SK19132000A3 - Catalyst for steam cracking reactions - Google Patents
Catalyst for steam cracking reactions Download PDFInfo
- Publication number
- SK19132000A3 SK19132000A3 SK1913-2000A SK19132000A SK19132000A3 SK 19132000 A3 SK19132000 A3 SK 19132000A3 SK 19132000 A SK19132000 A SK 19132000A SK 19132000 A3 SK19132000 A3 SK 19132000A3
- Authority
- SK
- Slovakia
- Prior art keywords
- vanadium
- catalyst
- molybdenum
- calcium
- catalyst according
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 40
- 238000004230 steam cracking Methods 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011575 calcium Substances 0.000 claims abstract description 11
- 239000011733 molybdenum Substances 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims abstract description 8
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims abstract description 7
- -1 calcium aluminates Chemical class 0.000 claims abstract description 6
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 17
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 150000001336 alkenes Chemical class 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 150000001261 hydroxy acids Chemical class 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims description 6
- 239000003502 gasoline Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 150000003681 vanadium Chemical class 0.000 claims description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- ULGYAEQHFNJYML-UHFFFAOYSA-N [AlH3].[Ca] Chemical class [AlH3].[Ca] ULGYAEQHFNJYML-UHFFFAOYSA-N 0.000 claims description 3
- 150000004645 aluminates Chemical class 0.000 claims description 3
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 claims description 3
- 239000001639 calcium acetate Substances 0.000 claims description 3
- 235000011092 calcium acetate Nutrition 0.000 claims description 3
- 229960005147 calcium acetate Drugs 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- MFWFDRBPQDXFRC-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;vanadium Chemical group [V].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MFWFDRBPQDXFRC-LNTINUHCSA-N 0.000 claims description 2
- 230000000536 complexating effect Effects 0.000 claims description 2
- 230000008030 elimination Effects 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 239000003350 kerosene Substances 0.000 claims description 2
- 150000002751 molybdenum Chemical class 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 abstract description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 18
- 239000005977 Ethylene Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 14
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 14
- 239000010457 zeolite Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000000571 coke Substances 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910016523 CuKa Inorganic materials 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000013844 butane Nutrition 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- RGKMZNDDOBAZGW-UHFFFAOYSA-N aluminum calcium Chemical compound [Al].[Ca] RGKMZNDDOBAZGW-UHFFFAOYSA-N 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
Oblasť technikyTechnical field
Vynález sa týka katalyzátora pre parné krakovacie reakcie.The present invention relates to a catalyst for steam cracking reactions.
Doterajší stav technikyBACKGROUND OF THE INVENTION
Ľahké olefíny, predovšetkým etylén a propylén, patria medzi najdôležitejšie chemické produkty petrochemického priemyslu. Etylén je z hľadiska objemu výroby s viiac ako 75 mil. ton ročne štvrtý na svete a propylén je 13. v poradí. Priemyselná dôležitosť etylénu je rovnako zrejmá z rozsahu produktov vyrobených z tohto materiálu. Približne 80 % celkovej produkcie etylénu je určených pre syntézy termoplastických polymérov. Samotný etylén je monomérom pre výrobu polyetylénu a je surovým materiálom pre ďalšie dôležité monoméry, akými sú napríklad vinylchlorid, vinylacetát a etylénglykol. Niektoré z týchto zlúčenín majú takisto nepolymérne využitie, napríklad etylénglykol je hlavnou zložkou nemrznúcej tekutiny. Vzhľadom k priemyselnej dôležitosti etylénu a propylénu, ktoré je potrebné vyrábať vo veľkých objemoch, je možné predpokladať, že zlepšenie výrobných procesov, ktoré by dokonca určitým spôsobom, zvyšovali výťažok ľahkých olefínov, by mohlo priniesť značné výhody z ekonomického hľadiska.Light olefins, especially ethylene and propylene, are among the most important chemical products of the petrochemical industry. Ethylene is more than 75 million euro in terms of production volume. tons per year fourth in the world and propylene is 13th in a row. The industrial importance of ethylene is also evident from the range of products made from this material. About 80% of the total ethylene production is for the synthesis of thermoplastic polymers. Ethylene alone is a monomer for the production of polyethylene and is a raw material for other important monomers such as vinyl chloride, vinyl acetate and ethylene glycol. Some of these compounds also have non-polymeric uses, for example ethylene glycol is a major component of antifreeze. Given the industrial importance of ethylene and propylene, which need to be produced in large volumes, it can be assumed that improving production processes that even in some way would increase the yield of light olefins could bring significant economic benefits.
Hlavným zdrojom etylénu a propylénu je parné krakovanie, čo je tepelný proces odvodený od tepelného iThe main source of ethylene and propylene is steam cracking, which is a thermal process derived from
e e krakovania, pri ktorom sa zavádzaný uhľovodík ohrieva v prítomnosti vodnej pary v špeciálnych peciach za vzniku plynného prúdu bohatého na olefíny. Už mnoho rokov sa uskutočňujú pokusy, ktoré sa snažia zlepšiť tento výrobný spôsob, ktoré sa zameriavajú na pecnú technológiu a súčasne sa uskutočňujú pokusy, ktoré sa snažia zlepšiť tepelnú výmenu, znížiť reziduálnu dobu a optimalizovať geometriu pyrolytických rúrok.e. a cracking process in which the hydrocarbon feedstock is heated in the presence of water vapor in special furnaces to produce an olefin rich gas stream. For many years, attempts have been made to improve this manufacturing process, which focuses on furnace technology, while attempts have been made to improve heat exchange, reduce residual time, and optimize the geometry of pyrolytic tubes.
Obmedzený výskum bol rovnako vedený menej konvenčným smerom a zameral sa na katalyzátor, ktorý by bol účinný pri parných krakovacích reakciách a zlepšoval výťažok ľahkých olefínov.Limited research was also conducted in a less conventional direction and focused on a catalyst that would be effective in steam cracking reactions and improve light olefin yields.
Avšak je potrebné spomenúť, že použitie katalyzátora pre parné krakovacie reakcie nebolo doposiaľ študované v širšom rozsahu, aj keď sa týmto výskumom zaoberajú rôzne spoločnosti a výskumné tímy už od 70. rokov. V niektorých prípadoch bol síce samotný proces definovaný, ale doposiaľ neboli zverejnené a nie sú známe žiadne priemyslové aplikácie.However, it has to be noted that the use of a catalyst for steam cracking reactions has not been studied to a wider extent, although research has been undertaken by various companies and research teams since the 1970s. In some cases, the process itself has been defined, but so far no industrial applications have been published and are not known.
V mnohých prípadoch obsahuje testovaný katalyzátor zeolitovú zložku.In many cases, the test catalyst comprises a zeolite component.
Jeden z hlavných príkladov je spojovaný so spoločnosťou Asahi Chemical, ktorá na túto tému podala rôzne patenty, viď napríklad JP-06/346062 (20/12/94); JP-06/199707 (19/07/94); JP-06/346063 (20/12/94); WO-96/1331 (09/05/96).One of the main examples is associated with Asahi Chemical, which has filed various patents on this subject, see for example JP-06/346062 (20/12/94); JP-06/199707 (19/07/94); JP-06/346063 (12/20/94); WO-96/1331 (09/05/96).
Asahi nárokuje spôsob parného krakovania v cirkulačnom lôžku, ktorý používa katalyzátor na báze zeolitov ZSM-5 a ZSM11, na ktorých sú absorbované kovy, akými sú napríklad železo, horčík a/alebo kovy Ib. skupiny, výhodne striebro. Tento spôsobAsahi claims a circulating bed steam cracking process that uses a ZSM-5 and ZSM11 zeolite catalyst on which metals such as iron, magnesium and / or metals Ib are absorbed. groups, preferably silver. This way
r. r J ttw e· e e c ♦ r r r r r r r r e r, r r c r-c r CCC r r r .?r. r J ttw e · e e c ♦ r y r y r y r y, r y r y r-y r CCC y y r?
r c c r . .·λr c c r. . · Λ
C r f r r r r· -‘r r r r Λ O čiastočne zvyšuje výťažok etylénu, ale reakcia sa zameriava najmä na výrobu propylénu a aromatických uhľovodíkov. Nedávna informácia (napríklad „Ethylene Via Catalytic Naphtha Cracking“ PERP Report 96/97S 12-Chem. Systems, september 1997) odhalila, že tento spôsob stále vykazuje vážne technologické problémy, ktoré je potrebné ešte vyriešiť pred komerčným využitím tohto procesu, pričom niektoré z týchto problémov sa týkajú katalyzátora (účinnosť regenerácie, životnosť).Crrrrrr -rrrrr0 partially increases ethylene yield, but the reaction focuses mainly on the production of propylene and aromatic hydrocarbons. Recent information (for example, "Ethylene Via Catalytic Naphtha Cracking" PERP Report 96 / 97S 12-Chem. Systems, September 1997) revealed that this method still presents serious technological problems that still need to be addressed before commercialization of the process, these problems relate to the catalyst (regeneration efficiency, durability).
Spoločnosť SINOPEC (Čína) navrhuje katalyzátor obsahujúci zeolit, predovšetkým zeolit Y a zeolity s pentasylovou štruktúrou, s vysokým obsahom kremíka, ktorý obsahuje P-Al alebo P-Mg alebo P-Ca (EP-909582). Ďalší katalytický systém na báze zeolitu bol vyvinutý Univerzitou v Gente v spolupráci so spoločnosťou Amoco. Jedná sa o katalyzátory na báze zeolitu HZSM-5 obsahujúce P-Ga, ktoré zvyšujú výťažok propylénu pri krakovaní ropy (W. De Hertog, G. F. Froment, M. P. Kaminsky, Proc. AICHE 1999 Spring National Meeting, 14 - 18. marec 1999, Houston, U.S.A.); avšak aj v tomto prípade je vplyv katalyzátora na etylén v dôsledku jeho kyslého charakteru minimálny.SINOPEC (China) proposes a catalyst containing zeolite, in particular zeolite Y and zeolites with a pentasyl structure, high in silicon, containing P-Al or P-Mg or P-Ca (EP-909582). Another zeolite-based catalyst system was developed by the University of Ghent in cooperation with Amoco. These are zeolite-based catalysts HZSM-5 containing P-Ga, which increase propylene yield in oil cracking (W. De Hertog, GF Froment, MP Kaminsky, Proc. AICHE 1999 Spring National Meeting, 14-18 March 1999, Houston , USA); however, even in this case, the effect of the catalyst on ethylene due to its acidic character is minimal.
Ďalším typom katalyzátorov študovaných v rámci parných krakovacích reakcií sú hlinitovápenaté zlúčeniny. Tieto pevné materiály na rozdiel od zeolitov zvyšujú výťažok ľahkých olefínov bez významnejšej zmeny kvantitatívnych pomerov medzi hlavnými produktmi. Týmto spôsobom sa dosahuje zvýšenie výťažku propylénu ako aj výťažku etylénu. Boli navrhnuté rôzne zmesi, v ktorých niektoré zlúčeniny vždy prevládajú napríklad CaO.Al2O3 a CaO.2 A12O3, ktoré navrhol Nowak a kol. (DD-243 647 z 1987) alebo mayenitová fáza (12 CaO.7Al2O3) uvedená ako prevládajúca zlúčenina, ktorú r r r r e r r; f r r · f r r r- e e f' r r ' ' c i r n r navrhol Lemonidou a Vasalos (A. A. Lemonidou, I. A. Vasalos, Applied. Catalysis, 54, 1989 a A. A. Lemonidou, I. A. Vasalos, t E. J. Hirschberg, R. J. Batalacini, Idustrial Engineering Chemistry Res., 28, 1989) University of Thessalonica v spolupráci so spoločnosťou Anoce.Another type of catalysts studied in the steam cracking reactions are aluminum-calcium compounds. These solid materials, unlike zeolites, increase the yield of light olefins without significantly altering the quantitative ratios between the major products. In this way, an increase in propylene yield as well as ethylene yield is achieved. Various mixtures have been proposed in which some compounds always predominate, for example, by CaO.Al 2 O 3 and CaO 2 Al 2 O 3 proposed by Nowak et al. (DD-243 647 of 1987) or the Mayenite phase (12 CaO 7 Al 2 O 3 ) reported as the predominant compound by rrrrerr; frr · frr r-eef 'rr''cirnr designed by Lemonida and Vasalos (AA Lemonida, IA Vasalos, Applied. Catalysis, 54, 1989, and AA Lemonida, IA Vasalos, t EJ Hirschberg, RJ Batalacini, Idustrial Engineering Chemistry Res., 28 , 1989) University of Thessalonica in cooperation with Anoce.
II
V predchádzajúcej práci bol mayenit identifikovaný ako najúčinnejšia kryštalická fáza medzi hlinitanmi vápenatými pri parných krakovacích reakciách a preto sa práce zamerali na získanie tejto zlúčeniny v čistej forme (prvý patent - H9040). Niektorí autori pridali v snahe zvýšiť výkon katalytických systémov do hlinitovápenatých katalyzátorov, kovy. Z literatúry je možné vyčítať rôzne pokusy uskutočňované s alkalickými kovmi (predovšetkým draslíkom), ktorých prvoradým cieľom je redukovať tvorbu koksu. Prítomnosť alkalických kovov v skutočnosti neprispieva k obmedzeniu produkcie koksu, ale spôsobuje významné zvýšenie ďalších nežiadúcich vedľajších produktov, akým je napríklad oxid uhoľnatý, ktorých výťažok dosahuje rôzne percentuálne zastúpenie. Pri uskutočňovaní testov naviac dochádzalo k strate významného množstva draslíka (viď R. Mukhopadhyay, D. Kunzru, Industrial Engineering Chemistry Res., 32, 1993).In a previous work, mayenite has been identified as the most effective crystalline phase among calcium aluminates in steam cracking reactions and therefore the work focused on obtaining this compound in pure form (first patent - H9040). Some authors have added metals to aluminum catalysts to improve the performance of catalytic systems. Various experiments carried out with alkali metals (especially potassium), the primary aim of which is to reduce coke production, can be read from the literature. The presence of alkali metals does not, in fact, contribute to the reduction of coke production, but causes a significant increase in other undesirable by-products, such as carbon monoxide, whose yields vary in percentages. In addition, significant amounts of potassium were lost in the tests (see R. Mukhopadhyay, D. Kunzru, Industrial Engineering Chemistry Res., 32, 1993).
Zistilo sa, že účinnosť hlinitovápenatých zlúčenín pri parných krakovacích reakciách je možné zvýšiť pridaním prechodných kovov, akými sú napríklad molybdén a vanád. Tieto prvky, pokiaľ sa pridajú do základného katalyzátora vo forme oxidov, v skutočnosti umožnia ďalšie zvýšenie výťažku hlavných požadovaných produktov, etylénu a propylénu. Negatívny vplyv na tvorbu vedľajších pnoduktov, akými sú napríklad koks a oxid uhoľnatý, sú obmedzené a v skutočnosti tieto vedľajšie produkty v testoch uskutočňovaných s primárnym benzínom nepresiahli 1 % hmotn. výťažku, vzťahujúce sa r r , c r. r ' e r r C , i r π η r - <· < r · r r ( . r k hmotnosti východiskového materiálu, a to aj v prítomnosti katalyzátora modifikovaného molybdénom alebo vanádom.It has been found that the efficiency of aluminum-calcium compounds in steam cracking reactions can be increased by the addition of transition metals such as molybdenum and vanadium. In fact, these elements, when added to the base catalyst in the form of oxides, will allow a further increase in the yield of the major desired products, ethylene and propylene. The negative impact on by-product formation, such as coke and carbon monoxide, is limited, and in fact these by-products in tests conducted with primary gasoline did not exceed 1% by weight. yield, related r r, c r. r e r C r, r r r <<r r r r (r r to the weight of the starting material, even in the presence of a molybdenum or vanadium modified catalyst)
Podstata vynálezuSUMMARY OF THE INVENTION
Katalyzátor pre parné krakovacie reakcie podľa vynálezu je tvorený kryštalickými hlinitánmi vápenatými majúcimi molárny pomer CaO/Al2O3 1/6 až 3 a oxidmi molybdénu a/alebo vanádu, pričom oxid molybdénu vyjadrený ako MoO3 alebo oxid vanádu vyjadrený ako V2O5 alebo súčet uvedených dvoch oxidov je v katalyzátore obsiahnutý v množstve, ktoré sa pohybuje od 0,5 % hmotn. do 10 % hmotn., výhodne od 0,8 % hmotn. do 5 % hmotn.The catalyst for steam cracking reactions according to the invention consists of crystalline calcium aluminates having a CaO / Al 2 O 3 molar ratio of 1/6 to 3 and molybdenum and / or vanadium oxides, the molybdenum oxide expressed as MoO 3 or the vanadium oxide expressed as V 2 O 5 or the sum of the two oxides is contained in the catalyst in an amount ranging from 0.5 wt. % to 10 wt.%, preferably from 0.8 wt. % to 5 wt.
Spôsob prípravy tohto katalyzátora je charakteristický tým, že zahŕňa nasledujúce kroky:The process for preparing this catalyst is characterized in that it comprises the following steps:
- rozpustenie soli obsahujúcej molybdén alebo vanád vo vhodnom rozpúšťadle;dissolving the molybdenum or vanadium-containing salt in a suitable solvent;
- impregnáciu hlinitanu vápenatého prítomného vo forme granúl pridaním uvedeného hlinitanu do roztoku molybdénovej alebo vanádovej soli;impregnating the calcium aluminate present in the form of granules by adding said aluminate to the molybdenum or vanadium salt solution;
- elimináciu rozpúšťadla;elimination of the solvent;
- sušenie pevného prekurzorového produktu pri teplotedrying the solid precursor product at temperature
100 °C až 150 °C;100 ° C to 150 ° C;
- žíhanie pevného prekurzorového produktu pri teplote- annealing the solid precursor product at temperature
500 °C až 650 °C počas aspoň 4 hodín.500 ° C to 650 ° C for at least 4 hours.
r r ŕ f “rr r e e f r r rr r r r r c r r C r r tr r r n tyy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy
- r r- r r r - c -c- r r - r r - c - c
Voľba rozpúšťadla závisí od zvolenej soli a výhodne sa zvolí z vody, alkoholu, éteru, acetónu, pričom najvýhodnejším rozpúšťadlompre rozpustenie molybdénovej soli je voda a pre rozpustenie vanádovej soli je etanol.The choice of solvent depends on the salt selected and is preferably selected from water, alcohol, ether, acetone, the most preferred solvent for dissolving the molybdenum salt is water and for dissolving the vanadium salt is ethanol.
. 1 . 1. 1 . 1
Kryštalické hlinitany vápenaté, ktoré tvoria katalyzátor, by mali byť zvolené z hlinitanov, ktorých molárny pomer CaO/Al2O3 sa pohybuje od 1/6 do 3, ä výhodnejšie dosahuje hodnoty 12/7 alebo 3.The crystalline calcium aluminates forming the catalyst should be selected from aluminates having a CaO / Al 2 O 3 molar ratio ranging from 1/6 to 3, and more preferably reaching 12/7 or 3.
Rovnaký prihlasovateľ v závislej talianskej patentovej prihláške nárokoval čistý mayenit so všeobecným vzorcom 12CaO/7Al2O3, ktorý má vo svojej žíhanej forme rontgenové difrakčné spektrum registrované pomocou vertikálneho goniometra vybaveného systémom čítajúcim elektrónové impulzy pomocou CuKa žiarenia (λ = 1,54178 x 10’10m) obsahujúce hlavné odrazy naznačené v tabuľke I (kde d označuje medzirovinovú vzdialenosť) a na obr. 1.The same applicant in a non Italian patent application claimed a pure mayenite having the general formula 12CA / 7AL 2 O 3 having, in its calcined form of an X-ray diffraction spectrum recorded with a vertical goniometer fitted with a pulse electron beam by reading a CuKa radiation (λ = 1.54178 × 10 10 m) containing the main reflections outlined in Table I (where d denotes the interplanar distance); and FIG. First
Tento čistý mayenit je možné výhodne zvoliť ako hlinitan vápenatý použitý na prípravu katalyzátora podľa vynálezu.This pure mayenite may advantageously be selected as the calcium aluminate used to prepare the catalyst of the invention.
Spôsob prípravy vyššie opísaného čistého mayenitu zahŕňa nasledujúce kroky:The process for preparing pure mayenite described above comprises the following steps:
- rozpustenie solí obsahujúcich vápnik a hliník vo vode;- dissolving calcium and aluminum containing salts in water;
- vytvorenie komplexov rozpustených solí pomocou polyfunkčných organických hydroxykyselín;complexing the dissolved salts with polyfunctional organic hydroxy acids;
- sušenie roztoku získaného v predchádzajúcom kroku za vzniku pevného prekurzorového produktu;drying the solution obtained in the preceding step to form a solid precursor product;
r e e r** r c -·* cr e e r ** r c - * c
c. e e ♦ e r r·r.· e e e r r > r cr e r r r r r. - · ·o r n f.· r r f . . r r o r n c o c < i.' c · .· · r r· n oc. e e ♦ e r r · r e · e e r r> r cr e r r y r. - · · o r n f · o r n f. . r r o r n c o c <i. ' c ·. · · r · n o
- žíhanie pevného prekurzorového produktu pri teplote 1300 °C až 1400 °C, výhodne 1330 °C až 1370°C, počas aspoň 2 hodín a výhodne aspoň 5 hodín.- annealing the solid precursor product at a temperature of 1300 ° C to 1400 ° C, preferably 1330 ° C to 1370 ° C, for at least 2 hours and preferably at least 5 hours.
Polyfunkčné organické hydroxykyseliny je možné zvoliť z kyseliny citrónovej, kyseliny maleínovej, kyseliny vínnej, , kyseliny glykolovej a kyseliny mliečnej, pričom výhodnou polyfunkčnou organickou kyselinou je kyselina citrónová.The polyfunctional organic hydroxy acids may be selected from citric acid, maleic acid, tartaric acid, glycolic acid and lactic acid, with a preferred polyfunctional organic acid being citric acid.
Soli obsahujúce vápnik sa výhodne zvolia z octanu vápenatého a dusičnanu vápenatého.The calcium-containing salts are preferably selected from calcium acetate and calcium nitrate.
Dusičnan hlinitý je výhodnou soľou obsahujúcou hliník.Aluminum nitrate is the preferred aluminum-containing salt.
Tento spôsob sa doporučuje uskutočňovať pri molárnompomere polyfunkčných hydroxykyselín/solí obsahujúcich vápnik a hliník 1,5 až 1.This process is recommended to be carried out at a molar ratio of polyfunctional hydroxyacids / salts containing calcium and aluminum of 1.5 to 1.
Ďalší cieľ vynálezu sa týka spôsobu výroby ľahkých olefínov pomocou parnej krakovacej reakcie uhľovodíkovej vsázky zvolenej z ropy, a predovšetkým primárneho benzínu, kerosénu, plynového oleja alebo ich zmesí v prítomnosti katalyzátora podľa vynálezu, ktorý je výhodne účinný pri teplote 720 °C až 800 °C a tlaku 111 kPa až 182 kPa počas kontaktnej doby 0,07 až 0,2 s.A further object of the invention relates to a process for the production of light olefins by steam cracking of a hydrocarbon feedstock selected from petroleum, and in particular a primary gasoline, kerosene, gas oil or mixtures thereof in the presence of a catalyst according to the invention, which is preferably effective at 720 ° C to 800 ° C and a pressure of 111 kPa to 182 kPa during a contact time of 0.07 to 0.2 s.
Teraz budú uvedené príkladné vyhotovenia vynálezu, ktoré majú iba ilustratívny charakter a neobmedzujú rozsah vynálezu, ktorý je jednoznačne vymedzený priloženými patentovými nárokmi.Exemplary embodiments of the invention will now be described, which are illustrative only and do not limit the scope of the invention, which is clearly defined by the appended claims.
Príklady vyhotovenia vynálezuDETAILED DESCRIPTION OF THE INVENTION
Príklad 1Example 1
Príprava čistého mayenituPreparation of pure mayenite
I ·I ·
Bola použitá syntetická metóda vyhotovená v homogénnej fáze.The synthetic method used in a homogeneous phase was used.
Tento spôsob zahŕňa použitie kyseliny citrónovej alebo polyfunkčných hydroxykyselín, ktoré umožňujú vytvoriť komplexy kovových solí vo vodnom roztoku. Po dehydratácii vodného roztoku sa získa amorfný pevný prekurzor, ktorý po tepelnom spracovaní pri vysokej teplote poskytne požadovaný produkt. Hlavné výhody tejto techniky sú nasledujúce:The method involves the use of citric acid or polyfunctional hydroxy acids which make it possible to form metal salt complexes in aqueous solution. After dehydration of the aqueous solution, an amorphous solid precursor is obtained which, after heat treatment at high temperature, yields the desired product. The main advantages of this technique are:
- homogénne miešanie v rozsahu atómov;homogeneous mixing over the range of atoms;
- dobrá kontrola stechiometrie;- good stoichiometry control;
- výroba zmiešaných oxidov s použitím komerčných chemických produktov;- production of mixed oxides using commercial chemical products;
- krátke prevádzkové časy.- short operating times.
Roztok dusičnanu hlinitého, 378,2 g Al (NO3)3.9H2O (1,008 mol) v 470 g vody, sa najprv pridal do roztoku octanu vápenatého, ktorý sa pripravil rozpustením 152,2 g (CH3COO)2Ca.H2O (0,864 mol) v 450 g H2O pri izbovej teplote. Potom sa pridal roztok kyseliny citrónovej, 393,1 g (1,872 mol) v 375 g vody. Získaný homogénny roztok sa sušil pomocou rozprašovacieho sušiča. Požadovaný produkt 12CaO.7Al2O3 r · r ' (mayenit) sa získal po 5 hodinách žíhania pri 1350 °C v čistej forme.A solution of aluminum nitrate, 378.2 g Al (NO 3 ) 3 .9H 2 O (1.008 mol) in 470 g water, was first added to a solution of calcium acetate, which was prepared by dissolving 152.2 g (CH 3 COO) 2 Ca. H 2 O (0.864 mol) in 450 g H 2 O at room temperature. A solution of citric acid, 393.1 g (1.872 mol) in 375 g of water was then added. The obtained homogeneous solution was dried using a spray dryer. The desired product 12CaO.7Al R 2 O 3 · y '(Mayenite) was obtained after 5 hours of annealing at 1350 ° C in pure form.
Pred tabletáciou katalytického prekurzora sa k tomuto prekurzoru pridalo mazivo (2 % hmotn. kyseliny stearovej) a po tabletizácii sa katalyzátor podrobil ďalšiemu žíhaniu.Prior to tabletting the catalyst precursor, a lubricant (2 wt% stearic acid) was added to the precursor and after tableting the catalyst was further annealed.
Zloženie získaného katalyzátora sa overilo rontgenovou difraktometriou, ktorá ukázala prítomnosť, jedinej čistej mayenitovej fázy.The composition of the obtained catalyst was verified by X-ray diffractometry, which showed the presence of a single pure mayenite phase.
(Viď vyššie spomenutá tabuľka I a obr. 1)(See Table I and Fig. 1 above)
Príklad 2Example 2
Príprava mayenitu (12CaO.7Al2O3) obohateného 2 % MOO3Preparation of mayenite (12CaO.7Al 2 O 3 ) enriched with 2% MOO3
Do 250 cm3 banky sa umiestnilo 0,86 g tetrahydrá.tu heptamolybdenánu amónneho (0,0049 mol) v 100 g vody. Do roztoku sa pridalo 35 g granulovaného mayenitu (20 až 40 mesh). Po 2 hodinách sa produkt vysušil a následne 5 hodín žíhal pri 550 °C.In a 250 cm 3 flask was placed 0.86 g of ammonium heptamolybdate (0.0049 mol) in 100 g of water. 35 g of granulated mayenite (20 to 40 mesh) was added to the solution. After 2 hours, the product was dried and subsequently calcined at 550 ° C for 5 hours.
Zloženie získaného katalyzátora sa overilo rontgenovou difraktometriou (tabuľka II a obr. 2), z ktorej je zrejmé, že ďalšie spracovanie molybdénu nezmenilo kryštalickú štruktúru mayenitu.The composition of the obtained catalyst was verified by X-ray diffractometry (Table II and Fig. 2), from which it can be seen that further processing of molybdenum did not alter the crystalline structure of mayenite.
Môže dôjsť k vytvoreniu malého množstva CaO, ktorý nemá vplyv na aktivitu katalyzátora.A small amount of CaO may be formed which does not affect the activity of the catalyst.
r c r c
Príklad 3Example 3
Príprava mayenitu obohateného 2 % V2O3Preparation of Mayenite enriched with 2% V2O3
Do 250 cm3 banky sa umiestnilo 2,68 g acetylacetonátu vanáditého (0,0077 mol) v 75 g etanolu. Dó roztoku sa pridalo 35 g granulovaného mayenitu (20 až 40 mesh). Po 2 hodinách sa produkt vysušil a následne sa 5 hodín žíhal pri 550 °C.In a 250 cm 3 flask was placed 2.68 g of vanadium acetylacetonate (0.0077 mol) in 75 g of ethanol. 35 g of granulated mayenite (20 to 40 mesh) was added to the solution. After 2 hours, the product was dried, followed by calcination at 550 ° C for 5 hours.
Príklad 4Example 4
Parná krakovacia reakcia uskutočňovaná v laboratórnej pulznej prevádzkeSteam cracking reaction carried out in a laboratory pulse operation
Prevádzkové podmienky:Operating conditions:
náplň = primárny benzín teplota = 775 °Ccharge = primary gasoline temperature = 775 ° C
H2O/náplň = 0,98 hmotn.H 2 O / charge = 0.98 wt.
doba zdržania -0,15 s doba v prúde = 60 sdwell time -0.15 s time in current = 60 s
Tabuľka III obsahuje, údaje získané pri použití hlinitovápenatého katalyzátora pripraveného spôsobom, ktorý je opísaný v príklade 1, použitie pri parnom krakovaní primárneho benzínu a tieto údaje sú porovnávané s výsledkami testu, pri ktorom sa použil rovnaký katalyzátor obohatený o oxid molybdénu a pripravený spôsobom, ktorý je opísaný v príkladeTable III contains the data obtained using an aluminum-calcium catalyst prepared as described in Example 1, the use in steam cracking of naphtha and compared with the results of a test using the same molybdenum oxide-enriched catalyst prepared by is described in the example
2. Z týchto údajov je zrejmé, že výkon neobohateného katalyzátora nedosahuje, pokiaľ sa jedná ό výťažok ľahkých olefínov, výsledky získané pri použití katalyzátora obsahujúceho molybdén.2. It is apparent from these data that the performance of the non-enriched catalyst does not achieve the results obtained when using a molybdenum-containing catalyst in terms of ole light olefin yield.
r rt r rr rt r r
Zvýšenie výťažku etylénu a propylénu predstavuje v prípade obohateného katalyzátora 5,3 %, oproti neobohatenému katalyzátoru.The increase in the yield of ethylene and propylene in the case of the enriched catalyst is 5.3%, as opposed to the non-enriched catalyst.
Príklad 5Example 5
II
Parná krakovacia reakcia uskutočňovaná v kontinuálnom laboratórnom zariadení, ktoré je vybavené reaktorom s pevným lôžkom s priemerom 1,25 cmSteam cracking reaction carried out in a continuous laboratory equipment equipped with a 1,25 cm fixed bed reactor
Prevádzkové podmienky:Operating conditions:
náplň = primárny benzín teplota = 775 °Ccharge = primary gasoline temperature = 775 ° C
H2O/náplň = 0,8 hmotn.H 2 O / charge = 0.8 wt.
doba zdržania = 0,1 sresidence time = 0.1 s
Tabuľka IV poskytuje porovnanie výsledkov dosiahnutých pri parnom krakovaní primárneho benzínu v zariadení s pevným lôžkom v prítomnosti mayenitu pripraveného spôsobom, ktorý je opísaný v príklade 1 a v prítomnosti mayenitu obohateného oxidom vanadičným v druhom prípade. Vzorka obohatená oxidom vanadičným sa pripravila spôsobom opísaným v príkladeTable IV provides a comparison of the results obtained with steam cracking of primary gasoline in a fixed bed apparatus in the presence of mayenite prepared as described in Example 1 and in the presence of vanadium oxide-enriched mayenite in the latter case. A sample enriched in vanadium pentoxide was prepared as described in the Example
3.Third
. Výsledky ukazujú, že vanád pridaný vo forme oxidu má rovnako pozitívny vplyv na účinnosť katalyzátora v krakovacích podmienkach a že zvyšuje celkový výťažok hodnotnejších produktov, akými sú etylén a propylén.. The results show that vanadium added as an oxide also has a positive effect on the catalyst performance under cracking conditions and that it increases the overall yield of more valuable products such as ethylene and propylene.
r rr r
Rontgenové difrakčné spektrum čistej mayenitovej fázy c c r r r r r r ' - c.X-ray diffraction spectrum of pure mayenite phase c c r r r r r r '- c.
Tabuľka ITable I
Tabuľka IITable II
Rontgenové difrakčné spektrum vzorky tvorenej mayenitomX-ray diffraction spectrum of a sample formed by mayenite
Cai2Al14O33 a Powellitom CaMoO4 Cai 2 Al 14 O 3 3 and Powellit CaMoO 4
r er e
Tabuľka IIITable III
Tabuľka IVTable IV
?P a -200C? P and -200C
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT1999MI002615A IT1313697B1 (en) | 1999-12-17 | 1999-12-17 | CATALYST FOR STEAM CRACKING REACTIONS. |
Publications (1)
Publication Number | Publication Date |
---|---|
SK19132000A3 true SK19132000A3 (en) | 2002-10-08 |
Family
ID=11384122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK1913-2000A SK19132000A3 (en) | 1999-12-17 | 2000-12-14 | Catalyst for steam cracking reactions |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP1114675B1 (en) |
CN (1) | CN1207367C (en) |
AT (1) | ATE474665T1 (en) |
BG (1) | BG105042A (en) |
CZ (1) | CZ302274B6 (en) |
DE (1) | DE60044703D1 (en) |
DK (1) | DK1114675T3 (en) |
ES (1) | ES2349266T3 (en) |
HR (1) | HRP20000870A2 (en) |
HU (1) | HU228391B1 (en) |
IT (1) | IT1313697B1 (en) |
NO (1) | NO324156B1 (en) |
PL (1) | PL190785B1 (en) |
PT (1) | PT1114675E (en) |
SK (1) | SK19132000A3 (en) |
TR (1) | TR200003751A2 (en) |
YU (1) | YU79500A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2238142C2 (en) * | 2002-07-08 | 2004-10-20 | Общество с ограниченной ответственностью "Томскнефтехим" | Hydrocarbon stock pyrolysis catalyst, method for preparation thereof, and method of catalytic pyrolysis of hydrocarbon stock into lower olefins |
RU2242279C2 (en) * | 2002-11-28 | 2004-12-20 | Общество с ограниченной ответственностью "Томскнефтехим" | Paraffin c2-c5-hydrocarbon conversion catalyst, method of preparation thereof, and a method for conversion of paraffin c2-c5-hydrocarbons into lower olefins |
RU2331473C2 (en) * | 2005-10-28 | 2008-08-20 | Общество с ограниченной ответственностью научно-производственное предприятие "Катализаторы переработки нефтепродуктов"(ООО НПП "КАНЕФ") | Catalyst of pyrolysis of propane-butane hydrocarbon material in lowest olefins and method of obtaining it |
CN101314126B (en) * | 2007-05-31 | 2011-07-20 | 中国石油化工股份有限公司 | Steam cracking catalyst, preparation and application thereof |
TW201026242A (en) * | 2008-11-06 | 2010-07-16 | Japan Tobacco Inc | Smoking article and manufacturing method for the same, and method for manufacturing carbon monoxide reducer |
PL388518A1 (en) * | 2009-07-10 | 2011-01-17 | Instytut Nawozów Sztucznych | Catalyst for high-temperature decomposition of nitrous oxide |
WO2014177988A1 (en) | 2013-04-29 | 2014-11-06 | Saudi Basic Industries Corporation | Catalytic methods for converting naphtha into olefins |
RU2604884C1 (en) * | 2015-08-14 | 2016-12-20 | федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) | Composite nanocrystalline catalyst for propane cracking to obtain olefins and method for its production |
RU2604882C1 (en) * | 2015-08-14 | 2016-12-20 | федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) | Nanocrystalline catalyst for cracking propane in order to obtain olefins and method for production thereof |
US9878305B2 (en) * | 2016-06-14 | 2018-01-30 | King Fahd University Of Petroleum And Minerals | Fluidizable vanadium catalyst for oxidative dehydrogenation of alkanes to olefins in a gas phase oxygen free environment |
CN111760571A (en) * | 2020-07-14 | 2020-10-13 | 西安石油大学 | A kind of preparation method of calcium aluminate catalyst with adjustable olefin selectivity and its application |
ES2897523B2 (en) | 2021-08-10 | 2022-07-18 | Advanced Thermal Devices S L | Cathode based on the material C12A7:e ''electride'' for thermionic emission of electrons and procedure for its use |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL83582C (en) * | 1952-11-01 | |||
DD243647A1 (en) * | 1985-12-02 | 1987-03-11 | Akad Wissenschaften Ddr | CALCIUM ALUMINATE BASED CATALYST OF A SINTERED FORMAT AND METHOD OF MANUFACTURING THE SAME |
DE4400430A1 (en) * | 1994-01-10 | 1995-07-13 | Linde Ag | Process for the thermocatalytic cracking of high-boiling hydrocarbons and cracking furnace |
EP0728831B1 (en) * | 1995-02-17 | 2000-07-12 | Linde Aktiengesellschaft | Process and apparatus for the cracking of hydrocarbons |
-
1999
- 1999-12-17 IT IT1999MI002615A patent/IT1313697B1/en active
-
2000
- 2000-12-11 BG BG105042A patent/BG105042A/en unknown
- 2000-12-12 CZ CZ20004627A patent/CZ302274B6/en not_active IP Right Cessation
- 2000-12-14 YU YU79500A patent/YU79500A/en unknown
- 2000-12-14 SK SK1913-2000A patent/SK19132000A3/en unknown
- 2000-12-15 HU HU0004961A patent/HU228391B1/en not_active IP Right Cessation
- 2000-12-15 HR HR20000870A patent/HRP20000870A2/en not_active Application Discontinuation
- 2000-12-15 TR TR2000/03751A patent/TR200003751A2/en unknown
- 2000-12-15 PL PL344566A patent/PL190785B1/en unknown
- 2000-12-15 NO NO20006440A patent/NO324156B1/en not_active IP Right Cessation
- 2000-12-15 CN CN00137252.1A patent/CN1207367C/en not_active Expired - Fee Related
- 2000-12-18 PT PT00204591T patent/PT1114675E/en unknown
- 2000-12-18 DK DK00204591.2T patent/DK1114675T3/en active
- 2000-12-18 EP EP00204591A patent/EP1114675B1/en not_active Expired - Lifetime
- 2000-12-18 ES ES00204591T patent/ES2349266T3/en not_active Expired - Lifetime
- 2000-12-18 DE DE60044703T patent/DE60044703D1/en not_active Expired - Lifetime
- 2000-12-18 AT AT00204591T patent/ATE474665T1/en active
Also Published As
Publication number | Publication date |
---|---|
DK1114675T3 (en) | 2010-11-22 |
EP1114675B1 (en) | 2010-07-21 |
HRP20000870A2 (en) | 2001-06-30 |
NO324156B1 (en) | 2007-09-03 |
HUP0004961A3 (en) | 2002-04-29 |
PT1114675E (en) | 2010-10-25 |
HUP0004961A2 (en) | 2001-08-28 |
EP1114675A3 (en) | 2002-01-30 |
HU228391B1 (en) | 2013-03-28 |
ES2349266T3 (en) | 2010-12-29 |
ITMI992615A0 (en) | 1999-12-17 |
CZ302274B6 (en) | 2011-01-26 |
CN1317545A (en) | 2001-10-17 |
YU79500A (en) | 2003-04-30 |
DE60044703D1 (en) | 2010-09-02 |
PL344566A1 (en) | 2001-06-18 |
NO20006440D0 (en) | 2000-12-15 |
EP1114675A2 (en) | 2001-07-11 |
TR200003751A3 (en) | 2001-09-21 |
CZ20004627A3 (en) | 2002-01-16 |
HU0004961D0 (en) | 2001-02-28 |
CN1207367C (en) | 2005-06-22 |
ATE474665T1 (en) | 2010-08-15 |
ITMI992615A1 (en) | 2001-06-17 |
PL190785B1 (en) | 2006-01-31 |
BG105042A (en) | 2001-12-29 |
TR200003751A2 (en) | 2001-09-21 |
NO20006440L (en) | 2001-06-18 |
IT1313697B1 (en) | 2002-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029682B2 (en) | Zinc and / or manganese aluminate catalysts useful for alkane dehydrogenation | |
US7417004B2 (en) | Catalyst for dimethyl ether synthesis and its preparation methods | |
KR100931792B1 (en) | Catalyst for pyrolysis of hydrocarbon steam, preparation method thereof and preparation method of olefin using the same | |
US9713804B2 (en) | Catalyst composition for the dehydrogenation of alkanes | |
SK19132000A3 (en) | Catalyst for steam cracking reactions | |
EA029026B1 (en) | Catalyst and process for the selective production of lower hydrocarbons c1-c5 from syngass with low methane and coproduction | |
US10851028B2 (en) | Process for dehydration of mono-alcohol(s) using a modified crystalline aluminosilicate | |
EP1114676B1 (en) | Catalyst for steam cracking reactions and process for its preparation | |
US5177045A (en) | Crystalline titanate catalyst supports | |
US7442846B2 (en) | Process for the regeneration of catalysts for steam cracking | |
RU2806558C1 (en) | Heterogeneous catalyst for high temperature dehydrogenation of propane and method for producing propylene | |
WO2004050236A1 (en) | Method for enhancing the productivity of vanadium antimony oxide catalysts | |
CN113233953A (en) | Method for preparing 2, 6-di-tert-butyl naphthalene with high selectivity by naphthalene alkylation | |
Pollesel et al. | ETHYLEN+ PROPYLEN (% BYWEIGHT) N 01 l li |