[go: up one dir, main page]

SI22509A - Optical system for selective laser trabeculoplastics - Google Patents

Optical system for selective laser trabeculoplastics Download PDF

Info

Publication number
SI22509A
SI22509A SI200700086A SI200700086A SI22509A SI 22509 A SI22509 A SI 22509A SI 200700086 A SI200700086 A SI 200700086A SI 200700086 A SI200700086 A SI 200700086A SI 22509 A SI22509 A SI 22509A
Authority
SI
Slovenia
Prior art keywords
laser
optical system
light
wavelength
planar
Prior art date
Application number
SI200700086A
Other languages
Slovenian (sl)
Inventor
Griša Močnik
Gregor TavÄŤar
Boris Vedlin
MatjaĹľ Zalar
Original Assignee
Optotek D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optotek D.O.O. filed Critical Optotek D.O.O.
Priority to SI200700086A priority Critical patent/SI22509A/en
Priority to PCT/SI2008/000024 priority patent/WO2008127204A1/en
Publication of SI22509A publication Critical patent/SI22509A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00868Ciliary muscles or trabecular meshwork

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lasers (AREA)

Abstract

The optical system for selective laser trabeculoplastics ensures a homogeneous density of energy and a sharp edge of the laser shot dot on the target by way of flat laser light source which features the corresponding dimensions and numerical aperture so that the originating light is within the limits of the numerical aperture distributed uniformly across the plane and angle, and with the help of a lens system, which conveys the light from the planar source to the target depth in such a way that it features a uniform energy density on the target, and which takes care that the convergence by the beam of light does not exceed 3 degrees. For irradiation, laser light of such a wavelength is used which is well absorbed in melanin, the typical wavelength being 532 nm which is produced after the light passes the laser source generating a light of 1064 nm wavelength through a non-linear crystal or through two non-linear crystals. The laser source can be a Nd:YAG laser with quality switch or fibre laser.

Description

OPTIČNI SISTEM ZA SELEKTIVNO LASERSKO TRABEKULOPLASTIKOOPTICAL SYSTEM FOR SELECTIVE LASER TRABECULOPLASTY

Področje tehnikeThe field of technology

Izum sodi v področje medicinskih naprav za terapijo bolezni oči, natančneje v področje laserskega zdravljenja določenih vrst glavkoma s selektivno lasersko trabekuloplastiko.The invention belongs to the field of medical devices for the treatment of eye diseases, more specifically to the field of laser treatment of certain types of glaucoma with selective laser trabeculoplasty.

Tehnični problemA technical problem

Glavkomi so skupina očesnih bolezni, pri katerih je prizadet očesni živec. Najpogosteje uporabljena klasifikacija glavkomov temelji na patofiziologiji in deli glavkome na glavkome z odprtim zakotjem in glavkome z zaprtim zakotjem. Slednji so posledica anatomske predispozicije, vnetij ali neovaskularizacije in imajo običajno akuten potek. Pri glavkomu z odprtim zakotjem je dejavnik tveganja povišan očesni tlak, ki je najpogosteje posledica zmanjšanega pretoka prekatne vodice skozi trabekularno mrežje in Schlemmov kanal v zbirne kanalčke, povezane z venskimi pleteži. Tovrstno povišanje očesnega tlaka je mogoče znižati s selektivno lasersko trabekuloplastiko, ki je minimalno invaziven poseg.Glaucoma is a group of eye diseases that affect the optic nerve. The most commonly used classification of glaucoma is based on pathophysiology and divides glaucoma into open-angle and closed-angle glaucoma. The latter are due to anatomical predisposition, inflammation, or neovascularization and usually have an acute course. In open-angle glaucoma, a risk factor is elevated ocular pressure, which is most often the result of decreased flow of ventricular fluid through the trabecular meshwork and the Schlemm channel into the collecting ducts associated with venous plaques. This increase in eye pressure can be reduced by selective laser trabeculoplasty, which is a minimally invasive procedure.

Pri laserski trabekuloplastiki se laserski sunki absorbirajo v tkivu trabekularnega mrežja v zakotju prednjega prekata očesa, in sicer v epitelijskih celicah, obarvanih z melaninom. Laserski sunki so veliko krajši od termalnega relaksacijskega časa tkiva, ki je tarča laserske svetlobe, tako da je dvig temperature omejen na obsevano območje, zato absorbirana laserska svetloba nima koagulacijskega učinka na tkivo. Sodobne rešitve naprav za selektivno lasersko trabekuloplastiko uporabljajo tipično nekaj nanosekund dolge sunke laserske svetlobe z valovno dolžino, ki zagotavlja dobro absorbiranje v melaninu, tipično je to valovna dolžina 532 nm. Pri tem je transverzalna dimenzija laserskega snopa (pika) na trabekularnem mrežju tipično velikosti nekaj desetink milimetra, tipična energija laserskega sunka pa ne presega 2 mJ.In laser trabeculoplasty, laser shocks are absorbed in the tissue of the trabecular meshwork in the anterior anterior chamber angle, in melanin-stained epithelial cells. Laser shocks are much shorter than the thermal relaxation time of the tissue that is the target of the laser light, so that the temperature rise is limited to the irradiated area, so the absorbed laser light has no coagulation effect on the tissue. Modern solutions for selective laser trabeculoplasty devices typically use a few nanoseconds of long-wave laser light with a wavelength that ensures good absorption in melanin, typically a wavelength of 532 nm. The transverse dimension of the laser beam (dot) on the trabecular mesh is typically a few tens of millimeter in size, and the typical laser shock energy does not exceed 2 mJ.

Tehnični problem, ki ga rešuje optični sistem po izumu, je konstrukcija optičnega sestava v laserski napravi za očesno kirurgijo, ki zagotavlja dobro določeno in enakomerno porazdelitev jakosti svetlobe po ploskvi pike laserskega sunka na tarči, zato da se doseže enakomeren učinek laserske svetlobe na obsevanem tkivu. Pri tem morajo imeti laserski sunki valovno dolžino, ki se dobro absorbira v melaninu.A technical problem solved by the optical system of the invention is the construction of the optical composition in a laser eye surgery device, which provides a well-defined and uniform distribution of light intensity across the surface of the laser shock dot on the target, in order to achieve a uniform laser light effect on the irradiated tissue. . In doing so, laser shocks must have a wavelength that is well absorbed in melanin.

Naloga sistema po izumu je še, da na tarči ustvari piko laserskega sunka z ostrim robom, da je mogoče obsevanje laže omejiti le na prizadeto tkivo.The object of the system of the invention is also to create a dot on the target with a sharp edge, so that the irradiation can be restricted to the affected tissue only.

Znano stanje tehnikeThe prior art

Sodobni aparati za selektivno lasersko trabekuloplastiko so tipično sestavljeni iz:Modern selective laser trabeculoplasty apparatus typically consists of:

- laserja Nd:YAG s preklopom kakovosti, ki ima kompakten resonator in generira sunke svetlobe z valovno dolžino 1064 nm in dolžino okoli 5 ns;- a quality-switching Nd: YAG laser having a compact resonator and generating sunlight with a wavelength of 1064 nm and a length of about 5 ns;

- nelinearnega kristala z geometrijo, ki je optimirana za frekvenčno podvajanje laserske svetlobe z valovno dolžino 1064 nm, to pomeni, da pretvarja lasersko svetlobo z valovno dolžino 1064 nm v svetlobo z valovno dolžino 532 nm. Primer takšnega kristala je ΚΤ1ΟΡΟ4.- a nonlinear crystal with a geometry optimized for frequency doubling of laser light with a wavelength of 1064 nm, that is, it converts laser light with a wavelength of 1064 nm to light with a wavelength of 532 nm. An example of such a crystal is ΚΤ1ΟΡΟ4.

- lečja, ki poskrbi, da je pika laserskega snopa na tarči ustrezne velikosti, in da je konvergenca snopa zadosti majhna, da snop doseže očesno zakotje.- lenses that ensure that the laser beam dot is at the correct size target and that the beam convergence is sufficiently small to allow the beam to reach the eye corner.

Energija in dolžina sunka, ki ga generira laser Nd:YAG, sta dobro definirana z dimenzijami in optičnimi lastnostmi optičnih elementov laserja, to pomeni, da se zelo malo razlikujeta od sunka do sunka. Ker je razmerje dolžine resonatorja proti premeru snopa sorazmerno majhno, in sicer ~10cm/~1 mm, porazdelitev gostote moči laserskega sunka po preseku žarka ni dobro definirana, saj se spreminja od sunka do sunka, laser deluje namreč v mešanici več transverzalnih načinov, delež posameznega načina v tej mešanici pa se razlikuje od sunka do sunka. Obnašanje nelinearnega kristala je občutljivo na gostoto moči vpadne laserske svetlobe, zato pri frekvenčnem podvajanju takih sunkov izkoristek pretvorbe ni konstanten. Fluktuacije energije so tako pri sunkih z valovno dolžino 532 nm, nastalih v nelinearnem kristalu, mnogo večje kot pri sunkih z valovno dolžino 1064 nm.The energy and the length of the shock generated by the Nd: YAG laser are well defined by the dimensions and optical properties of the optical elements of the laser, meaning that they differ very little from shock to shock. Since the ratio of the resonator length to beam diameter is relatively small, namely ~ 10cm / ~ 1 mm, the power density distribution of the laser beam after the beam cross-section is not well defined, as it varies from shock to shock, namely, the laser operates in a mixture of several transverse modes. the individual mode in this blend differs from gust to gust. The behavior of the nonlinear crystal is sensitive to the power density of the incident laser light, and therefore the conversion efficiency is not constant at the frequency doubling of such beams. Thus, energy fluctuations are much larger for beams with a wavelength of 532 nm generated in a nonlinear crystal than for beams with a wavelength of 1064 nm.

Pri selektivni laserski trabekuloplastiki se poseg izvede na z melaninom obarvanih epitelijskih celicah trabekularnega mrežja. Pri tem želimo prizadeti čim manj sosednjega tkiva. Pika zgoraj opisanega laserskega snopa ima na globini tarče zelo neostre robove, to pomeni, da gostota energije zložno pada z oddaljenostjo od centra pike, kar je posledica neizogibnega uklona svetlobe na poti od izvora do tarče. Pri takem energijskem profilu pike je težko zagotoviti, da pri posegu laserska pika ne bi prizadela tudi območij tkiva, ki jih ne želimo obsevati.In selective laser trabeculoplasty, the intervention is performed on melanin-stained epithelial cells of the trabecular meshwork. In doing so, we want to affect as little adjacent tissue as possible. The dot of the laser beam described above has very sharp edges at the target's depth, meaning that the energy density declines sharply with distance from the center of the dot, as a result of the inevitable deflection of light on the path from the source to the target. With such a dot energy profile, it is difficult to ensure that the laser dot does not affect areas of tissue that we do not want to irradiate.

Problem enakomerne porazdelitve energije znotraj ostrih robov pike rešuje osvetlitveni sistem, opisan v US6532244. Osvetlitveni sistem ima večnačinski diodni laser in dvoje optičnih vlaken. Svetloba iz laserja se usmeri v prvo optično vlakno, izstopna svetloba iz prvega optičnega vlakna se skozi optični sistem usmeri v drugo optično vlakno, ki ima premer večji kot prvo vlakno in ki ima numerično aperturo večjo od numerične aperture optičnega sistema. Svetlobni snop, ki izstopa iz drugega optičnega vlakna, ima bolj enakomerno intenziteto po profilu kot svetlobni snop iz prvega vlakna. Sistem, opisan v patentu US6532244, rešuje predvsem problem ovalnosti pike svetlobnega snopa iz diodnega laserja.The problem of uniform energy distribution within the sharp edges of a dot is solved by the illumination system described in US6532244. The illumination system has a multifaceted diode laser and two optical fibers. The light from the laser is directed to the first optical fiber, and the light output from the first optical fiber is directed through the optical system to a second optical fiber having a diameter larger than the first fiber and having a numerical aperture greater than the numerical aperture of the optical system. The light emitting from the second optical fiber has a more uniform intensity in profile than the light from the first fiber. The system described in patent US6532244 primarily solves the problem of the ovality of the light beam dot from a diode laser.

Opis rešitve tehničnega problemaDescription of solution to a technical problem

Rešitev tehničnega problema po izumu ima za zagotovitev homogene gostote energije in ostrega roba obsevanja na izbrani globini naslednje bistvene funkcionalne dele:The solution of a technical problem according to the invention has the following essential functional parts to ensure a homogeneous energy density and a sharp irradiation edge at a selected depth:

- ploskovni izvor laserske svetlobe, ki ima ustrezno dimenzijo in numerično aperturo in iz katerega izhajajoča svetloba je enakomerno porazdeljena po ploskvi in kotu in ima valovno dolžino, ki zagotavlja dobro absorbiranje v melaninu;- a planar laser light source having an appropriate dimension and numerical aperture, from which the resulting light is uniformly distributed over the plane and angle and has a wavelength that ensures good absorption in melanin;

- lečje, ki svetlobo iz omenjenega ploskovnega izvora privede na globino tarče tako, da ima na tarči enakomerno gostoto energije, in ki poskrbi, da ima snop te svetlobe zelo majhno konvergenco.- a lens which brings the light from said planar origin to the depth of the target so that it has a uniform energy density on the target, and which ensures that the beam of this light has very little convergence.

Ploskovni izvor v optičnem sistemu po izumu je lahko narejen:The planar origin in the optical system of the invention may be made:

a) z optičnim vlaknom, ki ima ustrezno dimenzijo in numerično aperturo; alia) an optical fiber having an appropriate dimension and numerical aperture; or

b) s pomočjo zaslonke s krožno odprtino, ki je primerno manjša od premera snopa laserske svetlobe, ki pada na odprtino zaslonke.b) by means of an aperture with a circular aperture which is suitably smaller than the diameter of the laser light incident on the aperture.

Iz ploskovnega izvora izstopajoča laserska svetloba se lahko projicira na tarčo:Out-of-plane laser light can be projected onto a target:

a) po principu prekrivanja kolimiranih žarkov, kadar je ploskovni izvor izstopna ploskev optičnega vlakna; alia) the principle of overlapping collimated rays where the plane origin is the exit plane of the optical fiber; or

b) kot preslikava ploskovnega izvora, kadar je ploskovni izvor izstopna ploskev optičnega vlakna ali krožna odprtina zaslonke.b) as a mapping of planar origin when the planar origin is the optical fiber exit plane or the aperture circular aperture.

Izvedbene rešitve optičnega sistema za selektivno lasersko trabekuloplastiko po izumu so v nadaljevanju podrobneje opisane s pomočjo naslednjih slik:The embodiments of the optical system for selective laser trabeculoplasty according to the invention are described in more detail below by means of the following figures:

Slika 1: Shematski prikaz poteka žarkov laserskega snopa od izstopne ploskve optičnega vlakna skozi zbiralno lečo.Figure 1: Schematic representation of the laser beam beam path from the optical fiber exit plane through the collecting lens.

Slika 2: Shematski prikaz poteka laserskega snopa oziroma posameznih žarkov v snopu od izstopne ploskve optičnega vlakna skozi lečje optičnega sistema. Slika 3: Shematski prikaz preslikave odprtine zaslonke, enakomerno osvetljene z laserskim snopom, na tarčo.Figure 2: Schematic representation of the laser beam or individual beam paths from the optical fiber exit plane through the lens of the optical system. Figure 3: Schematic representation of the aperture mapping, evenly illuminated by the laser beam, to the target.

Slika 4a: Diagram porazdelitve energije po ploskvi pike pred podvojitvijo frekvence. Slika 4b: Diagram porazdelitve energije po ploskvi pike po podvojitvi frekvence s pomočjo enega nelinearnega kristala.Figure 4a: Diagram of the energy distribution across the dot plane before frequency doubling. Figure 4b: Diagram of the energy distribution across the dot plane after frequency doubling using a single nonlinear crystal.

Slika 4c: Diagram porazdelitve energije po ploskvi pike po podvojitvi frekvence s pomočjo dveh nelinearnih kristalov.Figure 4c: Energy distribution diagram of the dot plane after frequency doubling using two nonlinear crystals.

Pri izvedbeni rešitvi, prikazani shematsko na sliki 1, se laserski snop vodi do optičnega sistema po optičnem vlaknu 1. Izstopna ploskev 2 optičnega vlakna 1 je nameščena v levem gorišču zbiralne leče 3, ki se nahaja v ravnini G3'. V desnem gorišču na drugi strani leče 3, ki se nahaja v ravnini G3, se ustvari grlo laserskega snopa, ki ima homogen ploskovni profil jakosti in oster rob. Svetloba, ki zapušča izstopno ploskev 2 optičnega vlakna 1, je zaradi številnih odbojev znotraj vlakna po profilu in kotu precej enakomerno porazdeljena in omejena z robom, ki ga določata izstopna ploskev 2 in numerična apertura optičnega vlakna 1. Svetlobne stožce, ki izvirajo iz posameznih točk na izstopni ploskvi 2, ki je oddaljena od leče 3 ravno za goriščno razdaljo, leča 3 preoblikuje v kolimirane žarke. Osi vseh žarkov se sekajo na goriščni razdalji na drugi strani leče, kjer ploskovni profili jakosti posameznih žarkov sovpadajo. Premer in numerična apertura vlakna sta pri tem ključna parametra, saj je produkt divergence posameznega žarka (kot svetlobnega stožca) in oddaljenost gorišča žarka od optične osi na eni strani leče enaka premeru in vpadnemu kotu istega žarka na drugi strani leče.In the embodiment shown schematically in Figure 1, the laser beam is guided to the optical system by optical fiber 1. The exit surface 2 of optical fiber 1 is located in the left center of the collecting lens 3, which is located in the plane G3 '. In the right focus on the other side of lens 3, located in the G3 plane, a laser beam throat is created which has a homogeneous planar profile of strength and a sharp edge. Due to the many reflections inside the fiber, the light leaving the exit surface 2 of the optical fiber 1 is rather evenly distributed along the profile and angle and is limited by the edge defined by the exit surface 2 and the numerical aperture of the optical fiber 1. The light cones emanating from individual points on the exit surface 2, which is distant from the lens 3 just behind the focal length, the lens 3 transforms into collimated rays. The axes of all rays intersect at the focal length on the other side of the lens, where the plane profiles of the strengths of the individual rays coincide. The diameter and numerical aperture of the fiber are the key parameters, since the product of the divergence of a single beam (as a light cone) and the distance of the focal point of the beam from the optical axis on one side of the lens are equal to the diameter and incidence angle of the same beam on the other side of the lens.

Pri izvedbeni rešitvi, prikazani shematsko na sliki 2, se laserski snop vodi do optičnega sistema po optičnem vlaknu 1. Izstopna ploskev 2 optičnega vlakna 1 je homogen ploskovni izvor, ki se z optičnim sistemom ali sistemom leč, tipično z dvema zbiralnima lečama 3 in 4, preslika na tarčo 5. Tudi pri tej izvedbeni rešitvi sta premer in numerična apertura optičnega vlakna 1 ključna parametra, saj se pri preslikavah z lečami ohranja produkt divergence žarka in oddaljenosti gorišča žarka od optične osi. Najmanjši kot konvergence laserskega snopa se doseže takrat, ko so simetrale posameznih žarkov znotraj snopa vzporedne, to pomeni, da svetloba vpada na tarčo na zrcalno enak način kot zapušča ploskovni izvor. Takšna geometrija se doseže, kadar je izstopna ploskev vlakna postavljena v gorišče prve leče in se slika izstopne ploskve ustvari v gorišču druge leče.In the embodiment shown schematically in Figure 2, the laser beam is guided to the optical system by optical fiber 1. The output surface 2 of optical fiber 1 is a homogeneous plane origin, which is typically optically combined with an optical or lens system, typically with two collecting lenses 3 and 4. In this embodiment, the diameter and the numerical aperture of the optical fiber 1 are key parameters, since in the case of lens imaging the product of the beam divergence and the focal length of the beam from the optical axis is maintained. The smallest convergence angle of the laser beam is reached when the symmetry of the individual rays within the beam is parallel, that is, the light strikes the target in the mirror-like manner as it leaves the plane origin. Such geometry is achieved when the exit plane of the fiber is placed in the focus of the first lens and an image of the exit plane is created in the focus of the second lens.

Pri izvedbeni rešitvi, prikazani shematsko na sliki 3, je laserski snop 8 zaslonjen, in sicer tako, da se v odprtino 10 zaslonke 9 ujame tisti del snopa, kjer je ploskovni profil jakosti najbolj homogen. Zaslonka se s sistemom leč, tipično z dvema zbiralnima lečama 3 in 4, preslika na tarčo 5 s primerno povečavo ali pomanjšavo. Laserski snop, ki ima valovno dolžino tipično 532 nm in premer, potreben za aplikacijo vstopa v oko z zelo majhno divergenco, ima to lastnost, da ravno na globini tarče 5 ustvarja sliko odprtine 10 zaslonke 9. Odprtina 10 zaslonke 9 mora biti zadosti majhna, da ima območje snopa, ki ga ujame, čim bolj enakomerno gostoto energije in hkrati dovolj velika, da prepusti zadosti energije. Leči 3 in 4 morata biti zbiralni, saj le zbiralne leče lahko ustvarjajo realno sliko.In the embodiment shown schematically in Figure 3, the laser beam 8 is screened so that the portion of the beam 9 is trapped in the aperture 10, where the planar strength profile is most homogeneous. The lens is mapped to the target 5 by a suitable zoom in or out using a lens system, typically two collection lenses 3 and 4. A laser beam having a wavelength typically of 532 nm and a diameter required for the application to enter the eye with very small divergence has the property that, at the depth of target 5, it produces an image of the aperture 10 of the aperture 9. The aperture 10 of the aperture 9 must be sufficiently small, that the beam area it captures has a uniform energy density and large enough to allow sufficient energy. Lenses 3 and 4 must be collectable, since only collecting lenses can create a realistic image.

Rešitev tehničnega problema po izumu ima za proizvajanje energijsko stabilnih sunkov svetlobe, ki se dobro absorbira v melaninu, naslednje bistvene funkcionalne dele:The solution of a technical problem according to the invention has the following essential functional parts for the production of energy-stable shocks of light, which is well absorbed in melanin:

- Sunkovni izvor laserske svetlobe v bližnjem infrardečem območju, ki proizvaja sunke z dolžino nekaj nanosekund.- Light source of laser light in the near infrared region, producing a few nanoseconds in length.

- Dva nelinearna kristala, namenjena frekvenčnemu podvajanju, katerih dimenzije in orientacija so izbrane tako, da učinkovito pretvarjata bližnjo infrardečo svetlobo v svetlobo z valovno dolžino, ki zagotavlja dobro absorpcijo v melaninu.- Two non-linear frequency-doubling crystals whose dimensions and orientation are chosen to effectively convert near-infrared light into wavelength light that provides good absorption in melanin.

Za stabilizacijo energije sunka valovne dolžine, ki se dobro absorbira v melaninu (tipično 532 nm), uporablja rešitev po izumu princip kvadraturnega podvajanja frekvence tipa II (D. Eimerl, Ouadrature frequency conversion, IEEE J. Q. Electr QE23 (1987) 1361-1371). Po omenjenem principu uporabimo dva, praviloma različno dolga nelinearna kristala, katerih glavni ravnini, to sta ravnini, ki ju določata vektor smeri žarka laserske svetlobe in optična os prvega oz. drugega kristala, sta pravokotni ena na drugo.To stabilize the shock energy of a wavelength well absorbed in melanin (typically 532 nm), the solution of the invention uses the principle of quadrature doubling of type II frequency (D. Eimerl, Ouadrature frequency conversion, IEEE J. Q. Electr QE23 (1987) 1361-1371). According to this principle, we use two, as a rule, differently different nonlinear crystals, whose principal planes are the planes determined by the laser beam direction vector and the optical axis of the first or the other crystals are perpendicular to each other.

Pri idealnem podvajanju frekvence z nelinearnim kristalom je ujemanje faz vpadnega valovanja in izstopnega valovanja popolno. To se zgodi, kadar je vpadna svetloba monokromatsko EM valovanje, ki je prostorsko in časovno neomejeno, in je nelinearni kristal popolnoma pravilno orientiran. Pri taki situaciji raste izkoristek tipične konverzije svetlobe z valovno dolžino1064 nm v svetlobo z valovno dolžino 532 nm z gostoto moči vpadnega valovanja do nasičenja, to je do 100 %, oziroma z dolžino nelinearnega kristala, to pomeni z dimenzijo, vzdolž katere potuje svetloba laserskega sunka. V takšni idealni situaciji lahko pri dani gostoti moči vpadnega valovanja povečujemo izkoristek konverzije s podaljševanjem dolžine kristala.For ideal frequency duplication with a nonlinear crystal, the matching of the incoming and outgoing wave phases is perfect. This occurs when the incident light is a monochromatic EM wave that is spatially and temporally unrestricted and the nonlinear crystal is perfectly oriented correctly. In such a situation, the efficiency of typical conversion of light with a wavelength of 1064 nm into light with a wavelength of 532 nm with a density of incident wave power up to saturation, that is, up to 100%, or with a length of a nonlinear crystal, that is, with a dimension along which the laser light travels along, increases . In such an ideal situation, at a given power density of the incident wave, the conversion efficiency can be increased by extending the length of the crystal.

Pri realnih razmerah je zgoraj opisano povečevanje izkoristka konverzije nemogoče, saj je vedno prisotno odstopanje od popolnega ujemanja faz, ki s podaljševanjem kristala le raste. Tako se pri določeni dolžini kristala zgodi, da ima podaljševanje ravno nasproten učinek: izkoristek konverzije začne padati, saj začne neujemanje faz povzročati, da se že generirana svetloba z valovno dolžino 532 nm pretvarja nazaj v svetlobo z valovno dolžino 1064 nm.In the real world, increasing the conversion efficiency described above is impossible, since there is always a deviation from perfect phase matching, which only grows with the lengthening of the crystal. Thus, at a given crystal length, the lengthening has the opposite effect: the conversion efficiency begins to fall as phase mismatches cause the already generated light with a wavelength of 532 nm to be converted back into light with a wavelength of 1064 nm.

V praksi to pomeni, da so za doseganje maksimalnega izkoristka konverzije pri različnih gostotah vpadne moči potrebne različne dolžine nelinearnih kristalov.In practice, this means that different lengths of nonlinear crystals are required to achieve maximum conversion efficiency at different power densities.

Pri snopih svetlobe, ki nimajo enakomerne porazdelitve gostote moči po preseku, je mogoče doseči zelo visok in konstanten izkoristek konverzije frekvence tako, da se zaporedno namestita dva različno dolga nelinearna kristala, ki sta med seboj orientirana pravokotno. Zaradi pravokotne namestitve kristalov takšno frekvenčno konverzijo imenujemo kvadraturno podvajanje frekvence. Krajši nelinearni kristal učinkovito podvaja območja z visoko gostoto moči, daljši pa območja z nižjo gostoto moči. Pri tem izkoriščamo njuno medsebojno pravokotno postavitev, ki poskrbi, da svetloba z valovno dolžino 532 nm, ki zapušča prvi kristal, ne more povzročati neželene konverzije nazaj v svetlobo z valovno dolžino 1064 nm v drugem kristalu, saj ima napačno polarizacijo.For light beams that do not have a uniform distribution of power density across the cross section, it is possible to achieve a very high and constant frequency conversion efficiency by successively placing two differently long nonlinear crystals oriented perpendicularly to each other. Due to the rectangular arrangement of the crystals, such a frequency conversion is called quadrature frequency doubling. The shorter nonlinear crystal effectively doubles the areas with high power density, and the longer ones areas with lower power density. In doing so, we take advantage of their perpendicular arrangement, which ensures that light with a wavelength of 532 nm leaving the first crystal cannot cause unwanted conversion back to light with a wavelength of 1064 nm in the second crystal, as it has the wrong polarization.

Visoka stabilnost in visok izkoristek konverzije poskrbita, da so energije sunkov vselej znotraj dopustnega odstopanja od nazivne energije, in da so fluktuacije gostote energije znotraj intenzitetnega profila snopa na globini tarče minimalne.The high stability and high conversion efficiency ensure that the energy of the shock is always within the tolerance of the nominal energy and that the fluctuations of the energy density within the beam intensity profile at the target depth are minimal.

Svetloba z valovno dolžino 1064 nm, ki vstopa v nelinearni kristal, tipično nima konstantne porazdelitve gostote moči po profilu, kot je razvidno s slike 4a. Pri uporabi le enega nelinearnega kristala se območja z nižjimi gostotami energije slabše frekvenčno podvajajo, zato se znotraj profila svetlobe z valovno dolžino 532 nm, ki ga zajame odprtina zaslonke 2, pojavijo območja z nezadostno gostoto moči. To pomeni, da gostota energije na tistih predelih ne preseže praga 1 za uspešno trabekuloplastiko, se pravi, da je območje uspešne rabekuloplastike 3 manjše kot pika na tarči kar ilustrira slika 4b.Light with a wavelength of 1064 nm entering a nonlinear crystal typically does not have a constant power density distribution across the profile, as can be seen from Figure 4 a. When only one nonlinear crystal is used, regions with lower energy densities are doubled in frequency, and therefore areas with insufficient power density appear within the light profile with a wavelength of 532 nm captured by the aperture 2. This means that the energy density in those regions does not exceed the threshold 1 for successful trabeculoplasty, that is, the area of successful rabeculoplasty 3 is smaller than the dot on the target, as illustrated in Figure 4b.

Ker želimo doseči čim večjo homogenost znotraj ostrega roba pike na tarči, mora biti gostota na tarčo dovedene energije v vseh predelih pike nad pragom, ki zagotavlja učinkovito trabekuloplastiko. Pri uporabi dveh nelinearnih kristalov, nameščenih za kvadraturno podvajanje frekvence, je svetloba iz vseh predelov ploskovnega preseka snopa učinkovito frekvenčno podvojena, zato ne prihaja do neželenih območij z nezadovoljivo gostoto energije v profilu laserskega snopa, ki ga zajame odprtina zaslonke 2, kot prikazuje slika 4c.In order to achieve the greatest possible homogeneity within the sharp edge of the dot on the target, the density per target of the energy delivered to the target must be above the threshold in all areas of the dot, providing effective trabeculoplasty. When using two nonlinear crystals positioned for quadrature frequency doubling, light from all areas of the planar beam section is effectively frequency doubled, so no unwanted areas with an unsatisfactory energy density are obtained in the laser beam profile captured by the aperture 2, as shown in Figure 4c .

Stabilno energijo sunka s tipično valovno dolžino 532 nm je mogoče doseči tudi z uporabo vlakenskega laserja. Kakovost laserskega snopa vlakenskega laserja močno prekaša kakovost laserskega snopa laserjev Nd:YAG. Če uporabimo vlakenski laser kot izvor svetlobe z valovno dolžino 1064 nm, se gostota energije znotraj snopa od sunka do sunka ne spreminja in je zato frekvenčno podvajanje v nelinearnem kristalu konstantno v času in prostoru. Tako dosežemo veliko homogenost gostote energije znotraj ostrega roba pike na tarči in takšno gostoto energije, ki je na vseh predelih pike nad pragom, ki zagotavlja učinkovito trabekuloplastiko.A stable shock energy with a typical wavelength of 532 nm can also be achieved using a fiber laser. The quality of the fiber laser beam is far superior to that of the Nd: YAG laser beam. If a fiber laser is used as a light source with a wavelength of 1064 nm, the energy density inside the beam does not change from shock to shock and therefore the frequency doubling in the nonlinear crystal is constant over time and space. This results in high homogeneity of the energy density within the sharp edge of the dot on the target and such energy density over all the areas of the dot above the threshold that provides effective trabeculoplasty.

Claims (14)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Optični sistem za selektivno lasersko trabekuloplastiko, za katerega je značilno, da vsebuje ploskovni izvor laserske svetlobe in lečje; da imaAn optical selective laser trabeculoplasty system characterized by a planar laser light source and lens; yes there is 5 omenjeni ploskovni izvor laserske svetlobe ustrezno dimenzijo in numerično aperturo, ki zagotavljata enakomerno porazdelitev jakosti izhajajoče svetlobe po ploskvi in kotu znotraj meja numerične aperture; da omenjeno lečje svetlobo iz omenjenega ploskovnega izvora privede na globino tarče, kjer ima snop svetlobe konvergenco v območju nekaj stopinj in ima laserska pika5 the said laser plane light source having an appropriate dimension and numerical aperture to provide a uniform distribution of the light output over the plane and angle within the limits of the numerical aperture; that said lens of light from said planar origin is brought to the target depth, where the beam of light has convergence in the range of a few degrees and has a laser dot 10 enakomerno gostoto energije po celem profilu.10 uniform energy density throughout the profile. 2. Optični sistem po zahtevku 1, pri Čemer ima laserska svetloba, ki izstopa iz omenjenega ploskovnega izvora, valovno dolžino, ki se dobro absorbira v melaninu.The optical system of claim 1, wherein the laser light exiting the said planar origin has a wavelength that is well absorbed in the melanin. 3. Optični sistem po zahtevku 1 in 2, pri čemer ima laserska svetloba, ki izstopaAn optical system according to claims 1 and 2, wherein the laser light has an outgoing light 15 iz omenjenega ploskovnega izvora, valovno dolžino 532 nm.15 from said planar origin, wavelength 532 nm. 4. Optični sistem po zahtevkih od 1 do 3, v katerem je omenjeni ploskovni izvor izstopna ploskev (2) optičnega vlakna (1).An optical system according to claims 1 to 3, wherein said plane origin is the exit surface (2) of the optical fiber (1). 5. Optični sistem po zahtevkih od 1 do 3, v katerem je omenjeni ploskovni izvor realiziran s pomočjo zaslonke (9) s krožno odprtino (10), ki je primernoOptical system according to claims 1 to 3, wherein said planar origin is realized by means of an aperture (9) with a circular opening (10), which is suitable 20 manjša, tipično približno dvakrat manjša, od premera snopa laserske svetlobe, ki vpada na zaslonko (9).20 smaller, typically about twice smaller, than the diameter of the laser beam incident on the aperture (9). 6. Optični sistem po zahtevkih od 1 do 5, v katerem se iz ploskovnega izvora izstopajoča laserska svetloba projicira skozi lečje (3, 4) na tarčo (5) v obliki kolimiranih žarkov, ki se prekrivajo na globini tarče.Optical system according to claims 1 to 5, in which laser-emitting laser light is projected through the lens (3, 4) onto the target (5) in the form of collimated rays that overlap at the target depth. 7. Optični sistem po zahtevkih 1,2, 3, 4 in 6, v katerem se iz ploskovnega izvora, ki je izstopna ploskev (2) optičnega vlakna (1), izstopajoča laserska svetloba projicira na tarčo (5) kot preslikava ploskovnega izvora.Optical system according to claims 1,2, 3, 4 and 6, in which the exiting laser light is projected from the surface source, which is the exit surface (2) of the optical fiber (1), onto the target (5) as a mapping of the surface origin. 8. Optični sistem po zahtevkih 1, 2, 3, 5 in 6, v katerem se iz ploskovnega izvora, ki je krožna odprtina (10) zaslonke (9), izstopajoča laserska svetloba projicira na tarčo (5) kot preslikava ploskovnega izvora.Optical system according to claims 1, 2, 3, 5 and 6, in which the exiting laser light is projected from the planar source, which is a circular opening (10) of the aperture (9), onto the target (5) as a mapping of the planar origin. 9. Optični sistem po zahtevkih od 1 do 8, za katerega je značilno, da sprejemaAn optical system according to claims 1 to 8, characterized in that it receives 5 lasersko svetlobo za svoj ploskovni izvor laserske svetlobe iz laserskega sistema, v katerem je kot izvor svetlobe z valovno dolžino v bližnjem infrardečem območju okoli valovne dolžine 1000 nm in z dolžino sunkov v nanosekundnem območju uporabljen laser s kristalom kot aktivnim sredstvom in s preklopom kakovosti.5 laser light for its planar laser light source from a laser system in which a laser with a crystal as an active agent and a quality switch is used as a light source with a wavelength in the near infrared region around a wavelength of 1000 nm and a beam length in the nanosecond range. 10 10. Optični sistem po zahtevku 9, pri čemer se laserska svetloba z valovno dolžino, ki se dobro absorbira v melaninu in ki vstopa v optični sistem, v laserskem sistemu proizvede s podvajanjem frekvence v enem nelinearnem kristalu.10. The optical system of claim 9, wherein the laser wavelength, which is well absorbed in melanin and enters the optical system, is produced in the laser system by doubling the frequency in a single nonlinear crystal. 11. Optični sistem po zahtevku 9, pri čemer je laserska svetloba z valovno dolžino,The optical system of claim 9, wherein the laser light is wavelength, 15 ki se dobro absorbira v melaninu in ki vstopa v optični sistem, v laserskem sistemu proizvede s kvadraturnim podvajanjem frekvence v dveh nelinearnih kristalih.15, which is well absorbed in melanin and enters the optical system, produces in the laser system a quadrature frequency doubling in two nonlinear crystals. 12. Optični sistem po zahtevkih od 1 do 8, za katerega je značilno, da sprejema lasersko svetlobo za svoj ploskovni izvor laserske svetlobe iz laserskegaOptical system according to claims 1 to 8, characterized in that it receives laser light for its planar laser light source from the laser 20 sistema, v katerem je kot izvor svetlobe z valovno dolžino v bližnjem infrardečem območju okoli valovne dolžine 1000 nm in dolžino sunkov v nanosekundnem območju uporabljen vlakenski laser.20, in which a fiber laser is used as the light source with a wavelength in the near infrared region around a wavelength of 1000 nm and a beamlength in the nanosecond region. 13. Optični sistem po zahtevku 12, pri čemer se laserska svetloba z valovno dolžino, ki se dobro absorbira v melaninu in ki vstopa v optični sistem, vThe optical system of claim 12, wherein the laser wavelength, which is well absorbed in melanin and enters the optical system, is 25 laserskem sistemu proizvede s podvajanjem frekvence v enem nelinearnem kristalu.25 produces a laser system by doubling the frequency in a single nonlinear crystal. 14. Optični sistem po zahtevku 12, pri čemer se laserska svetloba z valovno dolžino, ki se dobro absorbira v melaninu in ki vstopa v optični sistem, v laserskem sistemu proizvede s kvadraturnim podvajanjem frekvence v dvehThe optical system of claim 12, wherein the laser wavelength, which is well absorbed in melanin and entering the optical system, is produced in the laser system by quadrature doubling of frequency in two 30 nelinearnih kristalih.30 nonlinear crystals.
SI200700086A 2007-04-11 2007-04-11 Optical system for selective laser trabeculoplastics SI22509A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200700086A SI22509A (en) 2007-04-11 2007-04-11 Optical system for selective laser trabeculoplastics
PCT/SI2008/000024 WO2008127204A1 (en) 2007-04-11 2008-04-10 Optical system for selective laser trabeculoplasty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200700086A SI22509A (en) 2007-04-11 2007-04-11 Optical system for selective laser trabeculoplastics

Publications (1)

Publication Number Publication Date
SI22509A true SI22509A (en) 2008-10-31

Family

ID=39739586

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200700086A SI22509A (en) 2007-04-11 2007-04-11 Optical system for selective laser trabeculoplastics

Country Status (2)

Country Link
SI (1) SI22509A (en)
WO (1) WO2008127204A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069197A1 (en) 2013-11-11 2015-05-14 Optotek D.O.O. Ophthalmic laser device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020001322A (en) * 2017-08-02 2022-04-07 Multi Radiance Medical System and method for directing light into a patient's eye.
US11638833B2 (en) 2017-08-02 2023-05-02 Multi Radiance Medical Reducing light polution in photobiomodulation therapy of a patients eye

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291913A (en) * 1985-10-18 1987-04-27 興和株式会社 Laser spot optical system
US5129895A (en) * 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
US5549596A (en) * 1993-07-07 1996-08-27 The General Hospital Corporation Selective laser targeting of pigmented ocular cells
JP2004121814A (en) * 2002-04-08 2004-04-22 Lumenis Inc System, method and apparatus for providing uniform illumination
US20060224146A1 (en) * 2005-03-30 2006-10-05 Lin J T Method and system for non-invasive treatment of hyperopia, presbyopia and glaucoma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069197A1 (en) 2013-11-11 2015-05-14 Optotek D.O.O. Ophthalmic laser device

Also Published As

Publication number Publication date
WO2008127204A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
Puliafito et al. Short-pulsed Nd: YAG laser microsurgery of the eye: biophysical considerations
DE69830311T2 (en) SURGICAL SHORT PULSE SOURCE IN THE MIDDLE INFRARED AREA
DE69832079T2 (en) SHORT-PUMPED PARAMETRIC MEDIUM INFRARED GENERATOR FOR SURGERY
CN1330453C (en) Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material
US6458120B1 (en) Laser surgical cutting probe and system
ES2291173T3 (en) PROCEDURE FOR TRAINING BLIND HOLES IN SURGICAL NEEDLES USING A ND-YAG LASER PUMPED BY DIODE.
CN104382689B (en) A Femtosecond Laser System for Simultaneous Imaging and Surgery
EP2384727B1 (en) Ophthalmic laser treatment system
US10888461B2 (en) Laser therapeutic device for ophthalmology
SI22509A (en) Optical system for selective laser trabeculoplastics
DE4029530C2 (en) Modular, pulsed multi-wavelength solid-state laser for medical therapy procedures
CN107069408B (en) Femtosecond high-power supercontinuous white light generating device and method
KR100933934B1 (en) Multi-wavelength skin regeneration laser device
CN110277726A (en) A kind of acousto-optic Q modulation ultraviolet laser
US20140379053A1 (en) Medical mask device which uses optical fibers
CN117297759A (en) Biological tissue minimally invasive cutting system capable of generating mid-infrared femtosecond pulse laser
CN107768971B (en) Apparatus and method for generating femtosecond laser filament arrays using wedge-shaped quartz wafers
CN110658632A (en) Homogenized incoherent light source device
CN208656154U (en) A kind of picosecond laser
WO2019078438A1 (en) Laser generation device
WO2019078437A1 (en) Laser generation device
DE10100859A1 (en) Medical laser therapy device
CN207853169U (en) A kind of pulsed solid stale laser experimental system semiconductor pumped based on fiber coupling
CN104167659A (en) Method for adjusting mode matching of pump light and single-resonance optical parameter cavity
CN210443792U (en) Three-lens high-power laser image transmission device

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20070720

SP73 Change of data on owner

Owner name: OPTOTEK D.O.O.; SI

Effective date: 20161214

NC00 Annulment, publication of a decision on annulment of right due to court decision or non-fulfilment of conditions for patent protection

Effective date: 20170721