SI23611A - Device for high-frequency excitation of gas plasma - Google Patents
Device for high-frequency excitation of gas plasma Download PDFInfo
- Publication number
- SI23611A SI23611A SI201100025A SI201100025A SI23611A SI 23611 A SI23611 A SI 23611A SI 201100025 A SI201100025 A SI 201100025A SI 201100025 A SI201100025 A SI 201100025A SI 23611 A SI23611 A SI 23611A
- Authority
- SI
- Slovenia
- Prior art keywords
- coil
- coils
- plasma
- excitation
- individual
- Prior art date
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 93
- 238000004804 winding Methods 0.000 claims 1
- 230000009977 dual effect Effects 0.000 abstract description 8
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000012546 transfer Methods 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 210000002381 plasma Anatomy 0.000 description 57
- 239000007789 gas Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007667 floating Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241001104043 Syringa Species 0.000 description 1
- 235000004338 Syringa vulgaris Nutrition 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma Technology (AREA)
Abstract
Description
NAPRAVA ZA VZBUJANJE VISOKOFREKVENČNE PLINSKE PLAZMEHIGH-FREQUENCY GAS PLASMA EXCITATION DEVICE
Predmet izuma je naprava za vzbujanje visokofrekvenčne plinske plazme, to je za optimizacijo prenosa elektromagnetne moči od radiofrekvenčnega generatorja v plinsko plazmo. Prenos moči je optimiziran z uporabo dveh ali več vzporedno vezanih prekrivajočih se in zamaknjenih vzbujevalnih tuljav, ki so zaporedno vezane v sklopu generator, visokofrekvenčni kabel, uskladitveni člen, tuljave. Tovrstna vezava tuljav ima pred doslej opisanimi sklopi več prednosti, med drugim naslednje: izkoristek moči generatorja se poveča, plazma v razelektritveni posodi je bolj homogena, napetost na generatorju, ki je potrebna za generiranje plazme je manjša, obenem pa so bistveno zmanjšani stranski pojavi, ki so posledica kapacitivnih sklopitev v plazemskem sistemu.The object of the invention is a device for the excitation of high-frequency gas plasma, that is, for optimizing the transmission of electromagnetic power from a radio frequency generator to a gas plasma. The power transfer is optimized by the use of two or more parallel-connected overlapping and displaced excitation coils, which are connected in series in the generator, high-frequency cable, harmonization link, coils. Such coil bonding has several advantages over the assemblies described so far, including the following: generator power efficiency increases, plasma in the discharge vessel is more homogeneous, generator voltage required to generate plasma is less, and side effects are significantly reduced. resulting from capacitive couplings in the plasma system.
Prikaz problemaView the problem
Plazma je v zadnjih desetletjih postala osnova številnih sodobnih tehnologij. Poznamo termično in termodinamsko neravnovesno plazmo. Termična plazma, kjer so delci plina v termodinamičnem ravnovesju, se uporablja za plazemsko rezanje in varjenje, za sintezo keramike, za razgradnjo nevarnih kemijskih odpadkov, za plazemsko pršenje debelih zaščitnih prevlek na orodja in stroje, itd. Zahteva po ekološko neoporečnih tehnologijah je povzročila razvoj vrste novih postopkov obdelave materialov, kjer pa se uporabljajo termodinamsko neravnovesne plazme. Primeri uporabe so: vakuumski postopki nanašanja tankih plasti, industrija svetil, laserjev, mikroelektronika, makroelektronika, npr. plazemski prikazovalniki, mikroobdelava silicija, npr. proizvodnja silicijevih senzorjev tlaka, proizvodnja spominskih elementov, itd. Številni primeri uporabe so še v avtomobilski, optični in vojaški industriji ter v biomedicini.Plasma has become the basis of many modern technologies in recent decades. Thermal and thermodynamic nonequilibrium plasma are known. Thermal plasma, where gas particles are in thermodynamic equilibrium, is used for plasma cutting and welding, for the synthesis of ceramics, for the decomposition of hazardous chemical waste, for the plasma spray of thick protective coatings on tools and machines, etc. The demand for ecologically sound technologies has led to the development of a series of new materials treatment processes where thermodynamically nonequilibrium plasmas are used. Examples of applications are: vacuum thin film deposition processes, the luminaire industry, lasers, microelectronics, macroelectronics, e.g. plasma displays, silicon microtreatment, e.g. production of silicon pressure sensors, production of memory elements, etc. Numerous use cases are in the automotive, optical and military industries and in biomedicine.
Za plazemske obdelave površin materialov se uporabljajo različne vrste termodinamsko neravnovesnih plazem, ki jih vzbudimo z različnimi razelektritvami v plinih. Prehod plina v stanje plazme oz. razelektritev dosežemo tako, da plin izpostavimo električnemu polju. Plin, skozi katerega teče električni tok, se delno ionizira, kar pomeni, da so poleg nevtralnih delcev prisotni tudi prosti elektroni in ioni. Prosti elektroni se v električnem polju pospešujejo in priDifferent types of thermodynamically nonequilibrium plasmas are used for plasma treatments of material surfaces, which are excited by different discharges in gases. Transition of gas to the plasma state. discharge is achieved by exposing the gas to an electric field. The gas through which the electric current flows is partially ionized, which means that free electrons and ions are present in addition to the neutral particles. Free electrons are accelerated in the electric field even at
-2trkih z atomi ali molekulami plina povzročijo prehod atoma ali molekule iz osnovnega termodinamsko ravnovesnega stanja v različna vzbujena stanja.-2 collisions with atoms or gas molecules cause the transition of an atom or molecule from a basic thermodynamically equilibrium state to different excited states.
Vrste razelektritev delimo po frekvencah električnega polja, s katerim vzbujamo plazmo: enosmerna DC razelektritev, korona 50-450 kHz, radiofrekvenčna razelektritev 5-100 MHz, mikrovalovna izotropna brez magneta 2.45 GHz in ECR razelektritev z magnetom 2.45 GHz. Pri radiofrekvenčni - v nadaljevanju RF - plazmi se uporabljata predvsem industrijsko predpisani frekvenci 13.56 MHz in 27.12 MHz. RF plazme delimo na kapacitivno in induktivno sklopljene, ki so določene z metodo, s katero ustvarimo električno polje. Pri kapacitivni sklopitvi za generiranje električnega polja uporabljamo elektrodi oz. kondenzator, pri induktivni sklopitvi pa vzbujevalno tuljavo ali spiralo.The types of discharges are divided by the frequencies of the electric field by which the plasma is excited: DC direct current discharge, corona 50-450 kHz, radio frequency discharge 5-100 MHz, microwave isotropic without magnet 2.45 GHz and ECR discharge with magnet 2.45 GHz. In the case of radio frequency - hereinafter referred to as RF - plasma, the industrially prescribed frequencies of 13.56 MHz and 27.12 MHz are used. Plasma RFs are divided into capacitive and inductively coupled ones, which are determined by the method by which an electric field is generated. In capacitive coupling electrodes and / or electrodes are used to generate the electric field. capacitor, and inductive coupling an excitation coil or coil.
Pri induktivno sklopljeni plazmi obstajata dva načina delovanja: E- in H-način. Pri manjših vzbujevalnih močeh je za razelektritev v induktivno sklopljeni plazmi značilna šibka emisija svetlobe, nizka gostota elektronov in razmeroma visoka temperatura elektronov. Ker tu prevladuje kapacitivna komponenta prenosa RF moči v plazmo, ta način imenujemo E-način. Ko s povečevanjem RF vzbujevalne moči dosežemo določeno kritično vrednost, se nenadoma povečata svetilnost plazme in gostota elektronov, temperatura elektronov pa se nekoliko zmanjša. Pri tem načinu delovanja prevladuje induktivna komponenta prenosa RF moči v plazmo, zato se tudi imenuje H-način. V H-načinu, ki ga je dokaj enostavno ustvariti v manjših plazemskih reaktorjih, je plazma koncentrirana v majhnem volumnu znotraj vzbujevalne tuljave ali v okolici vzbujevalne spirale. Nerešen pa ostaja problem generiranja enakomerno porazdeljene induktivno sklopljene RF plazme v H-načinu v večjih reaktorjih, ki so zanimivi predvsem za industrijo.Inductively coupled plasma, there are two modes of operation: E- and H-mode. At lower excitation power, discharge in inductively coupled plasma is characterized by low light emission, low electron density, and relatively high electron temperature. Since the capacitive component of RF power transfer to the plasma dominates here, we call this mode E-mode. When a certain critical value is reached by increasing the RF excitation power, the plasma luminosity and electron density suddenly increase and the electron temperature decreases slightly. This mode of operation is dominated by the inductive component of the transmission of RF power to the plasma and is therefore called the H-mode. In the H-mode, which is fairly easy to create in smaller plasma reactors, the plasma is concentrated in a small volume inside the excitation coil or in the vicinity of the excitation coil. However, the problem of generating inductively coupled H-mode inductively coupled RF plasma in larger reactors of particular interest to industry remains unresolved.
Stanje tehnikeThe state of the art
Večji plazemski reaktorji za induktivno sklopljene RF plazme se v industriji uporabljajo pri različnih procesih obdelave površin opisanih v patentih: W02004098259A3, SI1828434T1, EP1828434A1, US200914621Al, US2010024845A1, ipd.Larger plasma reactors for inductively coupled RF plasma are used in the industry for the various surface treatment processes described in the patents: W02004098259A3, SI1828434T1, EP1828434A1, US200914621Al, US2010024845A1, and the like.
Za večino teh postopkov je potrebno imeti plazmo s čim večjo gostoto ionov ali nevtralnih atomov. Če želimo doseči veliko gostoto nevtralnih atomov ali ionov pri nekem tlaku, moramo plazmo vzbujati s čim večjo močjo in kot je zapisano v patentu SI21903A, mora plazemskiFor most of these procedures, it is necessary to have a plasma with the highest density of ions or neutral atoms. In order to achieve a high density of neutral atoms or ions at a certain pressure, the plasma must be excited with maximum power and, as stated in patent SI21903A,
reaktor biti zgrajen iz materiala z nizkimi rekombinacij skimi koeficienti, ki zagotavljajo visoko disociacijo plina.The reactor shall be constructed of material with low recombination coefficients to ensure high gas dissociation.
Za maksimalen prenos moči iz RF generatorja v plazmo se največkrat uporabljajo uskladitveni členi. Uskladitveni členi so sestavljeni iz različno vezanih pasivnih elementov: kondenzatorjev in tuljav. Najdemo jih v več patentih, npr. za kapacitivno sklopljene RF plazemske reaktorje: EP1812949A2, US5815047A in za induktivno sklopljene reaktorje: US2002130110A1, US5689215A, itd.For maximum transfer of power from the RF generator to the plasma, harmonization members are most often used. The alignment members consist of differently coupled passive elements: capacitors and coils. They are found in several patents, e.g. for capacitive coupled RF plasma reactors: EP1812949A2, US5815047A and for inductively coupled reactors: US2002130110A1, US5689215A, etc.
Poleg uskladitvenega člena, pa je pri induktivno sklopljeni RF plazmi za prenos moči v plazmo, še bolj pa za homogenost plazme, pomembna oblika vzbujevalne tuljave. Obstaja več patentov, ki se nanašajo na obliko vzbujevalne tuljave. Patenta US5578165A in US2002096999A1 npr. predstavljata vzbujevalni planami tuljavi in metodi za doseganje bolj enakomerne gostote plazme v planami osi.In addition to the harmonizing term, in the case of inductively coupled RF plasma, the excitation coil is an important form for the transfer of power to the plasma, and even more for the plasma homogeneity. There are several patents relating to the shape of an excitation coil. Patents US5578165A and US2002096999A1 e.g. they represent the excitation planes of the coils and methods for achieving a more uniform plasma density in the axis planes.
Vzbujevalna tuljava LILAC, ki je opisana v patentu US6184488B1, je planama tuljava za generiranje velikih površin plazme. Tuljava ima majhno induktivnost, ki zmanjša probleme z ujemanjem impedance in maksimalnim prenosom moči.The LILAC excitation coil described in US6184488B1 is a planam coil for generating large areas of plasma. The coil has low inductance, which minimizes impedance matching problems and maximum power transfer.
V induktivno sklopljeni plazmi velikokrat predstavlja problem tudi kapacitivna komponenta prenosa RF moči v plazmo. Čeprav je plazma generirana v električnem polju, proizvedenem s tuljavo, se poleg induktivne pojavi tudi kapacitivna komponenta sklopitve, ki pa je večinoma nezaželena. Obstajata dve možni rešitvi tega problema: uporaba Faradayevega ščita, ki je za planamo tuljavo opisana v patentu US2002023899A1 in za navadno tuljavo opisana v patentu W00049638A1, ter uporaba tako imenovane plavajoče tuljave. Plavajoča tuljava navedena v patentu US5683539A, zmanjša kapacitivno komponento sklopitve zato, ker je od visokofrekvenčnega generatoija in uskladitvenega člena ločena s transformatorjem in je zato na plavajočem potencialu.In the inductively coupled plasma, the capacitive component of RF power transfer to the plasma is often a problem. Although plasma is generated in an electric field produced by a coil, in addition to the inductive, a capacitive coupling component occurs, which is mostly undesirable. There are two possible solutions to this problem: the use of a Faraday shield, which is described for patent coil US2002023899A1 for planamo coil and described for patent coil W00049638A1, and the use of a so-called floating coil. The floating coil cited in US5683539A reduces the capacitive coupling component because it is separated from the high-frequency generator and the matching member by a transformer and is therefore at floating potential.
Več raziskav in razvoja je bilo do sedaj opravljenih v planamih induktivno sklopljenih reaktorjih, saj so po obliki podobni kapacitivno sklopljenim, ki so bili razviti prvi.More research and development has been carried out so far in the plans of inductively coupled reactors, because they are similar in shape to the capacitive coupled ones developed first.
Še vedno pa obstaja dosti neraziskanega in nerešenih problemov kot so prenos maksimalne moči, homogenost plazme, zmanjšanje kapacitivne sklopitve pri večjih plazemskih sistemih, kjer je vzbujevalna tuljava navita okoli cevi reaktorja. Zaradi velikega premera tuljave jeHowever, there are still many unexplored and unresolved issues such as maximum power transfer, plasma homogeneity, and reduction of capacitive coupling in larger plasma systems where the excitation coil is wound around the reactor tubes. Due to the large diameter of the coil
-4induktivnost lahko kmalu zelo velika, kar pa predstavlja problem za uskladitveni člen oziroma izkoristek generatorja.-4 Inductance can soon be very high, which in turn is a problem for the alignment member or generator utilization.
Opis rešitve problema in izvedbeni primerProblem description and implementation example
Predmet izuma je naprava za optimizacijo prenosa elektromagnetne moči od radiofrekvenčnega generatorja v plinsko plazmo. Metoda temelji na posebni obliki vzbujevalne tuljave. Ta je sestavljena iz dveh ali več vzporedno vezanih tuljav. Tuljave so zamaknjene tako, da se ovoji posameznih tuljav ne prekrivajo.The subject of the invention is a device for optimizing the transmission of electromagnetic power from a radio frequency generator to a gas plasma. The method is based on a special form of excitation coil. This consists of two or more parallel coils. The coils are offset so that the coils of the individual coils do not overlap.
Naprava za vzbujanje visokofrekvenčne plinske plazme je opisana s pomočjo slik, ki prikazujejo:A high-frequency gas plasma excitation device is described by means of pictures showing:
Sl. 1 Vakuumska shema plazemskega sistemaFIG. 1 Vacuum Schematic of the Plasma System
Sl. 2 Vzbujevalni del izvedbenega primera plazemskega sistemaFIG. 2 Excitatory part of the plasma system implementation example
Sl. 3 Dvojna vzbujevalna tuljava izvedbenega primeraFIG. 3 Double Excitation Coil of Execution Case
Sl. 4 Meritve napetosti na navadni vzbujevalni tuljavi in dvojni vzbujevalni tuljavi, kije predmet tega izuma, v odvisnosti od moči generatorjaFIG. 4 Voltage measurements on an ordinary excitation coil and a double excitation coil, the subject of the present invention, depending on the power of the generator
Sl. 5 Meritve intenzitete izsevane svetlobe na sredini navadne vzbujevalne tuljave in dvojne vzbujevalne tuljave, kije predmet tega izuma, v odvisnosti od napetosti na vzbujevalni tuljavi pri tlaku 10 PaFIG. 5 Measurements of the intensity of the light emitted in the middle of the ordinary excitation coil and of the double excitation coil of the present invention, depending on the voltage at the excitation coil at a pressure of 10 Pa
Sl. 6 Meritve intenzitete izsevane svetlobe na sredini navadne vzbujevalne tuljave in dvojne vzbujevalne tuljave, ki je predmet tega izuma, v odvisnosti od napetosti na vzbujevalni tuljavi pri tlaku 40 PaFIG. 6 Measurements of the intensity of the light emitted in the middle of the ordinary excitation coil and of the double excitation coil of the present invention, depending on the voltage at the excitation coil at a pressure of 40 Pa
Shema vakuumskega dela plazemskega sistema, ki smo ga uporabili v našem izvedbenem primeru, je prikazana na sliki 1. Vakuumski sistem je sestavljen iz vakuumske črpalke 1, ventila 2, ventila za vpust zraka 3, razelektritvene kvarčne cevi 4, merilnika 5 absolutnega tlaka, preciznega dozirnega ventila 6 in plinske jeklenke 7. Vakuumska črpalka 1 in sistem za dovajanje plina z ventilom 6 in jeklenko 7 zagotavljata tlak v razelektritveni cevi 4 med 1 Pa in 104 Pa, prvenstveno pa med 10 Pa in 1000 Pa. Razelektritvena cev 4 je precej večja od običajnih laboratorijskih plazemskih sistemov. Njen premer je v izvedbenem primeru 200 mm,The scheme of the vacuum portion of the plasma system used in our embodiment is shown in Figure 1. The vacuum system consists of a vacuum pump 1, a valve 2, an air inlet valve 3, a quartz discharge tube 4, an absolute pressure gauge 5, precise dosing valve 6 and gas cylinder 7. Vacuum pump 1 and gas supply system with valve 6 and cylinder 7 provide pressure in the discharge tube 4 between 1 Pa and 10 4 Pa, and preferably between 10 Pa and 1000 Pa. The discharge tube 4 is much larger than conventional laboratory plasma systems. Its diameter is 200 mm in the embodiment,
-5dolžina pa je 2000 mm. Cev je kvarčna in zato prenese višje temperature, ki so posledica rekombinacij atomov in nevtralizacij nabitih delcev na stenah reaktorja.-5 length is 2000 mm. The tube is quartz-like and therefore can withstand higher temperatures resulting from the recombination of atoms and the neutralization of charged particles on the walls of the reactor.
Električni, oziroma vzbujevalni del naprave, prikazan na sliki 2, je sestavljen iz radiofrekvenčnega generatorja 8, koaksialnega kabla 9, uskladitvenega člena 10 in vzbujevalne tuljave 11, 12. Radiofrekvenčni generator 8 lahko deluje v frekvenčnem območju med 100 kHz in 310 MHz. V izvedbenem primeru je uporabljen 8 kW radiofrekvenčni generator 8, ki deluje s frekvenco 27.12 MHz. Na radiofrekvenčni generator 8 je preko koaksialnega kabla 9 priključen uskladitveni člen 10. Uskladitveni člen 10 je sestavljen iz dveh visokofrekvenčnih, visokonapetostnih, variabilnih vakuumskih kondenzatorjev, katerih kapacitivnost se spreminja s pomočjo servo motoijev, ki se jih krmili z radioffekvenčnim generatorjem 8. Vezava kondenzatorjev se lahko spremeni s premikom povezovalne ploščice.The electrical or excitation part of the device shown in Figure 2 consists of a radio frequency generator 8, a coaxial cable 9, a harmonization member 10 and an excitation coil 11, 12. The radio frequency generator 8 can operate in the frequency range between 100 kHz and 310 MHz. In the embodiment, an 8 kW radio frequency generator 8 operating at a frequency of 27.12 MHz is used. A harmonizing member 10 is connected to the radio frequency generator 8 via a coaxial cable 9. The harmonizing article 10 consists of two high frequency, high voltage, variable vacuum capacitors whose capacitance is varied by means of servo motors controlled by a radio frequency generator 8. Bonding of the capacitor can be modified by moving the connecting pad.
Na uskladitveni člen 10 je v izvedbenem primeru vezana dvojna vzbujevalna tuljava 11 in 12, ki je osrednji del izuma. Dvojna vzbujevalna tuljava 11 in 12 je sestavljena iz dveh vzporedno vezanih prekrivajočih se vzbujevalnih tuljav 11, 12. Po izumu sta vzbujevalni tuljavi 11, 12 najmanj dve, lahko pa jih je tudi več. Vzbujevalne tuljave 11, 12, ki imajo vse enak premer, se prekrivajo tako, da imajo isto os in se dotikajo le na začetku in na koncu, kjer so vezane na uskladitveni člen. Vzbujevalne tuljave 11, 12 morajo biti med seboj vzdolž skupne osi zamaknjene za 1/N razdalje med dvema zaporednima ovojema, kjer je N število vzbujevalnih tuljav 11, 12. To pomeni, da so v primeru dveh vzbujevalnih tuljav 11, 12 ovoji druge vzbujevalne tuljave 12 naviti na sredini med ovoji prve vzbujevalne tuljave 11, oziroma je druga vzbujevalna tuljava 12 zamaknjena vzdolž skupne osi za 1/2 razdalje med dvema zaporednima ovojema. Če so vzbujevalne tuljave 11, 12 tri so med seboj zamaknjene vzdolž skupne osi za 1/3 razdalje med dvema zaporednima ovojema, itd. Vzbujevalne tuljave 11, 12 morajo biti med seboj zamaknjene najmanj za širino traku vsake od posameznih vzbujevalnih tuljav 11, 12. Vzbujevalne tuljave 11, 12, so vse navite v isto smer, tako da ovoji vsake vzbujevalne tuljave 11, 12 potekajo vzporedno z ovoji vsake druge vzbujevalne tuljave 11, 12. Torej kljub temu, da se vzbujevalne tuljave 11, 12 prekrivajo, se ovoji vsake posamezne vzbujevalne tuljave 11, 12 med seboj ne prekrivajo in ne dotikajo. Ker imajo vse tuljave enak premer, se nahajajo na isti ravnini. Število ovojev posameznih tuljav 11, 12 je najmanj 2 in največ 100. Število ovojev je lahko na vseh vzbujevalnih tuljavah 11,12 enako, lahko pa imajo druge oziroma dodatne vzbujevalne tuljave 12 en ovoj manj kot prva vzbujevalna tuljava 11.In the embodiment, the harmonizing article 10 is coupled to the double excitation coil 11 and 12, which is a central part of the invention. The dual excitation coils 11 and 12 consist of two overlapping overlapping excitation coils 11, 12. According to the invention, the excitation coils 11, 12 are at least two or more. The excitation coils 11, 12, which all have the same diameter, overlap so that they have the same axis and touch only at the beginning and at the end where they are connected to the alignment member. The excitation coils 11, 12 must be offset from each other along the common axis by 1 / N distances between two consecutive envelopes, where N is the number of excitation coils 11, 12. This means that in the case of two excitation coils 11, 12, the other excitation coils are wrapped. 12 is wound in the middle between the wrappings of the first excitation coil 11, or the second excitation coil 12 is displaced along the common axis by 1/2 distance between two consecutive wrappers. If the excitation coils 11, 12 are three, they are offset along a common axis by 1/3 of the distance between two consecutive wrappers, etc. The excitation coils 11, 12 must be offset at least by the width of the strip of each of the individual excitation coils 11, 12. The excitation coils 11, 12 are all wound in the same direction so that the envelopes of each excitation coil 11, 12 run parallel to the envelopes of each other excitation coils 11, 12. Therefore, although the excitation coils 11, 12 overlap, the wrappings of each individual excitation coil 11, 12 do not overlap or touch each other. Since all coils have the same diameter, they are located on the same plane. The number of envelopes of individual coils 11, 12 is at least 2 and at most 100. The number of envelopes may be the same on all excitation coils 11.12, but the second or additional excitation coils 12 may have one envelope less than the first excitation coil 11.
-6Tudi v tem primeru še vedno velja, da se ovoji posameznih vzbujevalnih tuljav 11, 12 ne prekrivajo. Razlog za en ovoj manj na drugih oziroma dodatnih vzbujevalnih tuljavah 12 je le to, da se celotna dolžina dvojne vzbujevalne tuljave 11 in 12 ne daljša z N številom vzbujevalnih tuljav 11, 12, oziroma dolžina dvojne vzbujevalne tuljave 11 in 12 ostaja enaka dolžini prve vzbujevalne tuljave 11, ne glede na to koliko je N.-6In this case, it is still considered that the coils of the individual excitation coils 11, 12 do not overlap. The reason for wrapping less on the other or additional excitation coils 12 is that the total length of the double excitation coil 11 and 12 does not extend with N the number of excitation coils 11, 12, or the length of the double excitation coil 11 and 12 remains equal to the length of the first excitation coil 11 and 12 coils 11, no matter how much N.
Dvojna vzbujevalna tuljava 11 in 12 je izdelana iz traku z električno upornostjo za enosmerni električni tok največ 100 Ω, pri čemer so širine traku, iz katerih je izdelana vsaka posamezna vzbujevalna tuljava 11, 12, enake in sicer je širina traku vsake posamezne vzbujevalne tuljave 11, 12 med 1 mm in 10 cm. Trak je navit okoli razelektritvene kvarčne cevi 4 tako, da se cevi dotika z večjo ploskvijo. Premer posameznih vzbujevalnih tuljav 11, 12, ki sestavljajo dvojno vzbujevalno tuljavo 11 in 12 je torej enak zunanjemu premeru cevi, v izvedbenem primeru je to D = 200 mm. Dolžina navitja vsake posamezne tuljave 11, 12 se lahko razlikuje od mnogokratnika četrtine valovne dolžine elektromagnetnega valovanja, ki izvira iz radiofrekvenčnega generatorja 8, za največ 20%.The dual excitation coils 11 and 12 are made of an electrical resistive tape for a direct current of not more than 100 Ω, with the band widths from which each individual excitation coil 11, 12 is made equal to the band width of each individual excitation coil 11 , 12 between 1 mm and 10 cm. The strap is wound around the quartz discharge tube 4 so that it contacts the larger surface. The diameter of the individual excitation coils 11, 12, which make up the double excitation coil 11 and 12, is therefore equal to the outer diameter of the tube, in the embodiment it is D = 200 mm. The coil length of each individual coil 11, 12 may differ from the multiple of a quarter of the wavelength of the electromagnetic wave emanating from the radio frequency generator 8 by up to 20%.
V izvedbenem primeru, prikazan na sliki 3, sta uprabljeni dve vzporedno vezani prekrivajoči se vzbujevalni tuljavi 11, 12 izdelani iz 25 mm širokega bakrenega traku debeline 0.4 mm. Bakreni trak je okoli kvarčne razelektritvene cevi 4 navit tako, da se cevi dotika z večjo ploskvijo. Prva vzbujevalna tuljava 11 je 5 ovojna, druga prekrivajoča vzbujevalna tuljava 12 pa 4 ovojna. Ovoji iz bakrenega traku druge vzbujevalne tuljave tuljave 12 se ne prekrivajo in ne dotikajo ovojev prve vzbujevalne tuljave tuljave 11. Razdalja med robovom bakrenih trakov prve tuljave 11 in druge 12 je v tem izvedbenem primeru približno 60 mm. Celotna dolžina dvojne vzbujevalne tuljave 11 in 12 je v izvedbenem primeru 800 mm.In the embodiment shown in Fig. 3, two parallel overlapping excitation coils 11, 12 made of 25 mm wide 0.4 mm copper strip are used. The copper strip is wound around the quartz discharge tube 4 so that it contacts the larger surface. The first excitation coil 11 is 5 envelopes, and the second overlapping excitation coil 12 is 4 envelopes. The copper strips of the second coil of the coil 12 of the coil do not overlap or touch the envelopes of the first coil of the coil 11. The distance between the edges of the copper strips of the first coil 11 and the second 12 is about 60 mm in this embodiment. The total length of the double excitation coil 11 and 12 is 800 mm in the embodiment.
Meritve, narejene v kisikovi plazmi, generirani v navadni 5 ovojni 800 mm dolgi vzbujevalni tuljavi 11 v primerjavi z meritvami, izmerjenimi na plazmi generirani z dvojno vzbujevalno tuljavo 11 in 12, ki je predmet izuma, so prikazane na slikah 4-6.The measurements made in oxygen plasma generated in a conventional 5-envelope 800 mm long excitation coil 11 compared to the measurements measured on the plasma generated by the dual excitation coil 11 and 12 of the invention are shown in Figures 4-6.
Slika 4 prikazuje meritev napetosti na priključkih navadne vzbujevalne tuljave 11 in dvojne vzbujevalne tuljave 11 in 12, ki je predmet izuma, v odvisnosti od moči radiofrekvenčnega generatorja. Napetost na dvojni vzbujevalni tuljavi 11 in 12 smo merili z visokonapetostno sondo 13 in odčitavali z osciloskopom 14.Figure 4 shows a measurement of the voltages at the terminals of the ordinary excitation coil 11 and the dual excitation coil 11 and 12 of the present invention, depending on the power of the radio frequency generator. The voltage on the dual excitation coil 11 and 12 was measured with a high voltage probe 13 and read with an oscilloscope 14.
Iz grafov je razvidno, da je za prenos enake moči potrebna večja napetost takrat, ko uporabljamo le navadno vzbujevalno tuljavo 11. Z uporabo dvojne vzbujevalne tuljave 11 in • · ·The graphs show that to transmit the same power, a higher voltage is required when using only a conventional excitation coil 11. Using a dual excitation coil 11 and • · ·
-Ί12, ki je predmet tega izuma, se napetost zmanjša v primerjavi s klasično tuljavo 11, kar je s tehnološkega vidika zelo ugodno.-Ί12, which is the subject of the present invention, the voltage is reduced compared to the classical coil 11, which is very advantageous from a technological point of view.
Intenziteta izsevane svetlobe na sredini vzbujevalne tuljave 11, 12 v odvisnosti od napetosti na vzbujevalni tuljavi 11, 12 oz. od moči radiofrekvenčnega generatorja nam pove, daje plazma, generirana v dvojni vzbujevalni tuljavi 11 in 12, ki je predmet izuma, veliko intenzivnejša kot plazma, generirana v navadni vzbujevalni tuljavi 11. Na sliki 5 so predstavljeni rezultati meritev intenzitete kisikovih emisijskih črt 777 nm in 845 nm plazme pri tlaku 10 Pa. Integracijski čas optičnega spektrometra je bil 200 ms. Opazimo, da je intenziteta izsevane svetlobe plazme, generirane v navadni vzbujevalni tuljavi 11, okoli 3-krat manjša od intenzitete izsevane svetlobe plazme, generirane v dvojni vzbujevalni tuljavi 11 in 12, sestavljeni iz dveh vzporedno vezanih prekrivajočih se tuljav 11, 12.The intensity of the light emitted at the center of the excitation coil 11, 12, depending on the voltage at the excitation coil 11, 12 and. from the power of the radio frequency generator, it tells us that the plasma generated in the dual excitation coil 11 and 12 of the invention is much more intense than the plasma generated in the ordinary excitation coil 11. Figure 5 presents the results of measurements of the oxygen emission lines of 777 nm and 845 nm plasma at a pressure of 10 Pa. The optical spectrometer integration time was 200 ms. It is observed that the intensity of the light emitted by the plasma generated in the ordinary excitation coil 11 is about 3 times less than the intensity of the emitted light of the plasma generated in the double excitation coil 11 and 12, consisting of two parallel coupled overlapping coils 11, 12.
Na sliki 6 pa so predstavljeni enaki rezultati za tlak 40 Pa in integracijski čas spektrometra 100 ms. Razlika je še bolj očitna kot pri tlaku 10 Pa. Intenziteta svetlobe v dvojni vzbujevalni tuljavi 11 in 12 sestavljeni iz dveh vzporedno vezanih prekrivajočih se tuljav 11, 12 je pri enaki napetosti na tuljavi tudi do 4-krat večja od intenzitete svetlobe v navadni vzbujevalni tuljavi 11.In Figure 6, however, the same results are presented for the pressure of 40 Pa and the integration time of the 100 ms spectrometer. The difference is even more apparent than at 10 Pa. The intensity of the light in the double excitation coil 11 and 12, consisting of two parallel coated overlapping coils 11, 12, is up to 4 times greater than the light intensity in the ordinary excitation coil 11 at the same voltage on the coil 11.
Naprava po izumu za vzbujanje visokofrekvenčne plinske plazme, to je za prenos elektromagnetne moči od radiofrekvenčnega generatorja v plinsko plazmo z visokofrekvenčnim generatorjem 8 vezanim v sistem, sestoji iz razelektritvene posode 4, okoli katere je ovita plazemska tuljava 11, 12, vakuumske črpalke 1, preciznega dozirnega ventila 6, plinske jeklenke 7, pri čemer so zaporedno vezani visokofrekvenčni generator 8, uskladitveni člen 10 in plazemska tuljava 11, 12. Plazemska tuljava je 11, 12 sestavljena iz dveh ali več tuljav, ki so vezane vzporedno tako, da se posamezni ovoji vsake od tuljav ne prekrivajo in so ovite okoli skupne osi tako, da se ovoji druge tuljave nahajajo med ovoji prve tuljave. Vse tuljave 11, 12 so izdelane iz traku z električno upornostjo za enosmerni električni tok največ 100 Ω, pri čemer so širine traku, iz katerih je izdelana vsaka posamezna tuljava 11, 12, enake in sicer je širina traku vsake posamezne tuljave 11, 12 med 1 mm in 10 cm. Tuljave 11, 12 so zamaknjene ena proti drugi vzdolž skupne osi za 1/N razdalje med dvema zaporednima ovojema vsake od posameznih tuljav 11, 12, kjer je N število posameznih tuljav in sicer najmanj za širino traku vsake od posameznih tuljav 11, 12. Vsako posamezno tuljavo 11, 12 sestavlja najmanj 2 in največ 100 ovojev. Število ovojev na vseh vzbujevalnih tuljavah 11, 12The device of the invention for excitation of high-frequency gas plasma, that is, for transmitting electromagnetic power from a radio frequency generator to a gas plasma with a high-frequency generator 8 coupled to a system, consists of a discharge vessel 4, surrounded by a plasma coil 11, 12, a vacuum pump 1, of precision metering valve 6, gas cylinders 7, wherein the high-frequency generator 8, the harmonization member 10 and the plasma coil 11, 12 are sequentially coupled. The plasma coil 11, 12 consists of two or more coils connected in parallel so that the individual wrappers they do not overlap each of the coils and are wrapped around a common axis such that the coils of the second coil are between the coils of the first coil. All coils 11, 12 are made of an electrical resistive tape for a direct current of not more than 100 Ω, with the band widths from which each individual coil 11, 12 is made equal to the band width of each individual coil 11, 12 between 1 mm and 10 cm. The coils 11, 12 are displaced one by one along the common axis by a 1 / N distance between two consecutive envelopes of each of the individual coils 11, 12, where N is the number of individual coils, at least for the band width of each of the individual coils 11, 12. Each each coil 11, 12 consists of a minimum of 2 and a maximum of 100 sheaths. Number of envelopes on all excitation coils 11, 12
-8je bodisi enako, ali pa imajo druge oziroma dodatne vzbujevalne tuljave 12 en ovoj manj kot prva vzbujevalna tuljava 11. Dolžina navitja vsake posamezne tuljave 11, 12 se razlikuje od mnogokratnika četrtine valovne dolžine elektromagnetnega valovanja, ki izvira iz visokofrekvenčnega generatorja 8, za največ 20%. Visokofrekvenčni generator 8 deluje v frekvenčnem območju med 100 kHz in 310 MHz. Vakuumska črpalka 1 in sistem za dovajnje plina z ventilom 6 in jeklenko 7 zagotavljata tlak v razelektritveni posodi 4 med 1 Pa in 104 Pa, prvenstveno pa med 10 Pa in 1000 Pa.-8 is either the same, or the other or additional excitation coils 12 have one sheath less than the first excitation coil 11. The coil length of each individual coil 11, 12 differs from the multiple of a quarter of the wavelength of the electromagnetic wave emanating from the high-frequency generator 8, for a maximum of 20%. The high frequency generator 8 operates in the frequency range between 100 kHz and 310 MHz. Vacuum pump 1 and gas supply system with valve 6 and cylinder 7 provide pressure in the discharge vessel 4 between 1 Pa and 10 4 Pa, and preferably between 10 Pa and 1000 Pa.
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201100025A SI23611A (en) | 2011-01-20 | 2011-01-20 | Device for high-frequency excitation of gas plasma |
PCT/SI2012/000002 WO2012099548A1 (en) | 2011-01-20 | 2012-01-19 | Device for high-frequency gas plasma excitation |
DE112012000015.3T DE112012000015B4 (en) | 2011-01-20 | 2012-01-19 | Device for exciting a high-frequency gas plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201100025A SI23611A (en) | 2011-01-20 | 2011-01-20 | Device for high-frequency excitation of gas plasma |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23611A true SI23611A (en) | 2012-07-31 |
Family
ID=45922789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201100025A SI23611A (en) | 2011-01-20 | 2011-01-20 | Device for high-frequency excitation of gas plasma |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE112012000015B4 (en) |
SI (1) | SI23611A (en) |
WO (1) | WO2012099548A1 (en) |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5401350A (en) | 1993-03-08 | 1995-03-28 | Lsi Logic Corporation | Coil configurations for improved uniformity in inductively coupled plasma systems |
US5815047A (en) | 1993-10-29 | 1998-09-29 | Applied Materials, Inc. | Fast transition RF impedance matching network for plasma reactor ignition |
US5683539A (en) | 1995-06-07 | 1997-11-04 | Applied Materials, Inc. | Inductively coupled RF plasma reactor with floating coil antenna for reduced capacitive coupling |
US5874704A (en) | 1995-06-30 | 1999-02-23 | Lam Research Corporation | Low inductance large area coil for an inductively coupled plasma source |
KR970064327A (en) * | 1996-02-27 | 1997-09-12 | 모리시다 요이치 | High frequency power applying device, plasma generating device, plasma processing device, high frequency power applying method, plasma generating method and plasma processing method |
US5689215A (en) | 1996-05-23 | 1997-11-18 | Lam Research Corporation | Method of and apparatus for controlling reactive impedances of a matching network connected between an RF source and an RF plasma processor |
US6504126B2 (en) * | 1997-06-30 | 2003-01-07 | Applied Materials, Inc. | Plasma reactor with coil antenna of concentrically spiral conductors with ends in common regions |
US6154465A (en) | 1998-10-06 | 2000-11-28 | Vertical Networks, Inc. | Systems and methods for multiple mode voice and data communications using intelligenty bridged TDM and packet buses and methods for performing telephony and data functions using the same |
US6248251B1 (en) | 1999-02-19 | 2001-06-19 | Tokyo Electron Limited | Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma |
JP2001052894A (en) | 1999-08-04 | 2001-02-23 | Ulvac Japan Ltd | Inductively coupled high frequency plasma source |
US6694915B1 (en) * | 2000-07-06 | 2004-02-24 | Applied Materials, Inc | Plasma reactor having a symmetrical parallel conductor coil antenna |
US6459066B1 (en) | 2000-08-25 | 2002-10-01 | Board Of Regents, The University Of Texas System | Transmission line based inductively coupled plasma source with stable impedance |
KR100444189B1 (en) | 2001-03-19 | 2004-08-18 | 주성엔지니어링(주) | Impedance matching circuit for inductive coupled plasma source |
US6855225B1 (en) * | 2002-06-25 | 2005-02-15 | Novellus Systems, Inc. | Single-tube interlaced inductively coupling plasma source |
US20040182319A1 (en) * | 2003-03-18 | 2004-09-23 | Harqkyun Kim | Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes |
DE10320472A1 (en) | 2003-05-08 | 2004-12-02 | Kolektor D.O.O. | Plasma treatment for cleaning copper or nickel |
SI21903A (en) * | 2004-09-06 | 2006-04-30 | Uros Cvelbar | Device for generating neutral atoms |
SI1828434T1 (en) | 2004-09-16 | 2008-06-30 | Kolektor Group D.O.O. | Method for improving the electrical connection properties of the surface of a product made from a polymer-matrix composite |
WO2006029642A1 (en) * | 2004-09-16 | 2006-03-23 | Kolektor Group D.O.O. | Method for improving the electrical connection properties of the surface of a product made from a polymer-matrix composite |
JP5086092B2 (en) | 2004-11-12 | 2012-11-28 | エリコン・ソーラー・アクチェンゲゼルシャフト,トリュープバッハ | Impedance matching of capacitively coupled RF plasma reactor suitable for large area substrates |
KR100774521B1 (en) * | 2005-07-19 | 2007-11-08 | 주식회사 디엠에스 | Inductively coupled plasma reactor equipped with multiple antenna coil group |
AT504466B1 (en) | 2006-10-25 | 2009-05-15 | Eiselt Primoz | METHOD AND DEVICE FOR DEGASSING OBJECTS OR MATERIALS USING THE OXIDATIVE RADICALS |
US7938379B2 (en) | 2007-07-11 | 2011-05-10 | General Electric Company | Three axis adjustable mounting system |
-
2011
- 2011-01-20 SI SI201100025A patent/SI23611A/en not_active IP Right Cessation
-
2012
- 2012-01-19 WO PCT/SI2012/000002 patent/WO2012099548A1/en active Application Filing
- 2012-01-19 DE DE112012000015.3T patent/DE112012000015B4/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2012099548A1 (en) | 2012-07-26 |
DE112012000015T5 (en) | 2013-05-08 |
DE112012000015B4 (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10076020B2 (en) | Apparatus and method for plasma ignition with a self-resonating device | |
EP2972241B1 (en) | Microwave plasma spectrometer using dielectric resonator | |
US20140062285A1 (en) | Method and Apparatus for a Large Area Inductive Plasma Source | |
CN110402009B (en) | Plasma generator | |
US10014162B2 (en) | Plasma generation apparatus for generating toroidal plasma | |
KR20130100664A (en) | Dry etching apparatus and dry etching method | |
US9215789B1 (en) | Hybrid plasma source | |
US20160091534A1 (en) | Current sensor | |
McConville et al. | Demonstration of auroral radio emission mechanisms by laboratory experiment | |
KR100972371B1 (en) | Complex Plasma Source and Gas Separation Method Using the Same | |
Piejak et al. | Electric field in inductively coupled gas discharges | |
SI23611A (en) | Device for high-frequency excitation of gas plasma | |
KR101577272B1 (en) | Plasma process apparatus for roll-to-roll | |
CN116801470A (en) | An inductively coupled remote plasma generator with a magnetic core | |
CN109148073B (en) | Coil assembly, plasma generating device and plasma equipment | |
KR20170134012A (en) | Plasma chamber using the chamber block possible plasma ignition | |
KR100743842B1 (en) | Plasma reactor with plasma chamber coupled to the flux channel | |
WO2022256528A4 (en) | Systems and methods of plasma generation with microwaves | |
KR101680707B1 (en) | Transformer coupled plasma generator having first winding to ignite and sustain a plasma | |
KR102616743B1 (en) | Plasma chamber having one body connector having plasma state sensor and adapter having plasma state sensor | |
KR101028215B1 (en) | Plasma generator | |
US8852522B1 (en) | Plasma de-activation apparatus and method | |
KR101479273B1 (en) | Low Power Plasma Generating Device for Analyzing Optical Emission Spectrum | |
KR20180024770A (en) | Plasma chamber using connected block | |
JP2005050776A (en) | Electromagnetic field feeder and plasma device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20120809 |
|
KO00 | Lapse of patent |
Effective date: 20210125 |