SK212591A3 - Calorimetric catcher for measuring of heat consumption of heating body - Google Patents
Calorimetric catcher for measuring of heat consumption of heating body Download PDFInfo
- Publication number
- SK212591A3 SK212591A3 SK212591A SK212591A SK212591A3 SK 212591 A3 SK212591 A3 SK 212591A3 SK 212591 A SK212591 A SK 212591A SK 212591 A SK212591 A SK 212591A SK 212591 A3 SK212591 A3 SK 212591A3
- Authority
- SK
- Slovakia
- Prior art keywords
- calorimetric
- measuring
- heat
- sensor
- changes
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
- G01K17/08—Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
- G01K17/20—Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
Vynález sa týka kalorimetrického snímača spotreby tepelnej energie v bytoch a miestnostiach s diaíkovým teplovodným vykurovaním, u ktorého sa rieši princíp merania nedeštruktívnou metódou bez merania prietoku teplonosného média·The invention relates to a calorimetric sensor of thermal energy consumption in apartments and rooms with remote hot water heating, in which the principle of measurement by a non-destructive method is solved without measuring the flow rate of the heat transfer medium.
V súčasnosti používané meradlá spotreby tepelnej energie môžme rozdeliť do dvoch skupín· Meradlá pracujúce na princípe snímania prietoku teplonosného média a rozdielu teplôt na vstupe a výstupe do meraného objektu. Tieto meradlá nie sú vhodné na montáž do bytov pretože ich inštalácia si vyžaduje deštruktívny mechanický zásah do vykurovacieho systému pričom by muselo byť použitých tóíko snímačov prietoku a teplôt, koíko je v byte vykurovacích telies Čo je cenovo neúnosné. V druhej skupine sú meradlá, ktoré snímajú teplotu v miestnosti, alebo rozdiel teplôt povrchu vyhrievacieho telesa a vzduchu vo vykurovanej miestnosti. Tieto meradlá sú cenovo dostupné i pri väčšom počte snímačov avšak ich chyba merania je velmi vysoká nakoíko nezohíadňujú zmeny súoiniteía postupu tepla zmenou konvekcie. Chyby takýchto meraní dosahujú až 100 % meranej hodnoty.The currently used heat consumption meters can be divided into two groups. • Measuring instruments working on the principle of sensing the flow of heat transfer medium and the difference in temperatures at the inlet and outlet to the measured object. These meters are not suitable for installation in homes because their installation requires destructive mechanical intervention in the heating system and would have to use as many flow and temperature sensors as there are in the apartment radiators. In the second group there are gauges that sense the room temperature or the difference between the surface temperature of the heater and the air in the heated room. These gauges are affordable even with a larger number of sensors, but their measurement error is very high since they do not take into account the changes in heat transfer coefficients by changing convection. The errors of such measurements reach up to 100% of the measured value.
Vyššie uvedené nedostatky sa odstraňujú kalorimetrickým snímačom pre meranie spotreby tepla vykurovacíoh telies podía vynálezu, podstatou ktorého je meranie okamžitej hodnoty súČiniteía paoesstupu fôpla podía podmienok konvekcia v reálnom čase kovovým kalorimetrom a následne dosadenie zmeranej hodnoty do fyzikálnych vzťahov pre konečný výpočet spotreby tepla. Na kovovom kalorimetrickom teliesku s definovaným prierezom a súčiniteíom teplotnej vodivosti sú dve meracie miesta teploty o známenj vzdialenosti. Na vstupe tepelného toku je teplovodivý prstenec a na výstupe chladič so známou chladiacou plochou. Celý merací systém okrem chladiča je tepelne voči okoliu izolovaný. Na kryte tepelnej izolácie je umiestnený teplotný snímač pre snímanie teploty vzduchu omývajúceho chladič kalorimetra.The above-mentioned shortcomings are overcome by a calorimetric sensor for measuring the heat consumption of the heating elements according to the invention, which consists in measuring the instantaneous value of the coefficient of the flap according to the convection conditions in real time with a metal calorimeter. On a metal calorimetric body with a defined cross-section and a thermal conductivity coefficient, there are two temperature measuring points of known distance. At the inlet of the heat flux there is a heat conducting ring and at the outlet a cooler with a known cooling surface. The entire measuring system except the radiator is thermally insulated from the environment. A thermal sensor for sensing the temperature of the air washing the calorimeter cooler is located on the thermal insulation cover.
Toto riešenie umožní pri konečnom výpočte spotreby tepla zohíadniť okamžite zmeny podmienok konvekcie a tým i súčiniteía prestupu tepla, zmeny vlhkosti a zmeny hmotnosti ohrievaného vzduchu, dosiahne sa zrovnateíná presnosť s metodikami využívajúcimi meranie prietoku a zachovávajú sa výhody nedeštruktívneho merania.This solution will allow for instantaneous account of changes in convection conditions and hence heat transfer coefficient, humidity change and heated air mass when calculating heat consumption, achieving comparable accuracy with flow measurement methodologies and retaining the benefits of non-destructive measurement.
- 2 Na priloženom výkrese je znázornený princíp činnosti tohto snímača, kde na obr· 1 je znázornený snímač v reze nárysu.The attached drawing shows the principle of operation of this sensor, where in FIG. 1 the sensor is in sectional front view.
Snímač pozostáva z kovového kalorimetrického telieska 1 s definovaným prierezom a súčiniteíom teplotnej vodivosti na ktorom sú v meracích otvoroch umiestnené teplotné snímače 2 a j. Na strane vstupu tepelného toku do kciorimetriokého telieska 1 je umiestnený teplovodivý prstenec 8 a na strane výstupu tepelného toku chladič 5. Snímacia časť tepelného toku kalorimetrického telieska 2 s teplovodivým prstencom 8 je od okolia izolovaná tepelnou izoláciou 6 s krytom 7. Na kryte 7 je umiestnený teplotný snímač £ merania teploty vzduchu. Teplotné snímače 2, 4 sú meracími trasami g spojené s vyhodnooovacím zariadením 10, pre matematické spracovanie meraných veličín.The sensor consists of a metal calorimetric body 1 with a defined cross-section and a temperature conductivity coefficient on which temperature sensors 2 and j are located in the measuring holes. The heat conducting ring 8 is located on the heat flux inlet side 1 and the heat sink 5 on the heat flux outlet side. The sensing part of the heat flux calorimetric body 2 with the heat conducting ring 8 is insulated from the surrounding by thermal insulation 6 with a cover 7. temperature sensor 6 for measuring the air temperature. The temperature sensors 2, 4 are connected to the evaluation device 10 for measuring mathematically the measured quantities by measuring paths g.
Kalorimetrický snímač je pripevnený k vyhrievacej ploche výhrevného telesa tak, že vstupná Časť kalorimetrického telieska 2 8 teplovodivým prstencom 8 je teplovodivo spojená s povrchom vyhrievacieho telesa. Veíkosť tepelného toku snímajú dva teplotné snímače 2 a 2 určeného z rozdielu nameraných teplôt známeho prierezu kalorimetrického telieska 2 známeho súčiniteía tepelnej vodivosti a známej vzdialenosti teplotných snímačov. Tepelný tok je cíalej vedený do chladiča 5, ktorý privedenú tepelnú energiu odovzdáva vykurovanému vzduchu v tých istých podmienkach konvekcie, v akých odovzdáva tepelnú energiu vykurovanému vzduchu celé vyhrievacie teleso. Z rozdielu teplôt snímača 2 a snímača 4 20 známej plochy chladiča a známeho množstva odvedeného tepla je určený súčiniteí prestupu tepla v reálnom čase pre dané podmienky konvekcie. Výsledný tepelný výkon vyhrievacieho telesa je určený zo známej výhrevnej plochy vykurovacieho telesa, nameraného súčiniteía prestupu tepla a rozdielu teplôt snímačov 2 a 4 v reálnom čase. Na výsledné množstvo tepla, dodaného vyhrievacím telesom meraného kalorimetrickým snímačom piati vzťah /1/.The calorimetric sensor is attached to the heating surface of the heater so that the inlet portion of the calorimetric body 28 by the heat conducting ring 8 is heat-conductingly connected to the surface of the heater. The heat flux size is sensed by two temperature sensors 2 and 2 determined from the difference in the measured temperatures of the known cross-section of the calorimetric body 2 of the known thermal conductivity coefficient and the known distance of the temperature sensors. The heat flux is further directed to the cooler 5, which transfers the supplied thermal energy to the heated air under the same convection conditions in which it transfers the thermal energy to the heated air throughout the heating element. From the difference between the temperatures of the sensor 2 and the sensor 4 20 of the known radiator surface and the known amount of heat dissipated, the real-time heat transfer coefficient for a given convection condition is determined. The resulting heat output of the heater is determined from the known heating surface of the heater, the measured heat transfer coefficient and the temperature difference of the sensors 2 and 4 in real time. The resultant amount of heat delivered by the heater as measured by the calorimetric sensor of the fifth relationship (1).
vzťah /1/relationship / 1 /
pričom t - súčiniteí teplotnej vodivosti materiálu kalorimetrického telieska 2where t - the thermal conductivity of the calorimetric body material 2
- plocha prierezu kalorimetrického telieska 1cross - sectional area of the calorimetric element
- 3 · teplota zo snímača 2 tj - teplota zo snímača 2- temperature from sensor 2 ie - temperature from sensor 2
Sj * výhrevná plocha vykurovacieho telesa t^ - teplota zo snímača 4 · vzdialenosť snímačov 2 a 2Sj * heating surface of the heating element t ^ - temperature from sensor 4 · distance of sensors 2 and 2
Sg *· plocha chladiča ·» časSg * · radiator area · »time
Kalorimetrický snímač pre meranie spotreby tepla vykurova cích telies je možné použiť pre všetky druhy meraní v bytoch, podnikových priestoroch i v priemysle kde sa vyžaduje nedeštruk tívny spôsob merania spotreby tepla.The calorimetric sensor for measuring the heat consumption of heating elements can be used for all types of measurements in flats, business premises and industry where a non-destructive way of measuring heat consumption is required.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS912125A CZ212591A3 (en) | 1991-07-10 | 1991-07-10 | calorimetric transducer for measuring consumption of heat of heating elements |
Publications (1)
Publication Number | Publication Date |
---|---|
SK212591A3 true SK212591A3 (en) | 1994-05-11 |
Family
ID=5357463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK212591A SK212591A3 (en) | 1991-07-10 | 1991-07-10 | Calorimetric catcher for measuring of heat consumption of heating body |
Country Status (3)
Country | Link |
---|---|
CZ (2) | CZ2473U1 (en) |
SK (1) | SK212591A3 (en) |
WO (1) | WO1993001478A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI96066C (en) * | 1994-03-24 | 1996-04-25 | Polar Electro Oy | Method and apparatus for determining the internal temperature and coefficient of heat conduction in a structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3367182A (en) * | 1965-06-02 | 1968-02-06 | Nasa Usa | Heat flux measuring system |
US3724267A (en) * | 1970-08-28 | 1973-04-03 | Foster Wheeler Corp | Heat flux sensing device |
LU65494A1 (en) * | 1972-06-09 | 1973-07-06 | ||
IT1135937B (en) * | 1980-12-18 | 1986-08-27 | Koma Spa | DIFFERENTIAL ENVIRONMENT TEMPERATURE DETECTION DEVICE TO INTEGRATE THE THERMAL LEAKAGE VALUES OR HEAT AMOUNTS IN MEASUREMENTS TO COUNT THE HEAT CONSUMPTION IN THE INDIVIDUAL USES OF A BUILDING WITH CENTRALIZED AIR CONDITIONING |
YU42759B (en) * | 1982-03-18 | 1988-12-31 | Ljubljana Avtomontaza | Heat power gauge |
-
1991
- 1991-07-10 CZ CZ19942691U patent/CZ2473U1/en unknown
- 1991-07-10 SK SK212591A patent/SK212591A3/en unknown
- 1991-07-10 CZ CS912125A patent/CZ212591A3/en unknown
-
1992
- 1992-07-09 WO PCT/CS1992/000019 patent/WO1993001478A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CZ2473U1 (en) | 1994-10-13 |
WO1993001478A2 (en) | 1993-01-21 |
CZ212591A3 (en) | 1993-01-13 |
WO1993001478A3 (en) | 1993-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4538925A (en) | Thermal power measuring device | |
US4339949A (en) | Process and apparatus for the thermal measurement of mass flow | |
Lundström et al. | Radiation influence on indoor air temperature sensors: Experimental evaluation of measurement errors and improvement methods | |
EP0771411A1 (en) | Heat metering | |
JPS6126809A (en) | Method and instrument for detecting state of sticking body in fluid pipe | |
SK212591A3 (en) | Calorimetric catcher for measuring of heat consumption of heating body | |
US5582628A (en) | Unit and system for sensing fluid velocity | |
CZ5066U1 (en) | Calorimetric sensor of thermal energy consumption | |
RU2631007C1 (en) | Heat meter based on overhead sensors | |
EP0019480B1 (en) | Method and apparatus for measuring the temperature of hot gases | |
JPS6126829A (en) | Measuring device for temperature in piping | |
McInnes | Temperature measurement | |
SK33692A3 (en) | Calorimetric heat meter | |
SU402759A1 (en) | DEVICE FOR TEMPERATURE MEASUREMENT | |
SK104095A3 (en) | Device for flowless measuring of the thermal amount | |
RU2287789C1 (en) | Heat energy by-flat cost keeping method | |
Berglund | Radiation Measurement for Thermal Comfort Assessment in the Built Environment | |
Ruer | Basics of Air-Flow Calorimetry | |
GB2046440A (en) | Hot gas engine heater head with a temperaturesensing device | |
RU2196308C2 (en) | Procedure of local control and metering of heat consumption | |
CZ283391A3 (en) | method of measuring consumption of heat and apparatus for making the same | |
Mitchell | Applications of Remote Infrared Temperature Measurements tor Environmental Control Systems | |
RU95119496A (en) | METHOD FOR DETERMINING SMALL COSTS AND SENSOR FOR MEASURING SMALL COSTS | |
CZ278581B6 (en) | Construction of a heat relative consumption thermometer | |
CN201034751Y (en) | A heat distribution metering device |