SI23731A - Adhesive/sealant preferably used for construction panels - Google Patents
Adhesive/sealant preferably used for construction panels Download PDFInfo
- Publication number
- SI23731A SI23731A SI201100150A SI201100150A SI23731A SI 23731 A SI23731 A SI 23731A SI 201100150 A SI201100150 A SI 201100150A SI 201100150 A SI201100150 A SI 201100150A SI 23731 A SI23731 A SI 23731A
- Authority
- SI
- Slovenia
- Prior art keywords
- adhesive
- sealant
- microspheres
- vol
- mineral
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Fireproofing Substances (AREA)
- Sealing Material Composition (AREA)
Abstract
Lepilno tesnilna masa z znižano toplotno prevodnostjo za izolacijska okna in plinsko polnjene izolirne gradbene panele je lepilno tesnilna masa kiima v svojo strukturo vključene votle mineralne in ali organske mikrosfere Toplotna prevodnost takšne mase je pod W mK prednostno pod WmK Kemijske in mehanske lastnosti takšne lepilne tesnilne mase so primerljive s klasičnimi kitiki se uporabljajo za izolacijska okna in plinsko polnjene izolirne gradbene paneleAdhesive sealant with reduced thermal conductivity for insulating windows and gas-filled insulating building panels is an adhesive sealant which incorporates hollow mineral and or organic microspheres into its structure. Thermal conductivity of such a mass is below W mK preferably below WmK. The chemical and mechanical properties of such an adhesive sealant are comparable to conventional cults used for insulating windows and gas-filled insulating building panels
Description
Področje tehnikeThe field of technology
Toplotna izolacija, gradbeni paneli, lepilne/tesnilne maseThermal insulation, building panels, adhesives / sealants
ECLA: C08J3/20H, E06B3/56, C09K3/10D8, C09K3/10FECLA: C08J3 / 20H, E06B3 / 56, C09K3 / 10D8, C09K3 / 10F
Tehnični problemA technical problem
Tehnični problem, ki ga rešuje predlagani izum po patentu je povsem nov in je lepilni/tesnilni kit z znižano toplotno prevodnostjo za izolacijska stekla in plinsko polnjene izolime gradbene panele. Lepilni/tesnilni kit ima vsaj enake kemijske in mehanske lastnosti kot kiti iz stanja tehnike, vendar z nižjo toplotno prevodnostjo. Le ta naj znaša pod 0,30 W/mKA technical problem solved by the present invention according to the invention is brand new and is a low-conductivity adhesive / sealant kit for insulating glass and gas-filled building panel insulators. The adhesive / sealant kit has at least the same chemical and mechanical properties as those of the prior art but with lower thermal conductivity. It should be below 0.30 W / mK
Stanje tehnikeThe state of the art
Gradbeni panel je eno ali več komorno izolacijsko okensko steklo ali plinsko polnjeni izolirni gradbeni panel, namenjen za uporabo v stavbnih ovojih - integriranih in obešenih fasadah ter oknih. Le-tega je potrebno zatesniti z lepilno/tesnilno maso. Lepilne/tesnilne mase so najpogosteje v oblikah lepilno/tesnilnih kitov.A building panel is one or more chamber insulated window glass or a gas-filled insulating building panel intended for use in building envelopes - integrated and suspended facades and windows. It must be sealed with adhesive / sealant. Adhesives / sealants are most commonly in the form of adhesive / sealants.
Lepilni/tesnilni kiti so dobro poznani na področju izolacijskih oken oziroma plinsko polnjenih izolimih panelih, kjer se uporabljajo za fiksiranje kovinskega okvirja med dvema ploščama in zaviranje uhajanja plina iz izolacijskega jedra. Toplotna upornost takšnih oken oz. panelov je zaradi potrebe po zniževanju porabe energije zelo pomembna. Ena od dosedanjih smeri razvoja je bila zniževanje toplotne prehodnosti kovinskega okvirja oz. distančnika z uporabo hibridnih (kovinsko-plastičnih) materialov. Danes ti distančniki že dosegajo tehnično možno mejo znižane toplotne prehodnosti, tako da je prispevek k toplotni prehodnosti tesnilnega kita/lepila nanesenega preko njih že večji od tistega od distančnikov samih. Toplotna prevodnost teh tesnilno/lepilnih kitov je danes od 0,35 do 0,40 W/mK.Adhesive / sealant putties are well known in the field of insulating windows or gas-filled insulating panels, where they are used to fix a metal frame between two panels and inhibit gas leakage from the insulation core. The thermal resistance of such windows or. panels are very important because of the need to reduce energy consumption. One of the directions of development so far has been to reduce the thermal transmittance of the metal frame, or. spacers using hybrid (metal-plastic) materials. Today, these spacers already reach the technically feasible limit of reduced thermal transmittance, so that the contribution to the thermal transmittance of the sealant / adhesive applied over them is already greater than that of the spacers themselves. The thermal conductivity of these sealing / adhesive kits is today from 0.35 to 0.40 W / mK.
V stanju tehnike so znane zahteve za lepilno/tesnilne kite toplotno izolacijskega panela, ki so:In the prior art, requirements for adhesive / sealant tendons of thermal insulation panels are known, which are:
• adhezija s kohezivnim lomom na steklo, aluminij, nerjavno jeklo, natezna trdnost od 0,6 do 1,2 MPa (SIST EN 28339) • trdota od 30 do 60 Shore A (ISO 868) • raztezek pri pretrgu vsaj 50% (SIST EN 28339) • odpornost proti tečenju je 0 mm (SIST EN 27390) • test stalne obremenitve: natezna trdnost 0,30 MPa za 10 minut (SIST EN 12796; velja samo za tiste, ki imajo CE znak za proizvodnjo)• adhesion with cohesive glass, aluminum, stainless steel, tensile strength 0.6 to 1.2 MPa (SIST EN 28339) • 30 to 60 Shore A hardness (ISO 868) • at least 50% elongation (SIST EN 28339) • Leakage resistance of 0 mm (SIST EN 27390) • Continuous load test: tensile strength 0.30 MPa for 10 minutes (SIST EN 12796; applies only to those with CE marking for production)
V stanju tehnike najdemo tri skupine relevantnih patentov. V prvi so predstavljeni tesnilni kiti, ki so na osnovi polimerov, kot so polisulfid, polimerkaptani, silikoni, poliuretani in je njihov namen uporabe v gradbeništvu, specifično kot sekundarno tesnilo za izolacijska okenska stekla ali plinsko polnjene izolime gradbene panele, namenjene za uporabo v stavbnih ovojih - integriranih in obešenih fasadah ter oknih: US2543844, US2589151, US4153594, US3689450, US6919397, CA2085077, EP1044936, US5430192, EP0097005, EP0010888. Danes je za te namene najpogosteje uporabljen tesnilni kit na osnovi tekočega polisulfidnega polimera, izbranega mehčala in promotorja adhezije, običajno iz skupine silanov. Polisulfidna mešanica se nato utrdi z utrjevalcem, kot je manganov dioksid. Z dodajanjem polisulfidni mešanici kopolimere na osnovi epoksida, politioetra, poliuretana, polimerkaptana itd. se izboljšujejo mehanske lastnosti in plino oz. paro tesnost končnega tesnilnega kita.There are three groups of relevant patents in the prior art. The first presents sealing putties based on polymers such as polysulfide, polymercaptans, silicones, polyurethanes and intended for use in construction, specifically as a secondary seal for insulating window panes or gas-filled insulators of building panels intended for use in building casings - integrated and suspended facades and windows: US2543844, US2589151, US4153594, US3689450, US6919397, CA2085077, EP1044936, US5430192, EP0097005, EP0010888. Today, the most commonly used sealing kit based on liquid polysulfide polymer, selected plasticizer and adhesion promoter, usually from the group of silanes, is used for these purposes. The polysulfide mixture is then solidified with a hardener such as manganese dioxide. By adding to the polysulfide mixture copolymers based on epoxy, polythioether, polyurethane, polymercaptan etc. mechanical properties and gas and / or the steam tightness of the final sealing putty.
V drugi skupini so predstavljene tesnilne mase, ki z vključevanjem votlih mikrosfer v svojo strukturo dosegajo nižjo gostoto: US4582756, US6915987, US7067612. V isti skupini so še patenti, v katerih so predstavljene tesnilne mase, ki z vključevanjem votlih mikrosfer v svojo strukturo dosegajo nižjo gostoto in boljše mehanske lastnosti, kot so raztržna trdnost, natezna trdnost, večja elastičnost, obstojnost na goriva: US20040097643, W02010019561, US5663219.The second group presents sealants which, by incorporating hollow microspheres into their structure, achieve a lower density: US4582756, US6915987, US7067612. In the same group are patents that present sealants that, by incorporating hollow microspheres in their structure, achieve lower density and better mechanical properties such as tensile strength, tensile strength, higher elasticity, fuel resistance: US20040097643, W02010019561, US5663219 .
Patent US20040097643 opisuje pripravo tesnilnih mas z nizko gostoto (od 0,7 do 1,3US20040097643 describes the preparation of low density seals (0.7 to 1.3
Ί g/cm ), ki ima izboljšano natezno trdnost. Za doseganje nižje gostote tesnila predlagajo uporabo polnih in votlih polnil, ki imajo nižjo gostoto od osnovnega tesnilnega materiala. Polna in votla polnila so lahko mineralna (keramična, steklena) ali organskega izvora. Zanimivo je, da so z uvedbo takšnih polnil v polimerno tesnilno maso dosegli tudi boljše mehanske lastnosti (raztržno in natezno trdnost), ki so v nasprotju s preteklo prakso, ko je veljalo: višja ko je natezna trdnost, nižja je raztržna trdnost. S to invencijo se je ta korelacija porušila, vzrok za to pa avtorji navajajo v uvedbi ustreznih polnil. Utrjena ali neutrjena tesnilna masa z nizko gostoto je primerna za uporabo na različnih področjih: letalska in vesoljska industrija, prevozna industrija (vlaki, ladje, vozila), strojništvo, konstrukcije in gradbeništvo - povsod tam, kjer je redukcija mase pomembna. Vendar pa omenjena masa ni bila preizkušena za uporabo na področju izolacijskih oken in plinsko polnjenih izolimih gradbenih panelov. Tako se avtorji patenta niso ukvarjali z vprašanjem, ali njihove tesnilne mase upočasnjujejo permeacijo plinov (vodna para, argon), kar je na področju izolacijskih oken in plinsko polnjenih izolirnih gradbenih panelov ključnega pomena. Iz njihovega patenta ni mogoče razbrati, da se po njihovem izumu da doseči želene toplotne prevodnosti tesnilnih mas, saj njihov izdelek ni bil namenjen energetsko učinkoviti gradnji.Ί g / cm) with improved tensile strength. To achieve a lower density of seals, they suggest the use of full and hollow fillers that have a lower density than the basic sealing material. Full and hollow fillers can be mineral (ceramic, glass) or organic. It is interesting to note that by introducing such fillers into the polymer sealant, they also achieved better mechanical properties (tensile and tensile strength), which is contrary to the previous practice when it was applied: the higher the tensile strength, the lower the tensile strength. With this invention, this correlation is shattered, and the reason for this is stated by the authors in the introduction of appropriate fillers. Low density solidified or uncured sealants are suitable for use in various fields: aerospace, transport (trains, ships, vehicles), mechanical engineering, structures and construction - wherever mass reduction is important. However, said mass has not been tested for use in the field of insulating windows and gas-filled insulators of building panels. Thus, the patent authors did not address the question of whether their sealants slow down the permeation of gases (water vapor, argon), which is crucial in the field of insulation windows and gas-filled insulating building panels. From their patent it cannot be deduced that according to their invention the desired thermal conductivity of the sealants can be achieved, since their product was not intended for energy-efficient construction.
V tretji skupini je en sam patent US7569626, ki obravnava uporabo votlih ali s plinom polnjenih steklenih ali keramičnih mikrosfer, da se doseže nižja toplotna prevodnost biokompatibilnega polimera, namenjenega za uporabo v medicinskih terapijah, kjer se zaradi prevoda električnega toka le-ta pregreva. V patentu ni omenjeno, kolikšna je toplotna prevodnost tako pripravljenega polimera, definirana pa je toplotna prevodnost polnil, ki je manjša od 5 W/mK, prednostno manj kot 2 W/mK. Omenjeni patent je glede na naše tehnično področje zelo oddaljen, saj se nanaša na biokompatibilne polimere, z uporabo v medicini. Z našo raziskavo pa smo razvili polimerno lepilo/tesnilo z znižano toplotno prevodnostjo z uporabo v gradbeništvu, kjer so zahtevane specifične tehnične in mehanske lastnosti za namen uporabe. Iz omenjenega patenta ni mogoče razbrati, da zaščitena polimerna masa ustreza ključnim tehničnim zahtevam za uporabo kot sekundarno tesnilo pri izolacijskih oknih in plinsko polnjenih izolirnih gradbenih panelih, kot so: natezna trdnost > 0,6 MPa, raztezek pri pretrgu > 50 %, trdota po Shoru A > 30.In the third group is a single patent US7569626, which addresses the use of hollow or gas-filled glass or ceramic microspheres to achieve a lower thermal conductivity of a biocompatible polymer intended for use in medical therapies, where it is overheated due to electrical conductivity. The patent does not mention the thermal conductivity of the polymer thus prepared, but defines a thermal conductivity of fillers of less than 5 W / mK, preferably less than 2 W / mK. This patent is very remote in terms of our technical field as it relates to biocompatible polymers, for use in medicine. In our research, we have developed a polymer adhesive / sealant with reduced thermal conductivity for use in construction, where specific technical and mechanical properties are required for the purpose of use. It cannot be deduced from the aforementioned patent that the protected polymer mass meets the key technical requirements for use as a secondary seal in insulating windows and gas-filled insulating building panels, such as: tensile strength> 0.6 MPa, tear elongation> 50%, hardness after Shoru A> 30.
Opis nove rešitveDescription of the new solution
Lepilno/ tesnilna masa, prednostno za uporabo v panelu za uporabo v gradbeništvu rešuje zgoraj prikazani nov tehnični problem tudi s pomočjo presenetljivega tehničnega učinka in to med drugim tako, da je po robovih zatesnjen s tesnilno maso na osnovi polisulfida ali silikona. Toplotna prevodnost te lepilne/tesnilne mase je manj kot 0,30 W/mK, prednostno manj kot 0,25 W/mK. Nadalje ta lepilna/tesnilna masa vsebuje organske in/ali mineralne votle mikrosfere.Adhesive / sealant, preferably for use in the building panel, solves the new technical problem shown above by way of an astonishing technical effect, inter alia by sealing the edges with a polysulfide or silicone based sealant. The thermal conductivity of this adhesive / sealant is less than 0.30 W / mK, preferably less than 0.25 W / mK. Further, this adhesive / sealant contains organic and / or mineral hollow microspheres.
Lepilni/tesnilni kit po izumu je narejen na osnovi polisulfida ali silikona in/ali njunih derivatov in ima vgrajene votle mineralne in/ali organske mikrosfere ter ostala polnila, s katerimi je mogoče doseči maso z znižano toplotno prevodnostjo.The adhesive / sealant according to the invention is made on the basis of polysulfide or silicone and / or their derivatives and has hollow mineral and / or organic microspheres and other fillers which can achieve a low thermal conductivity mass.
Izum bo podrobneje opisan na osnovi ugotovitev raziskave in izvedbenih primerov. Ugotovljeno je bilo, da je pri toplotni prevodnosti <0,30 W/mK opaziti znatno izboljšanje toplotne upornosti roba izolacijskega stekla in plinsko polnjenega izolimega gradbenega panela. Z nadaljnjim zniževanjem toplotne prevodnosti sekundarni tesnilni masi se toplotna upornost roba izolacijskega stekla in plinsko polnjenega izolimega gradbenega panela izboljšuje, vendar pa je za doseganje želenih mehanskih lastnosti tesnilne mase in ekonomike izdelka optimalna toplotna prevodnost tesnilne mase okoli 0,25 W/mK.The invention will be described in more detail based on the findings of the research and the embodiments. It was found that at thermal conductivity <0.30 W / mK, a significant improvement in the thermal resistance of the edge of the insulating glass and the gas-filled insulating building panel was observed. By further reducing the thermal conductivity of the secondary sealant, the thermal resistance of the edge of the insulating glass and the gas-filled insulating panel is improved, but the thermal conductivity of the sealant is approximately 0.25 W / mK to achieve the desired mechanical properties of the sealant and the economics of the product.
Znižano toplotno prevodnost lepilni/tesnilni masi dosežemo z najmanjšim tehničnim naporom, če lepilni/tesnilni masi dodamo oziroma zamenjamo del polnil z votlimi mineralnimi in/ali organskimi mikrosferami.Reduced thermal conductivity of the adhesive / sealant is achieved with the least technical effort if the adhesive / sealant is added or replaced by a portion of the fillers with hollow mineral and / or organic microspheres.
Votle mikrosfere so ekspandirane zaprto celične strukture ali votla polnila kroglaste ali jajčaste oblike v velikosti od 5 do 500 pm. Votle mikrosfere so lahko tudi polnjene s plinom (npr.: CO2, Ar). Votle mikrosfere so lahko na osnovi mineralov (steklo, keramika) ali pa na osnovi organskih polimerov (PE, PU, PS, PMMA). Primer primernih votlih mineralnih mikrosfer so: Eurocell od Europerla, E-spheres od Envirospheres. Primer primernih votlih organskih mikrosfer je Expancel od Akzo Nobel.The hollow microspheres are expanded closed cell structures or hollow fillers of spherical or egg-shaped size ranging from 5 to 500 pm. Hollow microspheres can also be filled with gas (eg: CO2, Ar). The hollow microspheres can be mineral based (glass, ceramic) or organic polymers (PE, PU, PS, PMMA). Examples of suitable hollow mineral microspheres are: Eurocell from Europerl, E-spheres from Envirospheres. An example of suitable hollow organic microspheres is Expancel by Akzo Nobel.
Najmanjša velikost votlih mineralnih mikrosfer, ki se jih da dobiti na trgu, je 5 pm, največja velikost pa do 500 pm. Najmanjša velikost votlih organskih mikrosfer, ki se jih da dobiti na trgu, je 10 pm, največja velikost pa do 1000 pm. V našem primeru ni zaželeno, da v zmesi prevladujejo najmanjše votle mineralne in organske mikrosfere, saj je njihova toplotna prevodnost bistveno večja glede na velike mikrosfere. Vendar pa se moramo zavedati tudi omejitev glede maksimalnih velikosti mikrosfer, kije pogojena s tehničnimi omejitvami strojne opreme aplikacije. Na področju izolacijskih oken in plinsko polnjenih izolirnih panelih se za fiksiranje kovinskega okvirja med dvema ploščama in preprečevanje izhoda plina iz izolacijskega jedra običajno uporabljajo dvokomponentne lepilne/tesnilne mase, saj te v primerjavi z enokomponentnimi lepilnimi/tesnilnimi masami nudijo bistveno boljšo parno in plinsko zaporo. Polnila, ki so vgrajena v dvokomponentne lepilne/tesnilne mase, ne smejo preseči velikosti 500 pm, saj bi to lahko vodilo do zamašitve oz. nepravilnega delovanja zapornih elementov strojne opreme. Še večji problem predstavljajo abrazijske poškodbe v mešalnem in dozirnem sistemu, saj se le-te z velikostjo in številom trdih delcev potencirajo. Pri mineralnih votlih mikrosferah pa predstavlja še dodatne težave krhkost mikrosfer, ki se ob previsokih tlakih in hitrostih mešanja lahko zdrobijo.The minimum size of hollow mineral microspheres available on the market is 5 pm and the maximum size is up to 500 pm. The minimum size of hollow organic microspheres available on the market is 10 pm and the maximum size is up to 1000 pm. In our case, it is not desirable that the mixture is dominated by the smallest hollow mineral and organic microspheres, since their thermal conductivity is significantly higher than that of the large microspheres. However, we must also be aware of the limitations on the maximum sizes of the microspheres, which are conditioned by the technical limitations of the application hardware. In the field of insulating windows and gas-filled insulating panels, two-component adhesive / sealants are typically used to fix the metal frame between the two panels and prevent gas from escaping from the insulation core, as they offer significantly better vapor and gas closures than one-component adhesives / sealants. Fillers incorporated in two-component adhesives / sealants should not exceed 500 pm in size, as this could lead to clogging or clogging. malfunctioning of hardware locking elements. Abrasive damage in the mixing and dosing systems is even more of a problem, as they are magnified by the size and number of solids. In the case of mineral hollow microspheres, the fragility of the microspheres, which can break even at high pressures and mixing speeds, poses additional problems.
Raziskava je pokazala, da je primema velikost votlih mikrosfer do 300 pm. Debelina sloja sekundarnega tesnila je pri izolacijskih oknih in plinsko polnjenih izolirnih panelih do 4 mm. Izkustveno je dognano, da morajo biti delci vsaj 10-krat manjši od debeline nanosa, če želimo doseči videz enakomernega nanosa sekundarnega tesnila. V kolikor pa je zahteva po bolj gladkem izgledu sekundarnega tesnila, pa morajo biti mikrosfere še manjše, in sicer pod 150 pm ali celo pod 100 pm.Research has shown that the size of the hollow microspheres is up to 300 pm. The thickness of the secondary seal layer is up to 4 mm for insulating windows and gas-filled insulation panels. It is experienced that particles must be at least 10 times smaller than the thickness of the coating in order to achieve the appearance of a uniform application of the secondary seal. However, if the demand for a smoother secondary seal is required, the microspheres must be even smaller, below 150 pm or even below 100 pm.
Velikost delcev - mikrosfer in polnil - vpliva na mehanske in toplotne lastnosti lepilne/tesnilne mase. Večji kot so delci, nižja je trdnost lepilne/tesnilne masa. Vzrok je v večjem zareznem učinku ob vsakem delcu. Vendar pa večje kot so votle mikrosfere, nižja je toplotna prevodnost mase, saj imajo votle mikrosfere bistveno nižjo toplotno prevodnost (< 0,062 W/mK), kot je toplotna prevodnost klasične lepilne/tesnilne mase (> 0,35 W/mK), ki se uporablja kot sekundarno tesnilo pri izolacijskih oknih in plinsko polnjenih izolirnih panelih.Particle size - microspheres and fillers - affects the mechanical and thermal properties of the adhesive / sealant. The larger the particles, the lower the adhesive / sealant strength. The cause is a larger notch effect on each particle. However, the larger the hollow microspheres, the lower the thermal conductivity of the mass, since the hollow microspheres have a significantly lower thermal conductivity (<0.062 W / mK) than the thermal conductivity of conventional adhesive / sealant (> 0.35 W / mK), which used as a secondary seal for insulation windows and gas-filled insulation panels.
Prav obratno pa velja za polna polnila, kot so kalcijev karbonat (kalcit, kreda), kalcijev sulfat (sadra), glina, sljuda in drugi. Razlog uporabe polnil v tesnilnih masah je v ceni, saj z dodajanjem le-teh znatno pocenimo lepilno/tesniino maso. Lepilna/tesnilna masa brez polnil bi bila zaradi visoke cene komercialno nezanimiva. Hkrati pa z dodatkom polnil dosežemo tudi želen natezni modul, kar pomeni, da s korelacijo polnil lahko dobimo želeno trdoto, natezno trdnost, adhezijo in viskoznost, ki jih mora lepilna/tesnilna masa za področje uporabe v izolacijskih oknih in plinsko polnjenih panelih za gradbeništvo izpolnjevati. Običajno sekundarne tesnilne mase za izolacijska okna in plinsko polnjene panele vsebujejo 35 - 50 ut. % tekočih komponent ter 50 - 65 ut. % polnil, najpogosteje CaCO3, ki je lahko neobdelan in zrnat (GCC) ali pa obdelan in precipitiran (PCC). Glede na kristalno strukturo in obliko ima lahko kalcijev karbonat toplotno prevodnost od 2,4 do 9 W/mK, kar pomeni, večji kot so delci kalcijevega karbonata in več kot ga je v lepilni/tesnilni masi, višja je njena toplotna prevodnost. Delež PCC polnila je navadno v zmesi 5-15 ut. %, GCC polnil pa 50-60 ut. %. Ker smo v opisanem izumu uporabili votle mikrosfere kot nadomestilo za polnilo, se je delež ostalih polnil, predvsem pa CaCCb znatno spremenil z namenom doseganja želenih mehanskih lastnosti.The opposite applies to full fillers such as calcium carbonate (calcite, chalk), calcium sulfate (gypsum), clay, mica and others. The reason for the use of fillers in sealants is in the price, because by adding them, the adhesive / sealant is significantly reduced. Adhesive / sealant without fillers would be commercially uninteresting due to the high price. At the same time, with the addition of fillers, we also achieve the desired tensile modulus, which means that by correlating the fillers we can obtain the desired hardness, tensile strength, adhesion and viscosity, which the adhesive / sealant for the scope in insulating windows and gas-filled panels for construction . Typically, secondary sealants for insulating windows and gas-filled panels contain 35 - 50 wt. % of liquid components and 50 - 65 wt. % fillers, most commonly CaCO3, which may be untreated and granular (GCC) or treated and precipitated (PCC). Depending on the crystal structure and shape, calcium carbonate may have a thermal conductivity of 2.4 to 9 W / mK, which means that the higher the calcium carbonate particles and the higher the adhesive / sealant content, the higher its thermal conductivity. The proportion of PCC filler is usually in a mixture of 5-15 wt. %, And GCC fill 50-60 wt. %. Since hollow microspheres were used as a substitute for the filler in the present invention, the proportion of other fillers, and in particular CaCCb, was significantly altered in order to achieve the desired mechanical properties.
Z raziskavo je bilo pokazano, da je za toplotno prevodnost lepilne/tesnilne mase pod 0,30 W/mK potrebno minimalno 5 volumskih enot klasičnih polnil v lepilni/tesnilni masi zamenjati z votlimi mikrosferami. Pri tem se seveda poruši standardno masno razmerje med tekočimi in trdnimi komponentami v lepilni/tesnilni masi, saj imajo votle mikrosfere bistveno nižjo gostoto ter bistveno večjo specifično površino, zaradi cesarje potrebno dovesti več tekoče komponente, predvsem polimera, da se votle mikrosfere umešajo v lepilno/tesnilno maso.The study showed that for thermal conductivity of adhesive / sealant below 0.30 W / mK, a minimum of 5 volumes of conventional fillers in adhesive / sealant need to be replaced with hollow microspheres. Of course, the standard mass ratio between the liquid and solid components in the adhesive / sealant is broken, since the hollow microspheres have a significantly lower density and a significantly larger specific surface, which makes it necessary to bring more liquid components, especially the polymer, to mix the hollow microspheres in the adhesive. / sealant.
Z večanjem deleža votlih mikrosfer v lepilni/tesnilni masi narašča krhkost mase oz. se zmanjšuje njena elastičnost ter znatno poveča viskoznost in tiksotropija. Da dosežemo ciljne lastnosti lepilne/tesnilne mase, ki po standardih še ustrezajo namenu uporabe, je potrebno povečati delež polimera, še bolj pa delež dodatkov za elastičnost. Vendar pa tudi tukaj obstaja kritična točka, saj dodatki za elastičnost zmanjšujejo oprijem lepilne/tesnilne mase na kovine, steklo, plastiko za distančnike in mavčne plošče.By increasing the proportion of hollow microspheres in the adhesive / sealant, the brittleness of the mass increases. decreases its elasticity and significantly increases viscosity and thixotropy. In order to achieve the target adhesive / sealant properties that still meet the intended use by the standards, it is necessary to increase the proportion of polymer and even more the proportion of elastic additives. However, there is also a critical point here, as elasticity additives reduce the adhesive / sealant's adhesion to metals, glass, plastic for spacers and gypsum boards.
Z našo raziskavo smo pokazali, da je zgornja meja vsebnosti votlih mikrosfer 60 volumskih % glede na celotno tesnilno maso. Pri tej vsebnosti lepilna/tesnilna masa na začetku procesa utrjevanja še komaj teče, ko pa je utrjena, izpolnjuje zahtevane pogoje, ki jih predpisuje standard za področje uporabe v izolacijskih oknih in plinsko polnjenih izolirnih panelih.With our research we have shown that the upper limit of the hollow microsphere content is 60% by volume with respect to the total sealing mass. At this content, the adhesive / sealant barely flows at the beginning of the curing process, but when cured it meets the required conditions prescribed by the standard for the scope in insulating windows and gas-filled insulation panels.
Kljub temu pa obstaja optimalen volumski delež organskih in mineralnih mikrosfer v lepilni/tesnilni masi s stališča obdelovalnosti mase, cene in odziva na požar. Kot je bilo že omenjeno, s povečevanjem količin votlih mikrosfer se povečuje viskoznost, kar zahteva zmogljivejšo strojno opremo za mešanje in črpanje, hkrati pa narašča tudi delež polimera in dodatkov za elastičnost, ki znatno prispevajo k dvigovanju cene končnega produkta. S stališča požara pa so kritične le organske mikrosfere, saj prispevajo k izgorevalni entalpiji lepilne/tesnilne mase, medtem ko mineralne mikrosfere zmanjšujejo izgorevalno entalpijo lepilne/tesnilne mase. Z našo raziskavo smo določili, daje optimalna količina votlih organskih mikrosfer med 20 in 40 volumskih % glede na celotno lepilno/tesnilno maso, za votle mineralne mikrosfere pa med 10 in 30 volumskih % glede na celotno lepilno/tesnilno maso. To je tudi območje, ko enostavno dosegamo zahtevane mehanske lastnosti lepilne/tesnilne mase in toplotne prevodnosti pod 0,25 W/mK.However, there is an optimum volume fraction of organic and mineral microspheres in the adhesive / sealant from a mass workability, cost, and fire response point of view. As mentioned above, as the volumes of hollow microspheres increase, the viscosity increases, requiring more powerful mixing and pumping equipment, while also increasing the proportion of polymer and elastic additives that significantly contribute to raising the price of the final product. From the standpoint of fire, only the organic microspheres are critical, as they contribute to the combustion enthalpy of adhesive / sealant, while the mineral microspheres reduce the combustion enthalpy of adhesive / sealant. In our study, the optimum amount of hollow organic microspheres was between 20 and 40% by volume relative to the total adhesive / sealant mass, and for hollow mineral microspheres between 10 and 30% by volume relative to the total adhesive / sealant mass. This is also the area where the required mechanical properties of adhesive / sealant and thermal conductivity below 0.25 W / mK are easily achieved.
Organske in mineralne mikrosfere lahko uporabljamo tudi skupaj v tesnilni masi. Prednost organskih mikrosfer je, da nam bistveno bolj znižujejo toplotno prevodnost kot anorganske mikrosfere in da so manj občutljive na mešalni sistem. Prednost mineralnih mikrosfer pa je, da znižujejo izgorevalno entalpijo. Zakonitosti deleža obeh tipov mikrosfer v lepilni/tesnilni masi so podobne kot pri posamezni vrsti mikrosfer. Izvedbeni primeriOrganic and mineral microspheres can also be used together in a sealant. The advantage of organic microspheres is that they significantly lower our thermal conductivity than inorganic microspheres and are less sensitive to the mixing system. The advantage of mineral microspheres is that they reduce the enthalpy of combustion. The regularities of the proportion of both types of microspheres in the adhesive / sealant are similar to those of each type of microspheres. Implementation examples
Primer 1:Example 1:
Pripravili smo 2 komponentno lepilno/tesnilno maso na osnovi polisulfida. Sestava komponente A glede na utežne in volumske deleže je podana v Tabeli 1.We prepared 2 component adhesive / sealant based on polysulfide. The composition of component A by weight and by volume is given in Table 1.
Tabela 1:Table 1:
V Tabeli 1 navedene surovine so bile zamešane pri sobni temperaturi na planetnem mešalu DREIS IL pri 60 obratih/min. Najprej so bile zamešane tekoče komponente (3 5 min), nato pa se je dodajal kalcijev karbonat v korakih od najbolj finega proti najbolj grobemu. Ko so bila vsa polnila vmešana, se je naknadno mešalo še 20 min pod vakuumom.The raw materials listed in Table 1 were mixed at room temperature on a DREIS IL planetary agitator at 60 rpm. Liquid components were first mixed (3 5 min) and then calcium carbonate was added in steps from the finest to the coarsest. After all the fillings were mixed, they were subsequently stirred for a further 20 min under vacuum.
Ločeno smo pripravili komponento B s sestavo, kije navedena v Tabeli 2.We separately prepared component B with the composition listed in Table 2.
Tabela 2Table 2
Surovine za pripravo komponente B so bile pripravljene z mešanjem na laboratorijskem mešalu SPEED MIXER FVZ 400 pri 2000 obratih 2-krat po 30 sekund. Med obema mešanjema smo maso premešali še ročno.The raw materials for component B preparation were prepared by mixing on a SPEED MIXER FVZ 400 laboratory mixer at 2000 rpm for 2 seconds each. The mass was stirred by hand between the two mixes.
Nato smo zmešali 100 utežnih delov komponente A (Tabela 1) in 9 utežnih delov komponente B (Tabela 2), da smo dobili homogeno zmes, ki je bila primerna za pripravo preizkušancev za mehanske preizkuse in merjenje toplotne prevodnosti. Počakali smo 168 ur, da se je zmes popolnoma utrdila (v skladu s standardi), nato pa izvedli teste. Rezultati so zbrani v Tabeli 6.Then, 100 parts by weight of component A (Table 1) and 9 parts by weight of component B (Table 2) were mixed to give a homogeneous mixture that was suitable for preparing test pieces for mechanical tests and for measuring thermal conductivity. We waited 168 hours for the mixture to solidify completely (in accordance with the standards) and then performed the tests. The results are summarized in Table 6.
Primer 2:Example 2:
Pripravili smo 2 komponentno lepilno/tesnilno maso na osnovi polisulfida, v katero smo primešali votle mineralne mikrosfere. Sestava komponente A glede na utežne in volumske deleže je podana v Tabeli 3.We prepared 2 component adhesive / sealant based on polysulfide into which hollow mineral microspheres were mixed. The composition of component A by weight and by volume is given in Table 3.
Tabela 3:Table 3:
V Tabeli 3 navedene surovine so bile zamešane pri sobni temperaturi na planetnem mešalu DREIS 1L pri 60 obratih/min. Najprej so bile zamešane tekoče komponente (3 5 min), nato pa se je dodajal kalcijev karbonat v korakih od najbolj finega proti najbolj grobemu. Ko so bila vsa polnila vmešana, se je naknadno mešalo še 20 min pod vakuumom. Na koncu so se dodale še mikrosfere Eurocell 140-23. Vmešavale so se 1 min ter še nadaljnjih 5 min pod vakuumom.The raw materials listed in Table 3 were mixed at room temperature on a DREIS 1L planetary agitator at 60 rpm. Liquid components were first mixed (3 5 min) and then calcium carbonate was added in steps from the finest to the coarsest. After all the fillings were mixed, they were subsequently stirred for a further 20 min under vacuum. Finally, Eurocell 140-23 microspheres were added. They were stirred for 1 min and further for 5 min under vacuum.
Dobljeno homogeno maso smo utrdili z B komponento, ki smo jo pripravili po enakem postopku, kot je opisano v primeru 1 (Tabela 2).The resulting homogeneous mass was solidified with the B component, which was prepared according to the same procedure as described in Example 1 (Table 2).
Nato smo zmešali 100 utežnih delov komponente A (Tabela 3) in 16 utežnih delov komponente B (Tabela 2), da smo dobili homogeno zmes, ki je bila primerna za pripravo preizkušancev za mehanske preizkuse in merjenje toplotne prevodnosti. Počakali smo 168 ur, da se je zmes popolnoma utrdila (v skladu s standardi), nato pa izvedli teste. Rezultati so zbrani v Tabeli 6.We then mixed 100 parts by weight of component A (Table 3) and 16 parts by weight of component B (table 2) to obtain a homogeneous mixture that was suitable for preparing the test specimens for mechanical tests and for measuring thermal conductivity. We waited 168 hours for the mixture to solidify completely (in accordance with the standards) and then performed the tests. The results are summarized in Table 6.
Primer 3:Example 3:
Pripravili smo 2 komponentno lepilno/tesnilno maso na osnovi polisulfida, v katero smo primešali organske votle mikrosfere. Sestava komponente A glede na utežne deleže je podana v Tabeli 4.We prepared 2 component adhesive / sealant based on polysulfide into which the organic hollow microspheres were mixed. The composition of component A by weight is given in Table 4.
Tabela 4:Table 4:
V Tabeli 4 navedene surovine so bile zamešane pri sobni temperaturi na laboratorijskem planetnem mešalu DREIS IL pri 60 obratih/min. Najprej so bile zamešane tekoče komponente (3-5 min). Kot prvo polnilo seje vmešal Expancel 461 DET 40 d25, nato pa seje dodajal kalcijev karbonat v korakih od najbolj finega proti najbolj grobemu. Ko so bila vsa polnila vmešana, se je naknadno mešalo še 20 min pod vakuumom.The raw materials listed in Table 4 were mixed at room temperature on a DREIS IL laboratory planetary agitator at 60 rpm. Liquid components were first mixed (3-5 min). Expancel 461 DET 40 d25 was mixed as the first filler of the session, followed by the addition of calcium carbonate in steps from the finest to the coarsest. After all the fillings were mixed, they were subsequently stirred for a further 20 min under vacuum.
Dobljeno homogeno maso smo utrdili z B komponento, ki smo jo pripravili po enakem postopku, kot je opisano v primeru 1 (Tabela 2).The resulting homogeneous mass was solidified with the B component, which was prepared according to the same procedure as described in Example 1 (Table 2).
Nato smo zmešali 100 utežnih delov komponente A (Tabela 4) in 13 utežnih delov komponente B (Tabela 2), da smo dobili homogeno zmes, ki je bila primerna za pripravo preizkušancev za mehanske preizkuse in merjenje toplotne prevodnosti. Počakali smo 168 ur, da se je zmes popolnoma utrdila (v skladu s standardi), nato pa izvedli teste. Rezultati so zbrani v Tabeli 6.Subsequently, 100 parts by weight of component A (Table 4) and 13 weight parts of component B (Table 2) were mixed to give a homogeneous mixture that was suitable for preparing the test specimens for mechanical tests and for measuring thermal conductivity. We waited 168 hours for the mixture to solidify completely (in accordance with the standards) and then performed the tests. The results are summarized in Table 6.
Primer 4:Example 4:
Pripravili smo 2 komponentno lepilno/tesnilno maso na osnovi polisulfida, v katero smo primešali organske in mineralne votle mikrosfere. Sestava komponente A glede na utežne deleže je podana v Tabeli 5.We prepared 2 component adhesive / sealant based on polysulfide into which organic and mineral hollow microspheres were mixed. The composition of component A by weight is given in Table 5.
Tabela 5:Table 5:
V Tabeli 5 navedene surovine so bile zamešane pri sobni temperaturi na planetnem mešalu DREIS IL pri 60 obratih/min. Najprej so bile zamešane tekoče komponente (3 5 min). Kot prvo polnilo seje vmešal Expancel 461 DET 40 d25, nato pa seje dodajal kalcijev karbonat v korakih od najbolj finega proti najbolj grobemu. Ko so bila vsa polnila vmešana, se je naknadno mešalo še 20 min pod vakuumom. Na koncu so se dodale še mikrosfere Eurocell 140-23. Vmešavale so se 1 min ter še nadaljnjih 5 min pod vakuumom.The raw materials listed in Table 5 were mixed at room temperature on a DREIS IL planetary agitator at 60 rpm. Liquid components were first mixed (3 5 min). Expancel 461 DET 40 d25 was mixed as the first filler of the session, followed by the addition of calcium carbonate in steps from the finest to the coarsest. After all the fillings were mixed, they were subsequently stirred for a further 20 min under vacuum. Finally, Eurocell 140-23 microspheres were added. They were stirred for 1 min and further for 5 min under vacuum.
Dobljeno homogeno maso smo utrdili z B komponento, ki smo jo pripravili po enakem postopku, kot je opisano v primeru 1 (Tabela 2).The resulting homogeneous mass was solidified with the B component, which was prepared according to the same procedure as described in Example 1 (Table 2).
Nato smo zmešali 100 utežnih delov komponente A (Tabela 5) in 12 utežnih delov komponente B (Tabela 2), da smo dobili homogeno zmes, ki je bila primerna za pripravo preizkušancev za mehanske preizkuse in merjenje toplotne prevodnosti. Počakali smo 168 ur, da se je zmes popolnoma utrdila (v skladu s standardi), nato pa izvedli teste. Rezultati so zbrani v Tabeli 6.We then mixed 100 parts by weight of component A (Table 5) and 12 parts by weight of component B (table 2) to obtain a homogeneous mixture that was suitable for preparing the test specimens for mechanical tests and for measuring thermal conductivity. We waited 168 hours for the mixture to solidify completely (in accordance with the standards) and then performed the tests. The results are summarized in Table 6.
Tabela 6:Table 6:
Za CBS INŠTITUT, celovite gradbene rešitve, d.o.o. in TKK Proizvodnja kemičnih izdelkov Srpenica ob SočiFor CBS INSTITUTE, Comprehensive Building Solutions, d.o.o. and TKK Manufacture of chemical products Srpenica ob Soči
d.d.d.d.
'atZntni zastopnik'atZntni agent
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201100150A SI23731A (en) | 2011-05-09 | 2011-05-09 | Adhesive/sealant preferably used for construction panels |
EP12756837.6A EP2707444A2 (en) | 2011-05-09 | 2012-05-04 | Adhesive/sealant preferably used for construction panels |
PCT/SI2012/000028 WO2012154132A2 (en) | 2011-05-09 | 2012-05-04 | Adhesive/sealant preferably used for construction panels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201100150A SI23731A (en) | 2011-05-09 | 2011-05-09 | Adhesive/sealant preferably used for construction panels |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23731A true SI23731A (en) | 2012-11-30 |
Family
ID=46829858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201100150A SI23731A (en) | 2011-05-09 | 2011-05-09 | Adhesive/sealant preferably used for construction panels |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2707444A2 (en) |
SI (1) | SI23731A (en) |
WO (1) | WO2012154132A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3523354B1 (en) | 2016-10-06 | 2022-05-11 | 3M Innovative Properties Company | Curable compositions and related methods |
CN106634768B (en) * | 2016-12-14 | 2020-08-14 | 湖北回天新材料股份有限公司 | Silane modified polyether sealant with excellent soaking and bonding performance and preparation method thereof |
WO2019032856A1 (en) * | 2017-08-11 | 2019-02-14 | Winpak Portion Packaging, Inc. | System and method for heat sealing food packaging |
CN110922935B (en) * | 2019-12-07 | 2022-05-24 | 杭州之江新材料有限公司 | Two-component organosilicon sealant and application thereof in inflatable hollow glass |
CN112680174A (en) * | 2020-12-25 | 2021-04-20 | 郑州圣莱特空心微珠新材料有限公司 | Modified silicone adhesive, preparation method and application thereof, and vacuum glass |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2543844A (en) | 1945-08-27 | 1951-03-06 | Phillips Petroleum Co | Plasticizing synthetic rubber with a reaction product of an alkyl mercaptan and a rubbery diolefin polymer |
US2589151A (en) | 1946-09-12 | 1952-03-11 | Standard Oil Dev Co | Thioglycolic acid adducts of rubber-like polymers and process of preparing same |
US3689450A (en) | 1970-10-29 | 1972-09-05 | Phillips Petroleum Co | Method of preparing sealants from polybutadiene and mercapto hydroxy compounds |
US4153594A (en) | 1976-04-08 | 1979-05-08 | Wilson Jr Floyd | Insulated glass and sealant therefore |
CA1142689A (en) | 1978-10-23 | 1983-03-08 | Henry N. Paul, Iii | Insulating glass sealant and related compositions |
IN159215B (en) | 1982-06-11 | 1987-04-11 | Thiokol Corp | |
JPS6019033A (en) | 1983-07-12 | 1985-01-31 | Matsumoto Yushi Seiyaku Kk | Hollow micro-balloon and preparation thereof |
GB9126902D0 (en) | 1991-12-19 | 1992-02-19 | Morton Int Ltd | Polysulphide-modified epoxy resins |
US5430192A (en) | 1993-08-26 | 1995-07-04 | Morton International, Inc. | Polysulfide sealants with reduced moisture vapor transmission |
US5663219A (en) | 1994-05-27 | 1997-09-02 | Morton International, Inc. | Lightweight sealant having improved peel strength |
US5981610A (en) * | 1997-11-17 | 1999-11-09 | Shin-Etsu Chemical Co. Ltd. | Injection molding silicone rubber compositions |
US6322650B1 (en) | 1999-04-15 | 2001-11-27 | Morton International Inc. | Polysulfide-based polyurethane sealant for insulating glass |
GB9909065D0 (en) | 1999-04-20 | 1999-06-16 | British Aerospace | Method of sealing a panel to an aircraft structure |
JP2001115025A (en) * | 1999-10-20 | 2001-04-24 | Dow Corning Toray Silicone Co Ltd | Liquid silicone rubber composition, method for producing the same and method for producing silicone rubber foam |
US6520261B1 (en) * | 2000-04-14 | 2003-02-18 | Fmc Technologies, Inc. | Thermal insulation material for subsea equipment |
DE10025529A1 (en) | 2000-05-23 | 2002-02-14 | Henkel Teroson Gmbh | Two-component polysulfide adhesive sealant |
DE10117251A1 (en) * | 2001-04-06 | 2002-10-10 | Chemetall Gmbh | Low density sealant, matrix and process for its manufacture and its use |
BR0211319B1 (en) * | 2001-07-03 | 2012-10-16 | material for thermally insulating an object from a surrounding fluid and underwater Christmas tree. | |
US7067612B2 (en) | 2003-01-30 | 2006-06-27 | Prc-Desoto International, Inc. | Preformed compositions in shaped form |
US7569626B2 (en) | 2003-06-05 | 2009-08-04 | Dfine, Inc. | Polymer composites for biomedical applications and methods of making |
DE10360749B3 (en) * | 2003-12-23 | 2005-08-18 | Mv Engineering Gmbh & Co.Kg | Inorganic fire and thermal insulation paste and their manufacture |
BRPI0701431A2 (en) * | 2007-04-11 | 2008-11-25 | Columbia Tecnologia Em Petrole | coating for thermal insulation and mechanical protection of pipes and equipment, composite for passive thermal insulation and its respective manufacturing process |
US8816023B2 (en) | 2008-08-13 | 2014-08-26 | Ppg Industries Ohio, Inc | Lightweight particles and compositions containing them |
-
2011
- 2011-05-09 SI SI201100150A patent/SI23731A/en not_active IP Right Cessation
-
2012
- 2012-05-04 EP EP12756837.6A patent/EP2707444A2/en not_active Withdrawn
- 2012-05-04 WO PCT/SI2012/000028 patent/WO2012154132A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012154132A2 (en) | 2012-11-15 |
WO2012154132A4 (en) | 2013-10-10 |
EP2707444A2 (en) | 2014-03-19 |
WO2012154132A3 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SI23731A (en) | Adhesive/sealant preferably used for construction panels | |
JP4209426B2 (en) | Pre-formed composition in molded form | |
CN108822591B (en) | Inorganic fireproof heat-insulating coating and preparation method thereof | |
CN104591676B (en) | A kind of coal-face reinforcing chemical slip casting material | |
CN106700009A (en) | Polyurethane composition, polyurethane water-stopping strip and steel-edged water-stopping belt comprising water-stopping strip | |
CN108250936B (en) | Resin cement waterproof anticorrosive paint | |
CN114072476A (en) | Silicone-based barrier compositions | |
CN109694685A (en) | A kind of flame retardant type one-component foam gap filler and preparation method thereof | |
CN108611048A (en) | Dry-type transformer dealcoholized type organic silicon potting adhesive and preparation method thereof | |
CN100355853C (en) | Water-proofing material for stopping leak | |
CN104371638A (en) | One-component ketoxime removal type sealant and preparation method thereof | |
CN112375536B (en) | Waterproof elastic sealing material | |
Fu et al. | Polymer cement waterproof coating and its properties | |
EP4509573A1 (en) | Viscoelastic anticorrosive adhesive, preparation method therefor, and application thereof | |
CN107032698A (en) | A kind of energy-saving assembled wallboard adhesive | |
JPH0573158B2 (en) | ||
CN109694216A (en) | A kind of water-impervious binding material of expanded perlite external wall insulation and preparation method thereof | |
CN114921146A (en) | Light polymer cement waterproof coating and preparation method thereof | |
CN106928612A (en) | Emulsion polymerization and preparation method thereof and the water-repellent paint prepared with it | |
KR100770632B1 (en) | risiscon anti- corrosive and concrete structure degradation and carbonation prevention method of construction using this | |
CN106995566A (en) | A kind of epoxy resin interface solidification cladding eps foam composite and preparation method thereof | |
KR101775651B1 (en) | Cable filler and grout composition with high anticorrosion | |
CN104629660B (en) | A kind of preparation method of double glazing fluid sealant | |
CN204589061U (en) | One is exempted to take off type self-adhering rubber waterstop | |
CN118529968B (en) | A gypsum material additive, an inorganic nano-gypsum composite material and a preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20121206 |
|
KO00 | Lapse of patent |
Effective date: 20190108 |