[go: up one dir, main page]

SI9400154A - Reaction rocket engine with synthetic fuel - Google Patents

Reaction rocket engine with synthetic fuel Download PDF

Info

Publication number
SI9400154A
SI9400154A SI9400154A SI9400154A SI9400154A SI 9400154 A SI9400154 A SI 9400154A SI 9400154 A SI9400154 A SI 9400154A SI 9400154 A SI9400154 A SI 9400154A SI 9400154 A SI9400154 A SI 9400154A
Authority
SI
Slovenia
Prior art keywords
rocket engine
fuel
reaction
synthesized
tank
Prior art date
Application number
SI9400154A
Other languages
Slovenian (sl)
Inventor
Igor Urban
Original Assignee
Igor Urban
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Igor Urban filed Critical Igor Urban
Priority to SI9400154A priority Critical patent/SI9400154A/en
Priority to AU33334/95A priority patent/AU3333495A/en
Priority to PCT/SI1995/000008 priority patent/WO1995026467A2/en
Publication of SI9400154A publication Critical patent/SI9400154A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/425Propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention is a synthesised fuel-powered reaction rocket motor, powered by fuels based on labile compounds which can be used as fuel only if they have previously been synthesised or processed. The synthesised fuel-powered reaction rocket motor has two synthesised compounds stored in separate tanks (1, 2), which are combined in the antechamber and which react in the combustion chamber (4). The resulting gases give the required thrust.

Description

Predmet izuma je reakcijski raketni motor s sintetiziranim gorivom, ki uporablja za gorivo v osnovi nestabilne snovi in jih je mogoče uporabiti kot gorivo le po predhodnem sintetiziranjem oz. predelavo.The object of the invention is a synthetic fuel reaction rocket engine, which uses essentially unstable substances for fuel and can only be used as fuel after pre-synthesizing or. processing.

Tehnični problem, ki ga predložen izum uspešno rešuje je uporaba snovi, ki so v osnovi zelo nestabilne in jih v navadnih pogojih ni možno uporabiti kot pogonsko gorivo za raketne in podobne motorje.A technical problem that the present invention successfully solves is the use of substances that are fundamentally highly unstable and which cannot be used as a propellant for rocket motors and similar engines under ordinary conditions.

-2Običajni raketni pogonski motorji uporabljajo za pogon gorivo in oksidant, shranjena v dveh ločenih rezervoarjih. V zgorevalni komori izvedena združitev obeh daje kemično reakcijo ter potrebno potisno silo za premik rakete.-2 Normal rocket propulsion engines use propellant and oxidant stored in two separate tanks for propulsion. Combining the two in the combustion chamber gives the chemical reaction and the required thrust to move the rocket.

Reakcijski raketni motor s sintetiziranim gorivom po izumu ima v ločenih rezervoarjih shranjene dve sintetizirani snovi, ki se v predprostoru združita ter v mešalni šobi medsebojno reagirata. V zgorevalni komori se sintetizirano gorivo vžge, nastali plini pa dajejo potrebno potisno silo.The synthetic-fueled rocket engine according to the invention has two synthesized substances stored in separate tanks, which combine in the apron and react in the mixing nozzle. In the combustion chamber, the synthesized fuel is ignited and the gases produced give the required thrust.

Reakcijski raketni motor s sintetiziranim gorivom bom podrobneje obrazložil na osnovi izvedbenega primera in slike, ki kaže:I will explain in more detail the synthetic fueled rocket engine based on an example example and an illustration showing:

slika 1 reakcijski raketni motor s sintetiziranim gorivom v shematskem pogledu.Fig. 1 schematic view of a synthesized fuel rocket engine.

Reakcijski raketni motor s sintetiziranim gorivom, ki je shematsko prikazan na sliki 1, sestavljajo rezervoarja 1 in 2, zgorevalna komora 4 in izstopna cev 5. V rezervoarjih 1 in 2 se nahajata dve substanci in sicer v rezervoarju 1 dušikova kislina HNO3, v rezervoarju 2 pa NH3. Oba rezervoarja 1 in 2 imata izvedeni ogrevalni napravi, tako, da lahko nadzorovano segrevamo substanci v rezervoarjih. Vodno kopel v kateri sta rezervoarja 1 in 2 s substancami lahko na začetku procesa ogrevamo s pomočjo mikrovalovnega grelca, ki je krmiljen z mikroprocesorskim vezjem 11 do starta reakcijskega motorja. Oba rezervoarja 1 in 2 sta obdana zThe synthetic-fueled rocket engine schematically shown in Figure 1 consists of tanks 1 and 2, combustion chamber 4 and outlet tube 5. There are two substances in tanks 1 and 2, namely in tank 1 nitric acid HNO3, in tank 2 then NH3. Both tanks 1 and 2 have heating installations so that the substances in the tanks can be heated in a controlled manner. A water bath in which the tanks 1 and 2 with the substances can be heated at the beginning of the process by means of a microwave heater controlled by a microprocessor circuit 11 to the start of the reaction engine. Both tanks 1 and 2 are surrounded by

-3ogrevalnim sistemom 8 v obliki okoli rezervoarjev 1 in 2 nameščenih vodnih cevi. Vodo v sistemu 8 ogrevamo z odvzemanjem toplote iz ohlajevalne mrežice 13 in jo vzdržujemo na 85°C s pomočjo termostatskega elektroventila 7 in črpalke 14. Pri temperaturi 85°C HNO3, vre, tako da pare kisline potujejo po dovodni cevi in nato preko črpalke 9 in regulatorja 10 v zgorevalno komoro 4. Na isto temperaturo se ogreje tudi NH3 v rezervoarju 2 tako da vodimo pare oz. kapljevino substance preko črpalke 9’ in regulatorja 10'. Oba regulatorja 10, 10’ sta upravljana z mikroprocesorskim vezjem 11. Z regulatorjema 10, 10’ uravnavamo pravilen dotok oz. doziranje substance, protipovratna ventila 12,12’ pa preprečujeta povratni udar.- 3 heating systems 8 in the form of water pipes installed around tanks 1 and 2. The water in system 8 is heated by removing heat from the cooling mesh 13 and maintained at 85 ° C by means of a thermostatic electric valve 7 and pump 14. At 85 ° C, HNO3 boils so that the vapors of the acid flow through the supply pipe and then through the pump 9 and regulator 10 into combustion chamber 4. NH3 in tank 2 is heated to the same temperature so that steam or water is heated. a liquid drop through pump 9 'and regulator 10'. Both regulators 10, 10 'are controlled by a microprocessor circuit 11. Regulators 10, 10' control the correct supply or flow. substance dosing, check valves 12,12 'prevent the return stroke.

Regulatorja 10 in 10’ na izpustih obeh rezervoarjev 1 in 2 omogočata mešanje obeh ogretih substanc iz rezervoarja 1 in 2 v določenem razmerju, ki je v konkretnem izvedbenem primeru 11:1. Od tu potujejo drobne kapljice že sintetiziranega goriva NH4NO3 skozi mešalno šobo 3 v zgorevalno komoro 4 in sicer v zgorevalni komori 4 najprej skozi ohlajevalno mrežico 13, ki ima nalogo odbiti oz. zadržati ognjeni udar, ki nastane po vžigu kapljic goriva. Ohlajevalno mrežico 13 hladi voda v ogrevalnem sistemu 8. Ko kapljice zapuste ohlajevalno mrežico 13 potuje gorivo navzdol po zgorevalni komori 4, kjer je vdelana tudi žareča nitka 6. Tu se kapljice goriva s pomočjo vžigalne nitke 6 vžgo, pri čemer nastane temperatura 2710 °C. V tem trenutku nastane tlak 994 MPa, vroči plini pa udarijo z nadzvočno hitrostjo iz zgorevalne komore skozi ozko grlo v Lavaiovo šobo in povzroče reakcijo.The regulators 10 and 10 'at the discharges of both tanks 1 and 2 allow the mixing of both heated substances from tanks 1 and 2 in a certain ratio, which in the specific embodiment is 11: 1. From here, tiny droplets of already synthesized NH4NO3 fuel pass through the mixing nozzle 3 into the combustion chamber 4, namely in the combustion chamber 4, first through the cooling mesh 13, which is tasked to repel or. contain the fire stroke that occurs after ignition of the fuel droplets. Cooling mesh 13 is cooled by the water in the heating system 8. When the droplets leave the cooling mesh 13, the fuel flows down the combustion chamber 4, where the filament 6 is also embedded. The fuel droplets are ignited by the filament 6, producing a temperature of 2710 ° C. . At that moment, a pressure of 994 MPa is generated, and the hot gases blow at supersonic velocity from the combustion chamber through the bottleneck into the Lavai nozzle, causing a reaction.

-4Pri reakcijskem raketnem motorju s sintetiziranim gorivom je v drugem izvedbenem primeru rezervoar 2 napolnjen z glicerolom. Razmerje med glicerolom iz rezervoarja 2 in HNO3 iz rezervoarja 1 je 3:1.-4 In a synthetic fuel reaction rocket engine, in the second embodiment, tank 2 is filled with glycerol. The ratio of glycerol from tank 2 to HNO3 from tank 1 is 3: 1.

Glicerol v rezervoarju 2 segrevamo na 85°C, nakar ga s pomočjo pritiska uparimo. Uparimo tudi zmrznjeno HNO3. Pare obeh sestavin mešamo v že prej omenjenem razmerju 1:3. Zaradi povišane temperature glicerola in HNO3 se slednji substanci spojita v gorivo - nitroglicerin in sicer v drobne kapljice zgoraj omenjenega goriva. Te kapljice goriva se vžgo na žareči nitki 6, plini, ki imajo temperaturo 4250°C, pa udarijo v Lavalovo šobo, tu ekspandirajo, notranja energija se deloma spremeni v kinetično in tako dobimo reakcijo.The glycerol in tank 2 is heated to 85 ° C and then evaporated by pressure. Evaporate frozen HNO3 as well. The vapors of the two ingredients are mixed in the previously mentioned 1: 3 ratio. Due to the elevated temperature of glycerol and HNO3, the latter substances are combined into a fuel - nitroglycerin, into tiny droplets of the above mentioned fuel. These fuel droplets are ignited on incandescent 6, and the gases having a temperature of 4250 ° C blow into the Laval nozzle, expand here, and the internal energy is partially transformed into kinetic, thus producing a reaction.

Claims (3)

1. Reakcijski raketni motor s sintetiziranim gorivom, označen s tem, da predhodno toplotno obdelanima sintetiziranima gorivoma, nameščenima v ločenih rezervoarjih (1, 2) z možnostjo nadaljne toplotne obdelave vodimo skozi mešalno šobo (3) v zgorevalno komoro (4), kjer se pare sintetiziranega goriva vžgo, izhajajoči plini pa skozi izstopno cev (5) povzročajo reakcijo.Synthetic-fueled rocket-propulsion rocket engine, characterized in that the pre-treated synthesized propellant housed in separate tanks (1, 2) is passed through a mixing nozzle (3) to a combustion chamber (4), with the possibility of further heat treatment. the vapors of the synthesized fuel ignite, and the resulting gases through the outlet pipe (5) provoke a reaction. 2. Reakcijski raketni motor s sintetiziranim gorivom, po zahtevku 1, označen s tem, da je v rezervoarju (1) dušikova kislina HNO3, v rezervoarju (2) pa NH3, pri čemer je potrebno mešalno razmerje 1:1.Synthesized fuel jet rocket engine according to claim 1, characterized in that the reservoir (1) contains HNO3 nitric acid and NH3 in the reservoir (2), requiring a 1: 1 mixing ratio. 3. Reakcijski raketni motor s sintetiziranim gorivom, po zahtevku 1, označen s tem, da je v rezervoarju (1) dušikova kislina HNO3, v rezervoarju (2) pa glicerol, pri čemer je potrebno mešalno razmerje 1:3.Synthesized fuel jet rocket engine according to claim 1, characterized in that the tank (1) contains HNO3 nitric acid and glycerol in the tank (2), requiring a mixing ratio of 1: 3.
SI9400154A 1994-03-29 1994-03-29 Reaction rocket engine with synthetic fuel SI9400154A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI9400154A SI9400154A (en) 1994-03-29 1994-03-29 Reaction rocket engine with synthetic fuel
AU33334/95A AU3333495A (en) 1994-03-29 1995-03-28 Synthesised fuel-powered reaction rocket motor
PCT/SI1995/000008 WO1995026467A2 (en) 1994-03-29 1995-03-28 Bipropellant rocket motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9400154A SI9400154A (en) 1994-03-29 1994-03-29 Reaction rocket engine with synthetic fuel

Publications (1)

Publication Number Publication Date
SI9400154A true SI9400154A (en) 1995-12-31

Family

ID=20431365

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9400154A SI9400154A (en) 1994-03-29 1994-03-29 Reaction rocket engine with synthetic fuel

Country Status (3)

Country Link
AU (1) AU3333495A (en)
SI (1) SI9400154A (en)
WO (1) WO1995026467A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052987A (en) * 1997-11-14 2000-04-25 Trw Inc. Non-propellant fluid cooled space craft rocket engine
DE102005030437B4 (en) 2005-06-30 2007-09-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Drive device based on gel-type fuel and method for fuel delivery
EP2103798A1 (en) 2008-03-20 2009-09-23 Aquafuel Research Limited Combustion method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928240A (en) * 1953-01-27 1960-03-15 Thiokol Chemical Corp Control system for reaction motor ignitors
GB792909A (en) * 1953-06-19 1958-04-02 Havilland Engine Co Ltd Rocket motor cooling systems
US2981059A (en) * 1958-02-04 1961-04-25 Thompson Ramo Wooldridge Inc Dual thrust chamber rocket
US3140582A (en) * 1959-04-14 1964-07-14 Olin Mathieson Rocket propulsion method using boron and nitrogen compounds
GB2167401A (en) * 1984-09-25 1986-05-29 Kevin Maurice Buckley Injection nitration engine

Also Published As

Publication number Publication date
WO1995026467A2 (en) 1995-10-05
WO1995026467A3 (en) 1995-11-09
AU3333495A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
US5054279A (en) Water spray ejector system for steam injected engine
US3968775A (en) Fuel system for internal combustion engines
JP3100191B2 (en) Flue gas denitration equipment
RU2303154C2 (en) Device (modifications) and method for combustion of rocket propellant
US20080279732A1 (en) Exhaust as Treatment
US8024918B2 (en) Rocket motor having a catalytic hydroxylammonium (HAN) decomposer and method for combusting the decomposed HAN-based propellant
US2704438A (en) Starting fuel system for jet and rocket motors
CN110099866A (en) Generate aminoquinoxaline and nitrogen oxides reduction
WO2006137756A1 (en) Method for producing a two-phase gas-droplet jet and device for carrying out said method
EP1497225A4 (en) Ammonia storage and injection in nox control
US4828170A (en) Heating apparatus for heating confined spaces, particularly apparatus for heating the passenger compartments of an automotive vehicle and the like
SI9400154A (en) Reaction rocket engine with synthetic fuel
GB702779A (en) Means for supplying propellents to a rocket motor
JP2868524B2 (en) Gas turbine engine and method of increasing its power output
JPH0716431A (en) Flue gas denitrification apparatus
FI3611431T3 (en) Combustion chamber module for a vehicle heater
US3295323A (en) Means for vaporizing liquid propellants
EP0363684A1 (en) Exhaust gas denitrification apparatus
US3524734A (en) Device for promoting perfect combustion of liquefied petroleum gas for use in cars
US3692459A (en) Production of heated gaseous materials from cryogenic liquids
RU2607427C2 (en) Fluid medium heating device
US3302403A (en) Method and apparatus for injecting a liquid propellant in hybrid rocket motors
RU2654235C1 (en) Method of the liquid oxygen and kerosene unprocessed residues gasification in the booster rocket tanks and the device for its implementation
WO2013048271A1 (en) Propulsion system
JPH0386212A (en) Method for denitrating waste gas