SK149696A3 - Catalyst mixture for oxidative ammonolysis of alkylpyridines and method of manufacture thereof - Google Patents
Catalyst mixture for oxidative ammonolysis of alkylpyridines and method of manufacture thereof Download PDFInfo
- Publication number
- SK149696A3 SK149696A3 SK1496-96A SK149696A SK149696A3 SK 149696 A3 SK149696 A3 SK 149696A3 SK 149696 A SK149696 A SK 149696A SK 149696 A3 SK149696 A3 SK 149696A3
- Authority
- SK
- Slovakia
- Prior art keywords
- catalyst
- process according
- ethylpyridine
- methyl
- catalyst mixture
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/84—Nitriles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pyridine Compounds (AREA)
Abstract
Description
Katalytická zmes na oxidatívnu amonolýzu alkylpyridínov a spôsob jej výrobyCatalytic mixture for oxidative ammonolysis of alkylpyridines and process for its preparation
Oblasť technikyTechnical field
Tento vynález sa vzťahuje na spôsob výroby vysoko selektívneho katalyzátora na výrobu kyanopyridínov oxidatívnou amonolýzou alkylpyridínov a na spôsob výroby kyanopyridínov.The present invention relates to a process for the production of a highly selective catalyst for the production of cyanopyridines by oxidative ammonolysis of alkylpyridines and to a process for the production of cyanopyridines.
Tento vynález sa zvlášť zameriava na výrobu 3-kyanopyridínu alebo kyanopyridínových derivátov, ktoré sú významnými prekurzormi pre kyselinu nikotínovú alebo amid kyseliny nikotínovej. Kyselina nikotínová alebo amid kyseliny nikotínovej sú nevyhnutnými vitamínmi B-komplexu.The present invention is particularly directed to the production of 3-cyanopyridine or cyanopyridine derivatives, which are important precursors for nicotinic acid or nicotinic acid amide. Nicotinic acid or nicotinic acid amide are essential vitamins of the B-complex.
Doterajší stav technikyBACKGROUND OF THE INVENTION
Oxidatívna amonolýza alkylpyridínov je v súčasnom stave techniky dobre známa. Opísalo sa široké rozmedzie katalytických systémov a spôsobov výroby, ale dosiaľ nie je známy žiadny spôsob výroby, ktorý môže splniť požiadavky komerčného spôsobu výroby v technickom meradle.Oxidative ammonolysis of alkylpyridines is well known in the art. A wide range of catalyst systems and production methods have been described, but to date no production method is known which can meet the requirements of a commercial production method on a technical scale.
Uvádza sa odkaz na Britský patent GB 1 317 064, v ktorom sa opisuje zmesný katalytický systém oxidu vanadičného a oxidu titaničitého v molámom pomere 1:0.6 až 1:32 na oxidatívnu amonolýzu alkylpyridínov. Maximálne dosiahnutý výťažok kyanopyridínu na konverziu 3-metylpyridínu bol 89 % (príklad 42; V2Os:TiO2 = 1:16) a 61 % na konverziu 2-metyl-5etylpyridínu (príklad 54; V2Os:TiO2 = 1:4). Výsledky dosiahnuté s týmto známym spôsobom výroby nemôžu vyhovovať najmä z hľadiska selektivity, výťažku a rýchlosti prívodu alkylpyridínov.Reference is made to British Patent GB 1 317 064, which discloses a mixed catalyst system of vanadium pentoxide and titanium dioxide in a molar ratio of 1: 0.6 to 1:32 for the oxidative ammonolysis of alkylpyridines. The maximum yield of cyanopyridine obtained for the conversion of 3-methylpyridine was 89% (Example 42; V2O5: TiO2 = 1:16) and 61% for the conversion of 2-methyl-5-ethylpyridine (Example 54; V2O5: TiO2 = 1: 4). In particular, the results obtained with this known production method cannot satisfy the selectivity, yield and feed rate of alkylpyridines.
Podstata vynálezuSUMMARY OF THE INVENTION
Predmetom predloženého vynálezu je teda poskytnúť vysoko selektívny amoxidačný katalyzátor a zlepšený spôsob výroby na konverziu alkylpyridínov oxidatívnou amonolýzou.It is therefore an object of the present invention to provide a highly selective amoxidation catalyst and an improved production process for the conversion of alkylpyridines by oxidative ammonolysis.
Nevýhody sa môžu odstrániť vysoko aktívnym katalyzátorom pripraveným podľa nároku 1 a oxidatívnym spôsobom amonolýzy podľa nároku 7.Disadvantages can be eliminated by the highly active catalyst prepared according to claim 1 and by the oxidative ammonolysis process according to claim 7.
Príprava katalytickej zmesi definovanej vzorcom Va Tib Zrc Ox, v ktorom a je 1 b je 7.5 až 8 c je 0 až 0.5 x predstavuje počet atómov kyslíka nevyhnutných na splnenie valenčných požiadaviek prítomných prvkov zahrňuje podľa nároku 1 kroky spoluzrážania roztoku V^+- a Ti4+- a prípadne Zr4*- zlúčeniny vo vode roztokom amoniaku vo vode, následným vystavením zrazeniny postupu sušenia, pôsobeniu tepla a tvarovaciemu kroku tak, aby poskytli katalytickú zmes vo vhodnej forme katalyzátora.Preparation of the catalyst mixture of the formula V and Tib Zr c O x wherein a is 1 b is 7.5 to 8 c is 0 to 0.5, x is the number of oxygen atoms necessary to satisfy the valence requirements of the elements present include according to claim 1 the steps of coprecipitation solution W ^ + and Ti 4+ - and optionally Zr 4 * - compounds in water with a solution of ammonia in water, followed by exposure of the precipitate to a drying process, heat treatment and a shaping step to provide a catalytic mixture in a suitable catalyst form.
Vhodné zdroje titaničitej zložky sú výhodne vo vode rozpustné Ti4+zlúčeniny ako je chlorid titaničitý, bromid titaničitý, dusičnan titaničitý alebo organické Ti-zlúčeniny ako sú tetraalkyltitaničité zlúčeniny.Suitable sources of the titanium component are preferably water-soluble Ti 4+ compounds such as titanium tetrachloride, titanium bromide, titanium nitrate or organic Ti-compounds such as tetraalkyl titanium compounds.
Vhodné zdroje vanadičnej zložky sú vo vode rozpustné V5+zlúčeniny, napríklad metavanadičnan amonný.Suitable sources of the vanadium component are the water-soluble 5+ compounds, for example ammonium metavanadate.
Vhodným zdrojom zirkoničitej zložky je výhodne vo vode rozpustná Zr^-zlúčenina ako je oxichlorid zirkoničitý.A suitable source of the zirconium component is preferably a water-soluble Zr 4 compound such as zirconium oxychloride.
Spoluzrážanie sa uskutočňuje za súčasného miešania rozpustených zložiek katalyzátora s vodným roztokom amoniaku takým spôsobom, že po spoluzrážaní je pH kvapaliny medzi 8 až 9.The co-precipitation is carried out while mixing the dissolved catalyst components with the aqueous ammonia solution in such a way that after the co-precipitation the pH of the liquid is between 8 and 9.
Vytvorená zrazenina sa potom môže oddeliť známymi spôsobmi a potom sa buď najprv suší, výhodne v prúde vzduchu pri teplotách medzi 120 °C a 140 °C, alebo je priamo vystavená pôsobenú tepla pri teplotách medzi 360 °C až 400 °C, výhodne za prítomnosti vzduchu. Na vhodné sformovanie katalyzátora potom môže nasledovať bežný tvarovací krok.The precipitate formed can then be separated by known methods and then either first dried, preferably in an air stream at temperatures between 120 ° C and 140 ° C, or directly exposed to heat at temperatures between 360 ° C to 400 ° C, preferably in the presence of air. A conventional shaping step may then follow to suitably form the catalyst.
Výhodne sa formujú tablety, ktoré sú výhodne vystavené ďalšiemu pôsobeniu tepla pri teplotách medzi 740 °C a 850 °C za prítomnosti vzduchu.Preferably, tablets are formed which are preferably exposed to additional heat at temperatures between 740 ° C and 850 ° C in the presence of air.
Ľahko pripraviteľná katalytická zmes potom sa môže vložiť do reaktora, v ktorom po fáze aktivácie za reakčných podmienok, je schopná preukázať svoje vlastnosti z hľadiska vysokej aktivity a selektivity pri vysokých zaťaženiach alkylpyridínom a z hľadiska dlhej životnosti.The easy-to-prepare catalyst mixture can then be loaded into a reactor in which, after the activation stage under the reaction conditions, it is able to demonstrate its properties in terms of high activity and selectivity under high alkylpyridine loads and long life.
Výhodné katalytické zmesi sú:Preferred catalyst mixtures are:
VTi8Ox VTi 8 O x
V Ti75 Zr0 5 Ox In Ti 75 Zr 0 5 O x
VTÍ7 5Zr0ii25 Οχ pričom x je, ako už bolo definované vyššie.VTÍ7 5Zr 0i i25 Οχ where x is as previously defined.
Najvýhodnejšia katalytická zmes je:The most preferred catalyst mixture is:
V Ti8 Ox pričom x je ako bolo definované vyššie.The Ti 8 O x where x it is as defined above.
Spôsob predloženého vynálezu je možné použiť na konverziu širokého rozmedzia alkylpyrídínov na kyanopyridíny. Vhodné alkyipyrídíny sú napr. 3-metylpyridín, 3-etylpyridín, 2-metyl-5-etylpyridín, 2,5-dimetylpyridín a 2-metyl-5-vinylpyridín. Najvýhodnejšie alkyipyrídíny sú 3-metylpyridín a 2metyl-5-etylpyridín.The process of the present invention can be used to convert a wide range of alkylpyridines to cyanopyridines. Suitable alkyipyridines are e.g. 3-methylpyridine, 3-ethylpyridine, 2-methyl-5-ethylpyridine, 2,5-dimethylpyridine and 2-methyl-5-vinylpyridine. The most preferred alkyipyridines are 3-methylpyridine and 2-methyl-5-ethylpyridine.
Dokázalo sa, že sú vhodné nasledujúce podmienky výrobného spôsobu.The following process conditions have been shown to be suitable.
Vstupný plyn sa skladá zo zodpovedajúceho alkylpyrídínu, plynu obsahujúceho kyslík, amoniak a vodnú paru.The feed gas consists of the corresponding alkylpyridine, oxygen-containing gas, ammonia and water vapor.
Ako plyn obsahujúci kyslík sa bude všeobecne používať vzduch. Vzduch poskytuje výhodu, že kyslík je už zriedený inertnými zložkami.Air will generally be used as the oxygen-containing gas. Air provides the advantage that oxygen is already diluted with inert components.
V prípade konverzie 3-metylpyridínu na 3-kyanopyridín je vstupný plyn vhodne zložený z 3-metylpyridínu, vzduchu (prepočítané na 02), amoniaku a vodnej pary v molárnom pomere od 1:7:3:3 do 1:40:10:45.In the case of conversion of 3-methylpyridine to 3-cyanopyridine, the feed gas is suitably composed of 3-methylpyridine, air (recalculated to O 2), ammonia and water vapor in a molar ratio from 1: 7: 3: 3 to 1: 40: 10: 45 .
Výhodné rozmedzie pomerov je od 1:10:4:10 do 1:30:7:30.A preferred range of ratios is from 1: 10: 4: 10 to 1: 30: 7: 30.
V prípade konverzie 2-metyl-5-etylpyridínu na 3-kyanopyridín a v závislosti na reakčných podmienkach tiež na 2,5-dikyanopyridín je vstupný plyn vhodne zložený z 2-metyl-5-etylpyridínu, vzduchu (prepočítané na O2), amoniaku, vodnej pary v molámom pomere od 1:15:5:20 do 1:70:40:140.In the case of conversion of 2-methyl-5-ethylpyridine to 3-cyanopyridine and, depending on the reaction conditions, also to 2,5-dicyanopyridine, the feed gas is suitably composed of 2-methyl-5-ethylpyridine, air (O2 calculated), ammonia, aqueous vapor in molar ratio from 1: 15: 5: 20 to 1: 70: 40: 140.
Teplota v reakčnej zóne katalyzátora je spravidla v rozmedzí medzi 330 °C a 440 °C, výhodne medzi 350 °C a 410 °C.The temperature in the reaction zone of the catalyst is generally between 330 ° C and 440 ° C, preferably between 350 ° C and 410 ° C.
Vzhľadom na stabilné charakteristiky katalyzátora z hľadiska životnosti môže spôsob výroby podľa predloženého vynálezu prebiehať kontinuálne dlhú dobu vo veľkom merítku.In view of the stable life-cycle characteristics of the catalyst, the production process of the present invention can take place over a long period of time on a large scale.
Maximálne dosažiteľné moláme výťažky dosahujú asi 95 % až 97 % na konverziu 3-metylpyridínu a asi 75 % na konverziu 2-metyl-5-etylpyridínu.The maximum achievable molar yields are about 95% to 97% for the conversion of 3-methylpyridine and about 75% for the conversion of 2-methyl-5-ethylpyridine.
Vznikajúce kyanopyridíny, t. j. 3-kyanopyridín a/alebo 2,5-dikyanopyridín sa môžu priamo previesť na kyselinu nikotínovú bežnou hydrolýzou pôsobením zásady. V súlade s tým je možné dosiahnuť až 95 % výťažku kyseliny nikotínovej vzťažené na 3-metylpyridíny.The resulting cyanopyridines, i. j. 3-Cyanopyridine and / or 2,5-dicyanopyridine can be directly converted to nicotinic acid by conventional base hydrolysis. Accordingly, up to 95% yield of nicotinic acid relative to 3-methylpyridines can be achieved.
Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION
Príprava katalyzátoraPreparation of the catalyst
a) V Tig Ox katalyzátor.a) V Tig O x catalyst.
690,4 g (3,64 mólu) chloridu titaničitého sa zvoľna zmieša so 400 ml vody pri teplote asi 60 °C až 65 °C. Celkový objem sa doplní vodou na 800 ml.690.4 g (3.64 mol) of titanium tetrachloride are slowly mixed with 400 ml of water at a temperature of about 60 ° C to 65 ° C. Make up the total volume to 800 ml with water.
V oddelenej nádobe sa rozpustí 53,19 g (0,45 mólu) metavanadičnanu amonného v 850 ml vody a 300 ml vodného roztoku amoniaku za podmienok refluxu. V priebehu tohto postupu sa do roztoku zavádza čpavok.In a separate vessel, 53.19 g (0.45 mol) of ammonium metavanadate is dissolved in 850 ml of water and 300 ml of aqueous ammonia solution under reflux conditions. During this process, ammonia is introduced into the solution.
Roztok obsahujúci V-zlúčeninu sa pridá k Ti-roztoku pri asi 80 °C až 85 °C. Celkový objem sa doplní vodou na 4 litre.The solution containing the V-compound is added to the Ti-solution at about 80 ° C to 85 ° C. Make up to a volume of 4 liters with water.
Vo valcovom reaktore s prvkami na miešanie sa zmieša 670 ml Ti-Vroztoku o teplote 80 °C až 85 °C so 670 ml 5,2 % vodného roztoku amoniaku. Vytvorená zrazenina sa odfiltruje, premyje vodou a vysuší v prúde vzduchu pri teplote 120 °C až 140 °C. Vzniknutý prášok sa potom zahrieva v peci pri teplote 360 °C za prítomnosti vzduchu 2 hodiny, potom sa zomelie v guľovom mlyne a konečne zvlhčí vodou a lisuje do tabliet rozmeru 4x4 mm. Tablety sa zahrievajú 2 hodiny v muflovej peci za prítomnosti vzduchu na 740 °C.In a cylindrical reactor with stirring elements, 670 ml of Ti-solution at 80 ° C to 85 ° C are mixed with 670 ml of a 5.2% aqueous ammonia solution. The precipitate formed is filtered off, washed with water and dried in a stream of air at 120 ° C to 140 ° C. The resulting powder is then heated in an oven at 360 ° C in the presence of air for 2 hours, then ground in a ball mill and finally moistened with water and compressed into 4x4 mm tablets. The tablets are heated in a muffle furnace at 740 ° C for 2 hours.
Čerstvo pripravený katalyzátor sa potom aktivuje za podmienok oxidatívnej amonolýzy s 3-metylpyridínom.The freshly prepared catalyst is then activated under oxidative ammonolysis conditions with 3-methylpyridine.
b) V T17 5 Zrg 5 Ox katalyzátor: (b ) In T17 5 Zrg 5 O x catalyst:
V-Ti-roztok sa pripraví tak, ako je uvedené pod a).The V-Ti solution is prepared as described under a).
V oddelenej nádobe sa rozpustí 73,27 g (0,23 mólu) oktahydrátu oxichloridu zirkoničitého v 600 ml vody pri teplote medzi 40 °C a 45 °C.73.27 g (0.23 mole) of zirconium oxychloride octahydrate are dissolved in 600 ml of water at a temperature between 40 ° C and 45 ° C in a separate vessel.
Spoluzrážanie sa uskutoční spôsobom zodpovedajúcim spôsobu uvedenému pod bodom a) zmiešaním 625 ml Ti-V-roztoku, 100 ml Zr-roztoku a 725 ml uvedeného vodného roztoku amoniaku. Ďalšie spracovanie vzniknutej zrazeniny sa uskutočňuje tak, ako je uvedené pod a).The co-precipitation is carried out in a manner corresponding to the process mentioned under a) by mixing 625 ml of Ti-V solution, 100 ml of Zr solution and 725 ml of said aqueous ammonia solution. Further processing of the resulting precipitate is carried out as described under a).
V T17 5 Zroj25 Ox katalyzátor:In T17 5 Source25 O x Catalyst:
Postup podľa príkladu b) sa opakoval bez toho, že pre spoluzrážanie sa zmiešalo 625 ml Ti-V-roztoku, 25 ml Zr-roztoku a 650 ml uvedeného vodného roztoku amoniaku.The procedure of Example b) was repeated without mixing 625 ml of Ti-V solution, 25 ml of Zr solution and 650 ml of said aqueous ammonia solution for co-precipitation.
Výrobný postupManufacturing process
Príklad 1:Example 1:
220 cm3 aktivovaného V Tig Ox katalyzátora sa vnieslo do trúbkového reaktora vyrobeného z nerezovej ocele (vnútorný priemer 20 mm, dĺžka 1200 mm).220 cm 3 of the activated V Tig O x catalyst was loaded into a tube reactor made of stainless steel (internal diameter 20 mm, length 1200 mm).
Vrstvou katalyzátora sa viedla 150 hodín pri teplote 385 °C plynná zmes reaktantov pozostávajúcich z 3-metylpyridínu (3-MP), vzduchu, amoniaku a vodnej pary s rýchlosťou prívodu 103,6 gľ1h-1 3-MP, 2727 111h_1 vzduchu, 113,8 gľ1h_1 amoniaku a 336,4 gľ^h-1 vodnej pary. Molámy pomer v prívode bol: 3-MP:vzduch (O2):NH3:H2O = 1:22,9:6,0:16,8.The layer of the catalyst was conducted 150 hours at 385 ° C the gas mixture of the reagents consisting of 3-methylpyridine (3-MP), air, ammonia and water vapor to the feed rate of 103.6 GL 1 h-1 3-MP, 2727 1 11 h _1 air, 113.8 GL 1 h _1 ammonia and 336.4 G¼ ^ h-1 water vapor. The molar ratio in the feed was: 3-MP: air (O2): NH 3: H 2 O = 1: 22.9: 6.0: 16.8.
Za 5 hodín sa premenilo 114 g 3-MP. Konverzia bola úplná. Získalo sa 119,5 g 3-kyanopyridínu, čo zodpovedá 93,7 % teoretického výťažku. Produkcia 3-kyanopyridínu bola teda 108 gl_1 h-1.After 5 hours, 114 g of 3-MP were converted. Conversion complete. 119.5 g of 3-cyanopyridine were obtained, corresponding to 93.7% of the theoretical yield. The output of 3-cyanopyridine was 108 gl therefore _1 h -1.
Hydrolýza s KOH (reflux 2 hodiny) poskytla 143,2 g (95 % teórie) kyseliny nikotínovej.Hydrolysis with KOH (reflux for 2 hours) gave 143.2 g (95% of theory) of nicotinic acid.
Príklad 2:Example 2:
Použil sa rovnaký katalyzátor, ako sa opísal v príklade 1. Zmes reaktantov pozostávajúca z 2-metyl-5-etylpyridínu (MEP), vzduchu, amoniaku a vodnej pary sa viedla vrstvou katalyzátora pri teplote 395 °C. Molámy pomer v prívode bol: MEP:vzduch (O2):NH3:H2O = 1:25:19:67. 155 g MEP sa premenilo za 10 hodín a poskytlo 93,2 g 3-kyanopyridínu, čo zodpovedá 70,5 % teoretického výťažku. Produkcia 3-kyanopyrídínu bola teda 42,8 gHh'·.The same catalyst was used as described in Example 1. A reactant mixture consisting of 2-methyl-5-ethylpyridine (MEP), air, ammonia and water vapor was passed through the catalyst bed at 395 ° C. The feed molar ratio was: MEP: air (O2): NH3: H2O = 1: 25: 19: 67. 155 g of MEP was converted in 10 hours to give 93.2 g of 3-cyanopyridine corresponding to 70.5% of the theoretical yield. Thus, the production of 3-cyanopyridine was 42.8 gHh @ -1.
Hydrolýza s KOH poskytla kyselinu nikotínovú vo výťažku 72 % teórie.Hydrolysis with KOH gave nicotinic acid in a yield of 72% of theory.
Príklad 3:Example 3:
Použil sa rovnaký katalyzátor (140 cm3), ako sa opísal v príklade 1. Rovnaké reaktanty opísané v príklade 2 sa viedli vrstvou katalyzátora pri teplote 400 °C.The same catalyst (140 cm 3 ) as described in Example 1 was used. The same reactants described in Example 2 were passed through the catalyst bed at 400 ° C.
Molámy pomer v prívode bol:The molar ratio in the feed was:
MEP:vzduch (θ2):ΝΗ3:Η2θ = 1:16:14:30. V priebehu 5 hodín sa premenilo 53,2 g MEP a poskytlo 19,7 g 2,5-dikyanopyridínu (34,8 % teórie) a 23,0 g 3-kyanopyridínu (50,3 % teórie).MEP: air (θ2): ΝΗ3: Η2θ = 1: 16: 14: 30. Within 5 hours 53.2 g of MEP was converted to give 19.7 g of 2,5-dicyanopyridine (34.8% of theory) and 23.0 g of 3-cyanopyridine (50.3% of theory).
Hydrolýzou s KOH sa získala kyselina nikotínová vo výťažku 85,4 % teórie.Hydrolysis with KOH gave nicotinic acid in a yield of 85.4% of theory.
Príklad 4:Example 4:
100 cm3 aktivovaného V ΤΪ7 5 Zrg, 5 Ox katalyzátora sa vnieslo do trúbkového reaktora uvedeného v príklade 1. Vrstvou katalyzátora sa viedla plynná zmes 3-metylpyridínu (3-MEP), vzduchu, amoniaku a vodnej pary pri 375 °C s rýchlosťou prívodu 225 gľ1h1 3-MP, 344,1 gl1h1 vzduchu, 111 gľ1h-lNH3 a 980 gHh_‘'H2O. Za 5 hodín sa premenilo 112,3 g 3-MP a poskytlo 92,1 g 3-kyanopyridínu (73,2 % teórie) a 21,8 g nikotínamidu (14,8 % teórie).100 cm 3 of the activated V ΤΪ7 ZRG 5, 5 O x catalyst was loaded into a tube reactor of Example 1. The layer of catalyst was fed a gaseous mixture of 3-methylpyridine (3-MEP), air, ammonia and water vapor at 375 ° C at inlet 225 GL 1 H1 3-MP, 344.1 gl1h1 air gľ1h 111 - 980 gl @ lNH3 and _ '' H2O. After 5 hours, 112.3 g of 3-MP was converted to give 92.1 g of 3-cyanopyridine (73.2% of theory) and 21.8 g of nicotinamide (14.8% of theory).
Hydrolýzou s KOH sa získalo 138,7 g (93,7 % teórie) kyseliny nikotínovej.Hydrolysis with KOH gave 138.7 g (93.7% of theory) of nicotinic acid.
Príklad 5:Example 5:
Pre privádzaný plyn obsahujúci MEP namiesto 3-MP sa použil katalyzátor uvedený v príklade 4. Teplota vrstvy katalyzátora bola 370 °C. Prívodná rýchlosť bola: 80 gľ1h_1MEP, 1225 I vzduchu, 180 g NH3, 1130 g H2O. Za 6 hodín sa premenilo 48 g MEP a poskytlo 3,6 g 2,5dikyanopyridínu (7 % teórie) a 28,9 g 3-kyanopyridínu (70 % teórie).For the feed gas containing MEP instead of 3-MP, the catalyst of Example 4 was used. The catalyst bed temperature was 370 ° C. The feeding rate was: 80 GL 1 h _1 MEP, 1225 L air, 180 g of NH 3, H 2 O 1130 g. After 6 hours, 48 g of MEP was converted to give 3.6 g of 2,5-dicyanopyridine (7% of theory) and 28.9 g of 3-cyanopyridine (70% of theory).
Hydrolýzou s KOH sa získala kyselina nikotínová vo výťažku 79,9 % teórie.Hydrolysis with KOH gave nicotinic acid in a yield of 79.9% of theory.
Príklad 6:Example 6:
100 cm3 aktivovaného V TÍ7 5 Zroj25 Οχ katalyzátora sa použilo rovnakým spôsobom ako v príklade 4. Za 5 hodín sa premenilo 112,5 g 3MP a poskytlo 100,8 g 3-kyanopyridínu (80,1 % teórie) a 17 g nikotínamidu (11,4 % teórie).100 cm 3 of activated in Ti7 5 S25 Οχ catalyst were used in the same manner as in Example 4. After 5 hours 112.5 g of 3MP were converted to give 100.8 g of 3-cyanopyridine (80.1% of theory) and 17 g of nicotinamide ( 11.4% of theory).
Hydrolýzou s KOH sa získalo 139 g (93,3 % teórie) kyseliny nikotínovej.Hydrolysis with KOH gave 139 g (93.3% of theory) of nicotinic acid.
Príklad 7:Example 7:
Pre privádzaný plyn obsahujúci 3-etylpyridín (3-EP) sa použil katalyzátor (100 cm3) uvedený v príklade 1. Teplota vrstvy katalyzátora bola 380 °C. Prívodná rýchlosť bola: 150 gl-1 h-1 3-EP, 3600 I l'1h_1 vzduchu, 167 g|-1lr1NH3 a 225 gMh'I^O. Za 5 hodín sa premenilo 75 g 3-EP a poskytlo 66,5 g 3-kyanopyridínu (91,2 % teórie).For the feed gas containing 3-ethylpyridine (3-EP), the catalyst (100 cm 3 ) shown in Example 1 was used. The catalyst bed temperature was 380 ° C. The feeding rate was: 150 gl-1 h-1 3-EP, 3600 I l '1 h _1 air, 167 g | - Ir 1 1 NH3 and 225 gMh'I? O. After 5 hours, 75 g of 3-EP was converted to give 66.5 g of 3-cyanopyridine (91.2% of theory).
Príklad 8:Example 8:
Pre privádzaný plyn obsahujúci 2,5-dimetylpyridín (2,5-DMP) sa použil katalyzátor (100 cm3) uvedený v príklade 1. Teplota vrstvy katalyzátora bola 400 °C. Prívodná rýchlosť bola: 102 gľ1ľr‘' 2,5-DMP, 2095 I 1-1 h1 vzduchu, 227 gH h’1 NH3 a 650 gH h1 H2O. Za 5 hodín sa premenilo 52 g 2,5-DMP a poskytlo 18,8 g 2,5-dikyanopyridínu (30,6 % teórie) a 28,8 g 3-kyanopyridínu (58,1 % teórie).For the feed gas containing 2,5-dimethylpyridine (2,5-DMP), the catalyst (100 cm 3 ) shown in Example 1 was used. The catalyst bed temperature was 400 ° C. The feed rate was: 102 g 1 L -1 2.5-DMP, 2095 L -1 H -1 air, 227 g H -1 H 3, and 650 g H -1 H 2 O. After 5 hours, 52 g of 2,5-DMP was converted to give 18.8 g of 2,5-dicyanopyridine (30.6% of theory) and 28.8 g of 3-cyanopyridine (58.1% of theory).
Hydrolýzou s NH3 v autokláve sa získala kyselina nikotínová vo výťažku 87,9 % teórie.Hydrolysis with NH 3 in an autoclave gave nicotinic acid in a yield of 87.9% of theory.
Príklad 9:Example 9:
Pre privádzaný plyn obsahujúci 2-metyl-5-vinylpyridín (2-MVP) sa použil katalyzátor (100 cm3) uvedený v príklade 1. Teplota katalyzátora bola 400 °C. Prívodná rýchlosť bola: 113,4 g|-1h’1 2-MVP, 2095 I .-ΗΗ vzduchu, 227 gH h‘1 NH3 a 750 gH h1 H2O. Za 5 hodín sa premenilo 57 g 2-MVP a poskytlo 23,4 g 2,5-dikyanopyridínu (37,9 % teórie) a 24,4 g 3kyanopyridínu (48,9 % teórie).For the feed gas containing 2-methyl-5-vinylpyridine (2-MVP), the catalyst (100 cm 3 ) shown in Example 1 was used. The catalyst temperature was 400 ° C. The feed rate was: 113.4 g | -1h -1 of 2-MVP, 2095 l -1 of air, 227 gH h -1 NH 3 and 750 gH h -1 H 2 O. After 5 hours, 57 g of 2-MVP were converted to give 23.4 g of 2,5-dicyanopyridine (37.9% of theory) and 24.4 g of 3-cyanopyridine (48.9% of theory).
Hydrolýzou s NH3 v autokláve sa získala kyselina nikotínová vo výťažku 86,3 % teórie.Hydrolysis with NH 3 in an autoclave gave nicotinic acid in a yield of 86.3% of theory.
Príklad 10Example 10
Katalyzátor uvedený v príklade 1 (710 ml) sa vniesol do trúbkového reaktora z nerezovej ocele (vnútorný priemer 21 mm, dĺžka 3 m). Katalyzátorovým lôžkom sa viedla plynná zmes reaktantov pozostávajúca zThe catalyst of Example 1 (710 mL) was charged to a stainless steel tubular reactor (21 mm ID, 3 m length). A gaseous mixture of reactants consisting of
3-metylpyridínu (3-MP), vzduchu, amoniaku a vody počas 1350 hodín pri teplote 385 °C a s prívodnou rýchlosťou, ktorá sa menila medzi 100 a 150 gľ 1h1 3-MP. Molámy pomer privádzaných 3-MP:vzduch:čpavok:voda sa menil medzi 1:5,2:10:13 a 1:5,2:16:15. 107 kg 3-MP sa premenilo na 108 kg3-methylpyridine (3-MP), air, ammonia and water for 1350 hours at 385 DEG C. and with a supply rate which varied between 100 and 150 GL 1 h 1 3-MP. The molar ratio of 3-MP: air: ammonia: water feed varied between 1: 5.2: 10: 13 and 1: 5.2: 16: 15. 107 kg of 3-MP was converted to 108 kg
3-kyanopyridínu. Konverzia bola 97 %, molámy výťažok zodpovedá 91 % a selektivita 93,5 %.3-cyanopyridine. The conversion was 97%, the molar yield was 91% and the selectivity 93.5%.
Príklad 11:Example 11:
V Tíq Ox sa pripravil podľa príkladu a), príprava katalyzátora, ale s rozdielom, že zahrievanie tabliet sa uskutočňovalo pri teplote 850 °C 2 hodiny. Do trúbkového reaktora uvedeného v príklade 1 sa vložilo 140 cm^ tohto aktivovaného katalyzátora. Vrstvou katalyzátora sa viedla plynná zmes 2-metyl-5-etylpyridínu, vzduchu, amoniaku a vodnej pary pri teplote 375 °C. Molámy pomer v prívode bol:The TIQ O x was prepared according to example a), catalyst preparation, but with the difference that the tablets was carried out by heating at 850 C for 2 hours. 140 cm @ 3 of this activated catalyst were charged to the tubular reactor of Example 1. A gaseous mixture of 2-methyl-5-ethylpyridine, air, ammonia and water vapor was passed through the catalyst bed at 375 ° C. The molar ratio in the feed was:
MEP:vzduch (O2):NH3:H2O = 1:34:10:41. Za 5 hodín sa premenilo 53,2 g MEP a poskytlo 22,8 g 2,5-dikyanopyrídínu (40,2 % teórie) a 22,5 g 3kyanopyridínu (39,7 % teórie).MEP: air (O 2): NH 3: H 2 O = 1: 34: 10: 41. After 5 hours, 53.2 g of MEP was converted to give 22.8 g of 2,5-dicyanopyridine (40.2% of theory) and 22.5 g of 3-cyanopyridine (39.7% of theory).
Hydrolýzou s KOH sa získala kyselina nikotínová vo výťažku 90,2 % teórie.Hydrolysis with KOH gave nicotinic acid in a yield of 90.2% of theory.
ε eε e
ο ‘COο ‘CO
N >»N> »
COWHAT
Μ-»Μ- »
COWHAT
C?C?
i— >i—>
COWHAT
I co □I what □
c >c>
Q.Q.
>, ω>, ω
E mE m
cowhat
S oS o
c owhat
EE
COWHAT
CO cCO c
CO .>CO.>
-š = CO-š = CO
E 2E 2
CO X 1- OCO X 1- O
11'11 '
Tabuľka 2.Table 2.
Oxidatívna amonolýza 2-metyl-5-etylpyridínu (MEP) s V Tis Οχ katalyzátoromOxidative ammonolysis of 2-methyl-5-ethylpyridine (MEP) with V Tis Οχ catalyst
TV W- %TV W-%
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KZ940560 | 1994-05-23 | ||
PCT/EP1994/002677 WO1995032054A1 (en) | 1994-05-23 | 1994-08-11 | Oxidative ammonolysis of alkylpyridines |
Publications (1)
Publication Number | Publication Date |
---|---|
SK149696A3 true SK149696A3 (en) | 1997-05-07 |
Family
ID=19720744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK1496-96A SK149696A3 (en) | 1994-05-23 | 1994-08-11 | Catalyst mixture for oxidative ammonolysis of alkylpyridines and method of manufacture thereof |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0762933A1 (en) |
JP (1) | JP4161119B2 (en) |
KR (1) | KR100331727B1 (en) |
AU (1) | AU7612694A (en) |
BG (1) | BG100989A (en) |
BR (1) | BR9408577A (en) |
CA (1) | CA2188655A1 (en) |
FI (1) | FI964649A (en) |
HU (1) | HUT76437A (en) |
NO (1) | NO964990L (en) |
PL (1) | PL317319A1 (en) |
SK (1) | SK149696A3 (en) |
WO (1) | WO1995032054A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2305377A1 (en) | 2009-09-29 | 2011-04-06 | Lonza Ltd. | Catalysts for the preparation of cyanopyridines and their use |
EP2319834A1 (en) * | 2009-10-16 | 2011-05-11 | Lonza Ltd. | Methods and devices for the production of aqueous solutions of cyanopyridines |
EP2428505B1 (en) | 2010-09-13 | 2016-08-10 | Jubilant Life Sciences Limited | Process for producing pyridine carboxylic acids |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2505745C3 (en) * | 1974-03-14 | 1980-01-03 | Showa Denko K.K., Tokio | Process for the continuous production of 3-cyanopyridine |
DE2510994B2 (en) * | 1975-03-13 | 1977-04-14 | Basf Ag, 6700 Ludwigshafen | SUPPORT CATALYST CONTAINING VANADIUM AND TITANIUM |
DE2547655A1 (en) * | 1975-10-24 | 1977-04-28 | Basf Ag | Halo-substd. anthraquinones prepn. - by catalytic oxidn. of diphenyl methane cpds. in gas phase |
EP0290996B1 (en) * | 1987-05-12 | 1991-12-11 | Nippon Shokubai Kagaku Kogyo Co., Ltd | Process for producing aromatic nitriles or heterocyclic nitriles |
US5021386A (en) * | 1990-03-21 | 1991-06-04 | Texaco Inc. | Compositions involving V2 O3 -ZRO2 -TIO2 |
-
1994
- 1994-08-11 SK SK1496-96A patent/SK149696A3/en unknown
- 1994-08-11 BR BR9408577A patent/BR9408577A/en not_active Application Discontinuation
- 1994-08-11 AU AU76126/94A patent/AU7612694A/en not_active Abandoned
- 1994-08-11 JP JP52999595A patent/JP4161119B2/en not_active Expired - Fee Related
- 1994-08-11 HU HU9603235A patent/HUT76437A/en unknown
- 1994-08-11 CA CA002188655A patent/CA2188655A1/en not_active Abandoned
- 1994-08-11 PL PL94317319A patent/PL317319A1/en unknown
- 1994-08-11 WO PCT/EP1994/002677 patent/WO1995032054A1/en not_active Application Discontinuation
- 1994-08-11 EP EP94926183A patent/EP0762933A1/en not_active Ceased
- 1994-08-11 KR KR1019960706625A patent/KR100331727B1/en not_active IP Right Cessation
-
1996
- 1996-11-19 BG BG100989A patent/BG100989A/en unknown
- 1996-11-21 FI FI964649A patent/FI964649A/en not_active Application Discontinuation
- 1996-11-22 NO NO964990A patent/NO964990L/en unknown
Also Published As
Publication number | Publication date |
---|---|
HU9603235D0 (en) | 1997-01-28 |
NO964990D0 (en) | 1996-11-22 |
KR100331727B1 (en) | 2002-06-20 |
PL317319A1 (en) | 1997-04-01 |
BG100989A (en) | 1997-08-29 |
BR9408577A (en) | 1997-08-19 |
WO1995032054A1 (en) | 1995-11-30 |
JPH10500892A (en) | 1998-01-27 |
AU7612694A (en) | 1995-12-18 |
FI964649A0 (en) | 1996-11-21 |
EP0762933A1 (en) | 1997-03-19 |
HUT76437A (en) | 1997-08-28 |
FI964649A (en) | 1997-01-21 |
NO964990L (en) | 1996-11-22 |
JP4161119B2 (en) | 2008-10-08 |
CA2188655A1 (en) | 1995-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107537537B (en) | Catalyst for preparing 2-cyanopyridine by ammoxidation | |
CN111097468A (en) | Alkyl pyridine ammoxidation catalyst and preparation method thereof | |
CZ338596A3 (en) | Catalytic mixture for oxidative amonolysis of alkyl pyridines, process of its preparation and use | |
SK149696A3 (en) | Catalyst mixture for oxidative ammonolysis of alkylpyridines and method of manufacture thereof | |
EP0747359B1 (en) | Method of obtaining nicotinic acid | |
EP1617946B1 (en) | Ti-pillared clay based vanadia catalyst and process for preparation | |
CN1151135C (en) | A kind of catalyst for preparing 3-cyanopyridine and its preparation method and application | |
CN114315711A (en) | Method for producing 3-cyanopyridine by using fluidized bed and catalyst used in method | |
CN100390147C (en) | The preparation method of heteroaromatic nitrile, its improved catalyst and the preparation method of said improved catalyst | |
US5698701A (en) | Catalytic composition for the oxidative ammonolysis of alkylpyridines | |
CN111097464B (en) | Vanadium catalyst and preparation method thereof | |
RU2126716C1 (en) | Catalytic system for oxidative ammonolysis of alkylpyridines, method of its preparation, and method for oxidative ammonolysis of alkylpyridines | |
US5952508A (en) | Process for the preparation of a highly active and selective ammoxidation catalyst and its use in preparing heteroaromatic nitriles | |
EP0253360B1 (en) | Process for preparing nitriles | |
MXPA96005500A (en) | Catalytic composition for the oxidative ozonolisis of alquilpiridi | |
US6013800A (en) | Solid catalyst for preparing nitriles and its preparation | |
CN115228463A (en) | Composite catalyst and nicotinic acid production method | |
JPH08309195A (en) | Solid catalyst for preparing nitrile,preparation of catalyst,and preparation of nitrile using catalyst | |
JPS5817189B2 (en) | 3- Cyanopyridine | |
JPH04364169A (en) | Production of amino-substituted cyanopyridine compounds |