one or more of the genes mentioned in method a-i). 12. Plazmid pADL-SAT1 (obr. 3), skladajúci sa z génu SAT1 a z génu LEU2zYEp13.Plasmid pADL-SAT1 (FIG. 3), consisting of the SAT1 gene and the LEU2zYEp13 gene. 13. Použitie plazmidu podľa nároku 12 na výrobu ergosterolu.Use of the plasmid according to claim 12 for the manufacture of ergosterol. 14. Použitie plazmidu podľa nároku 12 na výrobu medziproduktov pri výrobe ergosterolu, ktorými sú skvalén, farnezol, geraniol, lanosterol, zymosterol, 4,4-dimetylzymosterol, 4-metylzymosterol, ergost-7-enol, a ergosta5,7-dienol.Use of the plasmid according to claim 12 for the manufacture of intermediates in the manufacture of ergosterol which are squalene, farnesol, geraniol, lanosterol, zymosterol, 4,4-dimethylzymosterol, 4-methylzymosterol, ergost-7-enol, and ergosta5,7-dienol. 15. Použitie plazmidu podľa nároku 12 na výrobu sterolov s 5-7-diénovou štruktúrou.Use of the plasmid according to claim 12 for the production of sterols with 5-7-diene structure. 16. Expresné kazety zahrňujúce stredný ADH-promótor, t-HMG-gén a TRP-terminátor a SAT1-gén so stredným ADH-promótorom a TRPterminátorom.16. Expression cassettes comprising the middle ADH promoter, the t-HMG gene and the TRP terminator and the SAT1 gene with the middle ADH promoter and the TRPterminator. 17. Expresné kazety zahrňujúce stredný ADH-promótor, t-HMG-gén, TRP-terminátor, SAT1-gén so stredným ADH-promótorom a TRP-terminátorom a ERG9-gén so stredným ADH-promótorom a TRP-terminátorom.Expression cassettes comprising the middle ADH promoter, the t-HMG gene, the TRP terminator, the SAT1 gene with the middle ADH promoter and the TRP terminator, and the ERG9 gene with the middle ADH promoter and the TRP terminator. 18. Kombinácie expresných kaziet, pričom túto kombináciu tvoria18. Combinations of expression cassettes forming the combination a) prvá kazeta, na ktorej je lokalizovaný ADH-promótor, t-HMG-gén a TRP-terminátora) the first cassette on which the ADH promoter, the t-HMG gene and the TRP terminator are located b) druhá expresná kazeta, na ktorej je lokalizovaný ADH-promótor, SAT1-gén a TRP-terminátor ab) a second expression cassette on which the ADH promoter, the SAT1 gene and the TRP terminator is located; and c) tretia expresná kazeta, na ktorej je lokalizovaný ADH-promótor, ERG9-gén s TRP-terminátorom.c) a third expression cassette on which the ADH promoter, the ERG9 gene with the TRP terminator, is located. 19. Použitie expresných kaziet podľa nárokov 16 až 18 na transformáciuUse of expression cassettes according to claims 16 to 18 for transformation 31430/H náhradná strana mikroorganizmov, použitých na fermentáciu na ergosterol.31430 / H replacement side of microorganisms used for fermentation to ergosterol. 20. Použitie podľa nároku 19, vyznačujúce sa tým, že mikroorganizmom sú kvasinky.Use according to claim 19, characterized in that the microorganism is yeast. 21. Mikroorganizmy obsahujúce expresné kazety podľa nárokov 16 ažMicroorganisms comprising the expression cassettes according to claims 16 to 21 18.18th 22. Mikroorganizmus podľa nároku 21, vyznačujúci sa tým, že sa jedná o kvasinky.A microorganism according to claim 21, characterized in that it is a yeast. 23. Použitie mikroorganizmu podľa nároku 21 a 22 na fermentáciu na ergosterol.Use of the microorganism according to claims 21 and 22 for fermentation to ergosterol. 24. Použitie mikroorganizmu podľa nárokov 21 a 22 na fermentáciu na medziprodukty ergosterolu.Use of a microorganism according to claims 21 and 22 for fermentation to ergosterol intermediates.
SK438-2000A 1997-09-30 1998-09-28 METHOD FOR PRODUCING ERGOSTEROL AND INTERMEDIATE PRODUCTS THEREOFì (54) BY MEANS OF RECOMBINANT YEASTS SK4382000A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19744212A DE19744212B4 (en) 1997-09-30 1997-09-30 Process for the preparation of ergosterol and its intermediates by means of recombinant yeasts
PCT/EP1998/006134 WO1999016886A1 (en) 1997-09-30 1998-09-28 Method for producing ergosterol and intermediate products thereof by means of recombinant yeasts

Publications (1)

Publication Number Publication Date
SK4382000A3 true SK4382000A3 (en) 2000-09-12

Family

ID=7844809

Family Applications (1)

Application Number Title Priority Date Filing Date
SK438-2000A SK4382000A3 (en) 1997-09-30 1998-09-28 METHOD FOR PRODUCING ERGOSTEROL AND INTERMEDIATE PRODUCTS THEREOFì (54) BY MEANS OF RECOMBINANT YEASTS

Country Status (13)

Country Link
EP (1) EP1015597B1 (en)
JP (1) JP2001518301A (en)
KR (1) KR100546532B1 (en)
AT (1) ATE404674T1 (en)
AU (1) AU750768B2 (en)
CA (1) CA2305780A1 (en)
DE (2) DE19744212B4 (en)
HU (1) HUP0003751A3 (en)
IL (1) IL135059A0 (en)
NO (1) NO20001625L (en)
RU (1) RU2235777C2 (en)
SK (1) SK4382000A3 (en)
WO (1) WO1999016886A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812884B1 (en) 2000-08-08 2002-11-08 Aventis Pharma Sa MODIFIED YEASTS AND USES, ESPECIALLY FOR THE PRODUCTION OF STEROID DERIVATIVES
DE10041411A1 (en) * 2000-08-23 2002-03-14 Cytonet Gmbh & Co Kg Screening procedure to find endocytosis-promoting adjuvants
FR2820145B1 (en) 2001-01-31 2004-01-23 Aventis Pharma Sa YEAST STRAIN PRODUCING INDEPENDENT STEROIDS
DE10203346A1 (en) * 2002-01-29 2003-07-31 Basf Ag Process for the production of zymosterol and / or its biosynthetic intermediate and / or secondary products in transgenic organisms
DE10203352A1 (en) 2002-01-29 2003-07-31 Basf Ag Process for the preparation of 7-dehydrocholesterol and / or its biosynthetic intermediate and / or secondary products in transgenic organisms
DE10312314A1 (en) * 2003-03-19 2004-09-30 Basf Ag Process for the production of Ergosta-5,7-dienol and / or its biosynthetic intermediate and / or secondary products in transgenic organisms
CN100336900C (en) * 2004-04-16 2007-09-12 中国科学院微生物研究所 A Strain of yeast engineering fungus for producing ergosterol and its selective breeding method and use
CA2725175A1 (en) * 2008-05-23 2009-11-26 Cibus Oils, Llc Production of squalene using yeast
EP2369003B1 (en) * 2008-08-28 2019-10-16 Novartis AG Process for preparing an oil-in-water emulsion containing squalene from yeasts
EP2292741A1 (en) * 2009-08-26 2011-03-09 OrganoBalance GmbH Genetically modified organisms for the production of lipids
KR101944841B1 (en) * 2011-02-28 2019-02-01 노보자임스 에이/에스 A yeast cell for the production of terpenes and uses thereof
KR102014851B1 (en) 2017-12-28 2019-08-27 중앙대학교 산학협력단 Recombinant yeast strains expressing the mutated squalene monoxygenase with reduced feedback regulation and method for overproducing sterol precursors using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622208B1 (en) * 1987-10-22 1991-02-15 Pernod Ricard PROCESS FOR OBTAINING TERPENIC FLAVORS BY A MICROBIOLOGICAL PROCESS
US5460949A (en) * 1990-11-15 1995-10-24 Amoco Corporation Method and composition for increasing the accumulation of squalene and specific sterols in yeast
US5512472A (en) * 1993-08-16 1996-04-30 American Cyanamid Company DNA sequence encoding sterol Δ14 reductase

Also Published As

Publication number Publication date
AU1147499A (en) 1999-04-23
IL135059A0 (en) 2001-05-20
ATE404674T1 (en) 2008-08-15
DE59814268D1 (en) 2008-09-25
DE19744212B4 (en) 2006-01-19
WO1999016886A1 (en) 1999-04-08
AU750768B2 (en) 2002-07-25
KR100546532B1 (en) 2006-01-26
DE19744212A1 (en) 1999-04-15
JP2001518301A (en) 2001-10-16
HUP0003751A2 (en) 2001-02-28
RU2235777C2 (en) 2004-09-10
EP1015597A1 (en) 2000-07-05
NO20001625D0 (en) 2000-03-29
CA2305780A1 (en) 1999-04-08
EP1015597B1 (en) 2008-08-13
KR20010081898A (en) 2001-08-29
NO20001625L (en) 2000-03-29
HUP0003751A3 (en) 2003-03-28

Similar Documents

Publication Publication Date Title
EP2586859B1 (en) Genetically modified organisms for the production of lipids
Nissen et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis
US10385375B2 (en) Preparation of 7-dehydrocholesterol and/or the biosynthetic intermediates and/or secondary products thereof in transgenic organisms
JP3283551B2 (en) Methods and compositions for increasing squalene and specific sterol accumulation in yeast
Thireos et al. 5'untranslated sequences are required for the translational control of a yeast regulatory gene.
FI108300B (en) Genetic engineering method and host for the production of xylitol
SK4382000A3 (en) METHOD FOR PRODUCING ERGOSTEROL AND INTERMEDIATE PRODUCTS THEREOFì (54) BY MEANS OF RECOMBINANT YEASTS
Monschau et al. Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii
JP2010104378A (en) Improved production of isoprenoids
US20240102030A1 (en) Inducible Production-Phase Promoters for Coordinated Heterologous Expression in Yeast
US20040235088A1 (en) Process for the production of ergosterol and its intermediate products using recombinant yeasts
US20060088903A1 (en) Method for the production of zymosterol and/or the biosynthetic intermediate and/or subsequent products thereof in transgenic organisms
DE102008004253B4 (en) Increased production of acetyl coenzyme A
US7556937B2 (en) Method for producing ergosta-5,7-dienol and/or biosynthetic intermediate and/or secondary products thereof in transgenic organisms
EP1231266B1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
CZ20001165A3 (en) Process for preparing ergosterol and intermediates thereof by making use of recombinant yeast
WO2003027280A1 (en) Gene overexpression system
KR102207288B1 (en) Expression vectors for optimal expression of mutated Upc2p and method for overproducing sterol precursors using the same
CA3149245A1 (en) Production of gpp and cbga in a methylotrophic yeast strain
HK40037127A (en) Nepetalactol oxidoreductases, nepetalactol synthases, and microbes capable of producing nepetalactone