SI22509A - Optical system for selective laser trabeculoplastics - Google Patents
Optical system for selective laser trabeculoplastics Download PDFInfo
- Publication number
- SI22509A SI22509A SI200700086A SI200700086A SI22509A SI 22509 A SI22509 A SI 22509A SI 200700086 A SI200700086 A SI 200700086A SI 200700086 A SI200700086 A SI 200700086A SI 22509 A SI22509 A SI 22509A
- Authority
- SI
- Slovenia
- Prior art keywords
- laser
- optical system
- light
- wavelength
- planar
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 239000013078 crystal Substances 0.000 claims abstract description 32
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000835 fiber Substances 0.000 claims abstract description 10
- 239000013307 optical fiber Substances 0.000 claims description 19
- 238000013507 mapping Methods 0.000 claims description 4
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 239000013543 active substance Substances 0.000 claims 1
- 230000035939 shock Effects 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 6
- 208000010412 Glaucoma Diseases 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000001585 trabecular meshwork Anatomy 0.000 description 3
- 206010030348 Open-Angle Glaucoma Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 208000030533 eye disease Diseases 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 201000002862 Angle-Closure Glaucoma Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00861—Methods or devices for eye surgery using laser adapted for treatment at a particular location
- A61F2009/00868—Ciliary muscles or trabecular meshwork
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Lasers (AREA)
Abstract
Description
OPTIČNI SISTEM ZA SELEKTIVNO LASERSKO TRABEKULOPLASTIKOOPTICAL SYSTEM FOR SELECTIVE LASER TRABECULOPLASTY
Področje tehnikeThe field of technology
Izum sodi v področje medicinskih naprav za terapijo bolezni oči, natančneje v področje laserskega zdravljenja določenih vrst glavkoma s selektivno lasersko trabekuloplastiko.The invention belongs to the field of medical devices for the treatment of eye diseases, more specifically to the field of laser treatment of certain types of glaucoma with selective laser trabeculoplasty.
Tehnični problemA technical problem
Glavkomi so skupina očesnih bolezni, pri katerih je prizadet očesni živec. Najpogosteje uporabljena klasifikacija glavkomov temelji na patofiziologiji in deli glavkome na glavkome z odprtim zakotjem in glavkome z zaprtim zakotjem. Slednji so posledica anatomske predispozicije, vnetij ali neovaskularizacije in imajo običajno akuten potek. Pri glavkomu z odprtim zakotjem je dejavnik tveganja povišan očesni tlak, ki je najpogosteje posledica zmanjšanega pretoka prekatne vodice skozi trabekularno mrežje in Schlemmov kanal v zbirne kanalčke, povezane z venskimi pleteži. Tovrstno povišanje očesnega tlaka je mogoče znižati s selektivno lasersko trabekuloplastiko, ki je minimalno invaziven poseg.Glaucoma is a group of eye diseases that affect the optic nerve. The most commonly used classification of glaucoma is based on pathophysiology and divides glaucoma into open-angle and closed-angle glaucoma. The latter are due to anatomical predisposition, inflammation, or neovascularization and usually have an acute course. In open-angle glaucoma, a risk factor is elevated ocular pressure, which is most often the result of decreased flow of ventricular fluid through the trabecular meshwork and the Schlemm channel into the collecting ducts associated with venous plaques. This increase in eye pressure can be reduced by selective laser trabeculoplasty, which is a minimally invasive procedure.
Pri laserski trabekuloplastiki se laserski sunki absorbirajo v tkivu trabekularnega mrežja v zakotju prednjega prekata očesa, in sicer v epitelijskih celicah, obarvanih z melaninom. Laserski sunki so veliko krajši od termalnega relaksacijskega časa tkiva, ki je tarča laserske svetlobe, tako da je dvig temperature omejen na obsevano območje, zato absorbirana laserska svetloba nima koagulacijskega učinka na tkivo. Sodobne rešitve naprav za selektivno lasersko trabekuloplastiko uporabljajo tipično nekaj nanosekund dolge sunke laserske svetlobe z valovno dolžino, ki zagotavlja dobro absorbiranje v melaninu, tipično je to valovna dolžina 532 nm. Pri tem je transverzalna dimenzija laserskega snopa (pika) na trabekularnem mrežju tipično velikosti nekaj desetink milimetra, tipična energija laserskega sunka pa ne presega 2 mJ.In laser trabeculoplasty, laser shocks are absorbed in the tissue of the trabecular meshwork in the anterior anterior chamber angle, in melanin-stained epithelial cells. Laser shocks are much shorter than the thermal relaxation time of the tissue that is the target of the laser light, so that the temperature rise is limited to the irradiated area, so the absorbed laser light has no coagulation effect on the tissue. Modern solutions for selective laser trabeculoplasty devices typically use a few nanoseconds of long-wave laser light with a wavelength that ensures good absorption in melanin, typically a wavelength of 532 nm. The transverse dimension of the laser beam (dot) on the trabecular mesh is typically a few tens of millimeter in size, and the typical laser shock energy does not exceed 2 mJ.
Tehnični problem, ki ga rešuje optični sistem po izumu, je konstrukcija optičnega sestava v laserski napravi za očesno kirurgijo, ki zagotavlja dobro določeno in enakomerno porazdelitev jakosti svetlobe po ploskvi pike laserskega sunka na tarči, zato da se doseže enakomeren učinek laserske svetlobe na obsevanem tkivu. Pri tem morajo imeti laserski sunki valovno dolžino, ki se dobro absorbira v melaninu.A technical problem solved by the optical system of the invention is the construction of the optical composition in a laser eye surgery device, which provides a well-defined and uniform distribution of light intensity across the surface of the laser shock dot on the target, in order to achieve a uniform laser light effect on the irradiated tissue. . In doing so, laser shocks must have a wavelength that is well absorbed in melanin.
Naloga sistema po izumu je še, da na tarči ustvari piko laserskega sunka z ostrim robom, da je mogoče obsevanje laže omejiti le na prizadeto tkivo.The object of the system of the invention is also to create a dot on the target with a sharp edge, so that the irradiation can be restricted to the affected tissue only.
Znano stanje tehnikeThe prior art
Sodobni aparati za selektivno lasersko trabekuloplastiko so tipično sestavljeni iz:Modern selective laser trabeculoplasty apparatus typically consists of:
- laserja Nd:YAG s preklopom kakovosti, ki ima kompakten resonator in generira sunke svetlobe z valovno dolžino 1064 nm in dolžino okoli 5 ns;- a quality-switching Nd: YAG laser having a compact resonator and generating sunlight with a wavelength of 1064 nm and a length of about 5 ns;
- nelinearnega kristala z geometrijo, ki je optimirana za frekvenčno podvajanje laserske svetlobe z valovno dolžino 1064 nm, to pomeni, da pretvarja lasersko svetlobo z valovno dolžino 1064 nm v svetlobo z valovno dolžino 532 nm. Primer takšnega kristala je ΚΤ1ΟΡΟ4.- a nonlinear crystal with a geometry optimized for frequency doubling of laser light with a wavelength of 1064 nm, that is, it converts laser light with a wavelength of 1064 nm to light with a wavelength of 532 nm. An example of such a crystal is ΚΤ1ΟΡΟ4.
- lečja, ki poskrbi, da je pika laserskega snopa na tarči ustrezne velikosti, in da je konvergenca snopa zadosti majhna, da snop doseže očesno zakotje.- lenses that ensure that the laser beam dot is at the correct size target and that the beam convergence is sufficiently small to allow the beam to reach the eye corner.
Energija in dolžina sunka, ki ga generira laser Nd:YAG, sta dobro definirana z dimenzijami in optičnimi lastnostmi optičnih elementov laserja, to pomeni, da se zelo malo razlikujeta od sunka do sunka. Ker je razmerje dolžine resonatorja proti premeru snopa sorazmerno majhno, in sicer ~10cm/~1 mm, porazdelitev gostote moči laserskega sunka po preseku žarka ni dobro definirana, saj se spreminja od sunka do sunka, laser deluje namreč v mešanici več transverzalnih načinov, delež posameznega načina v tej mešanici pa se razlikuje od sunka do sunka. Obnašanje nelinearnega kristala je občutljivo na gostoto moči vpadne laserske svetlobe, zato pri frekvenčnem podvajanju takih sunkov izkoristek pretvorbe ni konstanten. Fluktuacije energije so tako pri sunkih z valovno dolžino 532 nm, nastalih v nelinearnem kristalu, mnogo večje kot pri sunkih z valovno dolžino 1064 nm.The energy and the length of the shock generated by the Nd: YAG laser are well defined by the dimensions and optical properties of the optical elements of the laser, meaning that they differ very little from shock to shock. Since the ratio of the resonator length to beam diameter is relatively small, namely ~ 10cm / ~ 1 mm, the power density distribution of the laser beam after the beam cross-section is not well defined, as it varies from shock to shock, namely, the laser operates in a mixture of several transverse modes. the individual mode in this blend differs from gust to gust. The behavior of the nonlinear crystal is sensitive to the power density of the incident laser light, and therefore the conversion efficiency is not constant at the frequency doubling of such beams. Thus, energy fluctuations are much larger for beams with a wavelength of 532 nm generated in a nonlinear crystal than for beams with a wavelength of 1064 nm.
Pri selektivni laserski trabekuloplastiki se poseg izvede na z melaninom obarvanih epitelijskih celicah trabekularnega mrežja. Pri tem želimo prizadeti čim manj sosednjega tkiva. Pika zgoraj opisanega laserskega snopa ima na globini tarče zelo neostre robove, to pomeni, da gostota energije zložno pada z oddaljenostjo od centra pike, kar je posledica neizogibnega uklona svetlobe na poti od izvora do tarče. Pri takem energijskem profilu pike je težko zagotoviti, da pri posegu laserska pika ne bi prizadela tudi območij tkiva, ki jih ne želimo obsevati.In selective laser trabeculoplasty, the intervention is performed on melanin-stained epithelial cells of the trabecular meshwork. In doing so, we want to affect as little adjacent tissue as possible. The dot of the laser beam described above has very sharp edges at the target's depth, meaning that the energy density declines sharply with distance from the center of the dot, as a result of the inevitable deflection of light on the path from the source to the target. With such a dot energy profile, it is difficult to ensure that the laser dot does not affect areas of tissue that we do not want to irradiate.
Problem enakomerne porazdelitve energije znotraj ostrih robov pike rešuje osvetlitveni sistem, opisan v US6532244. Osvetlitveni sistem ima večnačinski diodni laser in dvoje optičnih vlaken. Svetloba iz laserja se usmeri v prvo optično vlakno, izstopna svetloba iz prvega optičnega vlakna se skozi optični sistem usmeri v drugo optično vlakno, ki ima premer večji kot prvo vlakno in ki ima numerično aperturo večjo od numerične aperture optičnega sistema. Svetlobni snop, ki izstopa iz drugega optičnega vlakna, ima bolj enakomerno intenziteto po profilu kot svetlobni snop iz prvega vlakna. Sistem, opisan v patentu US6532244, rešuje predvsem problem ovalnosti pike svetlobnega snopa iz diodnega laserja.The problem of uniform energy distribution within the sharp edges of a dot is solved by the illumination system described in US6532244. The illumination system has a multifaceted diode laser and two optical fibers. The light from the laser is directed to the first optical fiber, and the light output from the first optical fiber is directed through the optical system to a second optical fiber having a diameter larger than the first fiber and having a numerical aperture greater than the numerical aperture of the optical system. The light emitting from the second optical fiber has a more uniform intensity in profile than the light from the first fiber. The system described in patent US6532244 primarily solves the problem of the ovality of the light beam dot from a diode laser.
Opis rešitve tehničnega problemaDescription of solution to a technical problem
Rešitev tehničnega problema po izumu ima za zagotovitev homogene gostote energije in ostrega roba obsevanja na izbrani globini naslednje bistvene funkcionalne dele:The solution of a technical problem according to the invention has the following essential functional parts to ensure a homogeneous energy density and a sharp irradiation edge at a selected depth:
- ploskovni izvor laserske svetlobe, ki ima ustrezno dimenzijo in numerično aperturo in iz katerega izhajajoča svetloba je enakomerno porazdeljena po ploskvi in kotu in ima valovno dolžino, ki zagotavlja dobro absorbiranje v melaninu;- a planar laser light source having an appropriate dimension and numerical aperture, from which the resulting light is uniformly distributed over the plane and angle and has a wavelength that ensures good absorption in melanin;
- lečje, ki svetlobo iz omenjenega ploskovnega izvora privede na globino tarče tako, da ima na tarči enakomerno gostoto energije, in ki poskrbi, da ima snop te svetlobe zelo majhno konvergenco.- a lens which brings the light from said planar origin to the depth of the target so that it has a uniform energy density on the target, and which ensures that the beam of this light has very little convergence.
Ploskovni izvor v optičnem sistemu po izumu je lahko narejen:The planar origin in the optical system of the invention may be made:
a) z optičnim vlaknom, ki ima ustrezno dimenzijo in numerično aperturo; alia) an optical fiber having an appropriate dimension and numerical aperture; or
b) s pomočjo zaslonke s krožno odprtino, ki je primerno manjša od premera snopa laserske svetlobe, ki pada na odprtino zaslonke.b) by means of an aperture with a circular aperture which is suitably smaller than the diameter of the laser light incident on the aperture.
Iz ploskovnega izvora izstopajoča laserska svetloba se lahko projicira na tarčo:Out-of-plane laser light can be projected onto a target:
a) po principu prekrivanja kolimiranih žarkov, kadar je ploskovni izvor izstopna ploskev optičnega vlakna; alia) the principle of overlapping collimated rays where the plane origin is the exit plane of the optical fiber; or
b) kot preslikava ploskovnega izvora, kadar je ploskovni izvor izstopna ploskev optičnega vlakna ali krožna odprtina zaslonke.b) as a mapping of planar origin when the planar origin is the optical fiber exit plane or the aperture circular aperture.
Izvedbene rešitve optičnega sistema za selektivno lasersko trabekuloplastiko po izumu so v nadaljevanju podrobneje opisane s pomočjo naslednjih slik:The embodiments of the optical system for selective laser trabeculoplasty according to the invention are described in more detail below by means of the following figures:
Slika 1: Shematski prikaz poteka žarkov laserskega snopa od izstopne ploskve optičnega vlakna skozi zbiralno lečo.Figure 1: Schematic representation of the laser beam beam path from the optical fiber exit plane through the collecting lens.
Slika 2: Shematski prikaz poteka laserskega snopa oziroma posameznih žarkov v snopu od izstopne ploskve optičnega vlakna skozi lečje optičnega sistema. Slika 3: Shematski prikaz preslikave odprtine zaslonke, enakomerno osvetljene z laserskim snopom, na tarčo.Figure 2: Schematic representation of the laser beam or individual beam paths from the optical fiber exit plane through the lens of the optical system. Figure 3: Schematic representation of the aperture mapping, evenly illuminated by the laser beam, to the target.
Slika 4a: Diagram porazdelitve energije po ploskvi pike pred podvojitvijo frekvence. Slika 4b: Diagram porazdelitve energije po ploskvi pike po podvojitvi frekvence s pomočjo enega nelinearnega kristala.Figure 4a: Diagram of the energy distribution across the dot plane before frequency doubling. Figure 4b: Diagram of the energy distribution across the dot plane after frequency doubling using a single nonlinear crystal.
Slika 4c: Diagram porazdelitve energije po ploskvi pike po podvojitvi frekvence s pomočjo dveh nelinearnih kristalov.Figure 4c: Energy distribution diagram of the dot plane after frequency doubling using two nonlinear crystals.
Pri izvedbeni rešitvi, prikazani shematsko na sliki 1, se laserski snop vodi do optičnega sistema po optičnem vlaknu 1. Izstopna ploskev 2 optičnega vlakna 1 je nameščena v levem gorišču zbiralne leče 3, ki se nahaja v ravnini G3'. V desnem gorišču na drugi strani leče 3, ki se nahaja v ravnini G3, se ustvari grlo laserskega snopa, ki ima homogen ploskovni profil jakosti in oster rob. Svetloba, ki zapušča izstopno ploskev 2 optičnega vlakna 1, je zaradi številnih odbojev znotraj vlakna po profilu in kotu precej enakomerno porazdeljena in omejena z robom, ki ga določata izstopna ploskev 2 in numerična apertura optičnega vlakna 1. Svetlobne stožce, ki izvirajo iz posameznih točk na izstopni ploskvi 2, ki je oddaljena od leče 3 ravno za goriščno razdaljo, leča 3 preoblikuje v kolimirane žarke. Osi vseh žarkov se sekajo na goriščni razdalji na drugi strani leče, kjer ploskovni profili jakosti posameznih žarkov sovpadajo. Premer in numerična apertura vlakna sta pri tem ključna parametra, saj je produkt divergence posameznega žarka (kot svetlobnega stožca) in oddaljenost gorišča žarka od optične osi na eni strani leče enaka premeru in vpadnemu kotu istega žarka na drugi strani leče.In the embodiment shown schematically in Figure 1, the laser beam is guided to the optical system by optical fiber 1. The exit surface 2 of optical fiber 1 is located in the left center of the collecting lens 3, which is located in the plane G3 '. In the right focus on the other side of lens 3, located in the G3 plane, a laser beam throat is created which has a homogeneous planar profile of strength and a sharp edge. Due to the many reflections inside the fiber, the light leaving the exit surface 2 of the optical fiber 1 is rather evenly distributed along the profile and angle and is limited by the edge defined by the exit surface 2 and the numerical aperture of the optical fiber 1. The light cones emanating from individual points on the exit surface 2, which is distant from the lens 3 just behind the focal length, the lens 3 transforms into collimated rays. The axes of all rays intersect at the focal length on the other side of the lens, where the plane profiles of the strengths of the individual rays coincide. The diameter and numerical aperture of the fiber are the key parameters, since the product of the divergence of a single beam (as a light cone) and the distance of the focal point of the beam from the optical axis on one side of the lens are equal to the diameter and incidence angle of the same beam on the other side of the lens.
Pri izvedbeni rešitvi, prikazani shematsko na sliki 2, se laserski snop vodi do optičnega sistema po optičnem vlaknu 1. Izstopna ploskev 2 optičnega vlakna 1 je homogen ploskovni izvor, ki se z optičnim sistemom ali sistemom leč, tipično z dvema zbiralnima lečama 3 in 4, preslika na tarčo 5. Tudi pri tej izvedbeni rešitvi sta premer in numerična apertura optičnega vlakna 1 ključna parametra, saj se pri preslikavah z lečami ohranja produkt divergence žarka in oddaljenosti gorišča žarka od optične osi. Najmanjši kot konvergence laserskega snopa se doseže takrat, ko so simetrale posameznih žarkov znotraj snopa vzporedne, to pomeni, da svetloba vpada na tarčo na zrcalno enak način kot zapušča ploskovni izvor. Takšna geometrija se doseže, kadar je izstopna ploskev vlakna postavljena v gorišče prve leče in se slika izstopne ploskve ustvari v gorišču druge leče.In the embodiment shown schematically in Figure 2, the laser beam is guided to the optical system by optical fiber 1. The output surface 2 of optical fiber 1 is a homogeneous plane origin, which is typically optically combined with an optical or lens system, typically with two collecting lenses 3 and 4. In this embodiment, the diameter and the numerical aperture of the optical fiber 1 are key parameters, since in the case of lens imaging the product of the beam divergence and the focal length of the beam from the optical axis is maintained. The smallest convergence angle of the laser beam is reached when the symmetry of the individual rays within the beam is parallel, that is, the light strikes the target in the mirror-like manner as it leaves the plane origin. Such geometry is achieved when the exit plane of the fiber is placed in the focus of the first lens and an image of the exit plane is created in the focus of the second lens.
Pri izvedbeni rešitvi, prikazani shematsko na sliki 3, je laserski snop 8 zaslonjen, in sicer tako, da se v odprtino 10 zaslonke 9 ujame tisti del snopa, kjer je ploskovni profil jakosti najbolj homogen. Zaslonka se s sistemom leč, tipično z dvema zbiralnima lečama 3 in 4, preslika na tarčo 5 s primerno povečavo ali pomanjšavo. Laserski snop, ki ima valovno dolžino tipično 532 nm in premer, potreben za aplikacijo vstopa v oko z zelo majhno divergenco, ima to lastnost, da ravno na globini tarče 5 ustvarja sliko odprtine 10 zaslonke 9. Odprtina 10 zaslonke 9 mora biti zadosti majhna, da ima območje snopa, ki ga ujame, čim bolj enakomerno gostoto energije in hkrati dovolj velika, da prepusti zadosti energije. Leči 3 in 4 morata biti zbiralni, saj le zbiralne leče lahko ustvarjajo realno sliko.In the embodiment shown schematically in Figure 3, the laser beam 8 is screened so that the portion of the beam 9 is trapped in the aperture 10, where the planar strength profile is most homogeneous. The lens is mapped to the target 5 by a suitable zoom in or out using a lens system, typically two collection lenses 3 and 4. A laser beam having a wavelength typically of 532 nm and a diameter required for the application to enter the eye with very small divergence has the property that, at the depth of target 5, it produces an image of the aperture 10 of the aperture 9. The aperture 10 of the aperture 9 must be sufficiently small, that the beam area it captures has a uniform energy density and large enough to allow sufficient energy. Lenses 3 and 4 must be collectable, since only collecting lenses can create a realistic image.
Rešitev tehničnega problema po izumu ima za proizvajanje energijsko stabilnih sunkov svetlobe, ki se dobro absorbira v melaninu, naslednje bistvene funkcionalne dele:The solution of a technical problem according to the invention has the following essential functional parts for the production of energy-stable shocks of light, which is well absorbed in melanin:
- Sunkovni izvor laserske svetlobe v bližnjem infrardečem območju, ki proizvaja sunke z dolžino nekaj nanosekund.- Light source of laser light in the near infrared region, producing a few nanoseconds in length.
- Dva nelinearna kristala, namenjena frekvenčnemu podvajanju, katerih dimenzije in orientacija so izbrane tako, da učinkovito pretvarjata bližnjo infrardečo svetlobo v svetlobo z valovno dolžino, ki zagotavlja dobro absorpcijo v melaninu.- Two non-linear frequency-doubling crystals whose dimensions and orientation are chosen to effectively convert near-infrared light into wavelength light that provides good absorption in melanin.
Za stabilizacijo energije sunka valovne dolžine, ki se dobro absorbira v melaninu (tipično 532 nm), uporablja rešitev po izumu princip kvadraturnega podvajanja frekvence tipa II (D. Eimerl, Ouadrature frequency conversion, IEEE J. Q. Electr QE23 (1987) 1361-1371). Po omenjenem principu uporabimo dva, praviloma različno dolga nelinearna kristala, katerih glavni ravnini, to sta ravnini, ki ju določata vektor smeri žarka laserske svetlobe in optična os prvega oz. drugega kristala, sta pravokotni ena na drugo.To stabilize the shock energy of a wavelength well absorbed in melanin (typically 532 nm), the solution of the invention uses the principle of quadrature doubling of type II frequency (D. Eimerl, Ouadrature frequency conversion, IEEE J. Q. Electr QE23 (1987) 1361-1371). According to this principle, we use two, as a rule, differently different nonlinear crystals, whose principal planes are the planes determined by the laser beam direction vector and the optical axis of the first or the other crystals are perpendicular to each other.
Pri idealnem podvajanju frekvence z nelinearnim kristalom je ujemanje faz vpadnega valovanja in izstopnega valovanja popolno. To se zgodi, kadar je vpadna svetloba monokromatsko EM valovanje, ki je prostorsko in časovno neomejeno, in je nelinearni kristal popolnoma pravilno orientiran. Pri taki situaciji raste izkoristek tipične konverzije svetlobe z valovno dolžino1064 nm v svetlobo z valovno dolžino 532 nm z gostoto moči vpadnega valovanja do nasičenja, to je do 100 %, oziroma z dolžino nelinearnega kristala, to pomeni z dimenzijo, vzdolž katere potuje svetloba laserskega sunka. V takšni idealni situaciji lahko pri dani gostoti moči vpadnega valovanja povečujemo izkoristek konverzije s podaljševanjem dolžine kristala.For ideal frequency duplication with a nonlinear crystal, the matching of the incoming and outgoing wave phases is perfect. This occurs when the incident light is a monochromatic EM wave that is spatially and temporally unrestricted and the nonlinear crystal is perfectly oriented correctly. In such a situation, the efficiency of typical conversion of light with a wavelength of 1064 nm into light with a wavelength of 532 nm with a density of incident wave power up to saturation, that is, up to 100%, or with a length of a nonlinear crystal, that is, with a dimension along which the laser light travels along, increases . In such an ideal situation, at a given power density of the incident wave, the conversion efficiency can be increased by extending the length of the crystal.
Pri realnih razmerah je zgoraj opisano povečevanje izkoristka konverzije nemogoče, saj je vedno prisotno odstopanje od popolnega ujemanja faz, ki s podaljševanjem kristala le raste. Tako se pri določeni dolžini kristala zgodi, da ima podaljševanje ravno nasproten učinek: izkoristek konverzije začne padati, saj začne neujemanje faz povzročati, da se že generirana svetloba z valovno dolžino 532 nm pretvarja nazaj v svetlobo z valovno dolžino 1064 nm.In the real world, increasing the conversion efficiency described above is impossible, since there is always a deviation from perfect phase matching, which only grows with the lengthening of the crystal. Thus, at a given crystal length, the lengthening has the opposite effect: the conversion efficiency begins to fall as phase mismatches cause the already generated light with a wavelength of 532 nm to be converted back into light with a wavelength of 1064 nm.
V praksi to pomeni, da so za doseganje maksimalnega izkoristka konverzije pri različnih gostotah vpadne moči potrebne različne dolžine nelinearnih kristalov.In practice, this means that different lengths of nonlinear crystals are required to achieve maximum conversion efficiency at different power densities.
Pri snopih svetlobe, ki nimajo enakomerne porazdelitve gostote moči po preseku, je mogoče doseči zelo visok in konstanten izkoristek konverzije frekvence tako, da se zaporedno namestita dva različno dolga nelinearna kristala, ki sta med seboj orientirana pravokotno. Zaradi pravokotne namestitve kristalov takšno frekvenčno konverzijo imenujemo kvadraturno podvajanje frekvence. Krajši nelinearni kristal učinkovito podvaja območja z visoko gostoto moči, daljši pa območja z nižjo gostoto moči. Pri tem izkoriščamo njuno medsebojno pravokotno postavitev, ki poskrbi, da svetloba z valovno dolžino 532 nm, ki zapušča prvi kristal, ne more povzročati neželene konverzije nazaj v svetlobo z valovno dolžino 1064 nm v drugem kristalu, saj ima napačno polarizacijo.For light beams that do not have a uniform distribution of power density across the cross section, it is possible to achieve a very high and constant frequency conversion efficiency by successively placing two differently long nonlinear crystals oriented perpendicularly to each other. Due to the rectangular arrangement of the crystals, such a frequency conversion is called quadrature frequency doubling. The shorter nonlinear crystal effectively doubles the areas with high power density, and the longer ones areas with lower power density. In doing so, we take advantage of their perpendicular arrangement, which ensures that light with a wavelength of 532 nm leaving the first crystal cannot cause unwanted conversion back to light with a wavelength of 1064 nm in the second crystal, as it has the wrong polarization.
Visoka stabilnost in visok izkoristek konverzije poskrbita, da so energije sunkov vselej znotraj dopustnega odstopanja od nazivne energije, in da so fluktuacije gostote energije znotraj intenzitetnega profila snopa na globini tarče minimalne.The high stability and high conversion efficiency ensure that the energy of the shock is always within the tolerance of the nominal energy and that the fluctuations of the energy density within the beam intensity profile at the target depth are minimal.
Svetloba z valovno dolžino 1064 nm, ki vstopa v nelinearni kristal, tipično nima konstantne porazdelitve gostote moči po profilu, kot je razvidno s slike 4a. Pri uporabi le enega nelinearnega kristala se območja z nižjimi gostotami energije slabše frekvenčno podvajajo, zato se znotraj profila svetlobe z valovno dolžino 532 nm, ki ga zajame odprtina zaslonke 2, pojavijo območja z nezadostno gostoto moči. To pomeni, da gostota energije na tistih predelih ne preseže praga 1 za uspešno trabekuloplastiko, se pravi, da je območje uspešne rabekuloplastike 3 manjše kot pika na tarči kar ilustrira slika 4b.Light with a wavelength of 1064 nm entering a nonlinear crystal typically does not have a constant power density distribution across the profile, as can be seen from Figure 4 a. When only one nonlinear crystal is used, regions with lower energy densities are doubled in frequency, and therefore areas with insufficient power density appear within the light profile with a wavelength of 532 nm captured by the aperture 2. This means that the energy density in those regions does not exceed the threshold 1 for successful trabeculoplasty, that is, the area of successful rabeculoplasty 3 is smaller than the dot on the target, as illustrated in Figure 4b.
Ker želimo doseči čim večjo homogenost znotraj ostrega roba pike na tarči, mora biti gostota na tarčo dovedene energije v vseh predelih pike nad pragom, ki zagotavlja učinkovito trabekuloplastiko. Pri uporabi dveh nelinearnih kristalov, nameščenih za kvadraturno podvajanje frekvence, je svetloba iz vseh predelov ploskovnega preseka snopa učinkovito frekvenčno podvojena, zato ne prihaja do neželenih območij z nezadovoljivo gostoto energije v profilu laserskega snopa, ki ga zajame odprtina zaslonke 2, kot prikazuje slika 4c.In order to achieve the greatest possible homogeneity within the sharp edge of the dot on the target, the density per target of the energy delivered to the target must be above the threshold in all areas of the dot, providing effective trabeculoplasty. When using two nonlinear crystals positioned for quadrature frequency doubling, light from all areas of the planar beam section is effectively frequency doubled, so no unwanted areas with an unsatisfactory energy density are obtained in the laser beam profile captured by the aperture 2, as shown in Figure 4c .
Stabilno energijo sunka s tipično valovno dolžino 532 nm je mogoče doseči tudi z uporabo vlakenskega laserja. Kakovost laserskega snopa vlakenskega laserja močno prekaša kakovost laserskega snopa laserjev Nd:YAG. Če uporabimo vlakenski laser kot izvor svetlobe z valovno dolžino 1064 nm, se gostota energije znotraj snopa od sunka do sunka ne spreminja in je zato frekvenčno podvajanje v nelinearnem kristalu konstantno v času in prostoru. Tako dosežemo veliko homogenost gostote energije znotraj ostrega roba pike na tarči in takšno gostoto energije, ki je na vseh predelih pike nad pragom, ki zagotavlja učinkovito trabekuloplastiko.A stable shock energy with a typical wavelength of 532 nm can also be achieved using a fiber laser. The quality of the fiber laser beam is far superior to that of the Nd: YAG laser beam. If a fiber laser is used as a light source with a wavelength of 1064 nm, the energy density inside the beam does not change from shock to shock and therefore the frequency doubling in the nonlinear crystal is constant over time and space. This results in high homogeneity of the energy density within the sharp edge of the dot on the target and such energy density over all the areas of the dot above the threshold that provides effective trabeculoplasty.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200700086A SI22509A (en) | 2007-04-11 | 2007-04-11 | Optical system for selective laser trabeculoplastics |
PCT/SI2008/000024 WO2008127204A1 (en) | 2007-04-11 | 2008-04-10 | Optical system for selective laser trabeculoplasty |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200700086A SI22509A (en) | 2007-04-11 | 2007-04-11 | Optical system for selective laser trabeculoplastics |
Publications (1)
Publication Number | Publication Date |
---|---|
SI22509A true SI22509A (en) | 2008-10-31 |
Family
ID=39739586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200700086A SI22509A (en) | 2007-04-11 | 2007-04-11 | Optical system for selective laser trabeculoplastics |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI22509A (en) |
WO (1) | WO2008127204A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015069197A1 (en) | 2013-11-11 | 2015-05-14 | Optotek D.O.O. | Ophthalmic laser device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2020001322A (en) * | 2017-08-02 | 2022-04-07 | Multi Radiance Medical | System and method for directing light into a patient's eye. |
US11638833B2 (en) | 2017-08-02 | 2023-05-02 | Multi Radiance Medical | Reducing light polution in photobiomodulation therapy of a patients eye |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291913A (en) * | 1985-10-18 | 1987-04-27 | 興和株式会社 | Laser spot optical system |
US5129895A (en) * | 1990-05-16 | 1992-07-14 | Sunrise Technologies, Inc. | Laser sclerostomy procedure |
US5549596A (en) * | 1993-07-07 | 1996-08-27 | The General Hospital Corporation | Selective laser targeting of pigmented ocular cells |
JP2004121814A (en) * | 2002-04-08 | 2004-04-22 | Lumenis Inc | System, method and apparatus for providing uniform illumination |
US20060224146A1 (en) * | 2005-03-30 | 2006-10-05 | Lin J T | Method and system for non-invasive treatment of hyperopia, presbyopia and glaucoma |
-
2007
- 2007-04-11 SI SI200700086A patent/SI22509A/en not_active IP Right Cessation
-
2008
- 2008-04-10 WO PCT/SI2008/000024 patent/WO2008127204A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015069197A1 (en) | 2013-11-11 | 2015-05-14 | Optotek D.O.O. | Ophthalmic laser device |
Also Published As
Publication number | Publication date |
---|---|
WO2008127204A1 (en) | 2008-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Puliafito et al. | Short-pulsed Nd: YAG laser microsurgery of the eye: biophysical considerations | |
DE69830311T2 (en) | SURGICAL SHORT PULSE SOURCE IN THE MIDDLE INFRARED AREA | |
DE69832079T2 (en) | SHORT-PUMPED PARAMETRIC MEDIUM INFRARED GENERATOR FOR SURGERY | |
CN1330453C (en) | Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material | |
US6458120B1 (en) | Laser surgical cutting probe and system | |
ES2291173T3 (en) | PROCEDURE FOR TRAINING BLIND HOLES IN SURGICAL NEEDLES USING A ND-YAG LASER PUMPED BY DIODE. | |
CN104382689B (en) | A Femtosecond Laser System for Simultaneous Imaging and Surgery | |
EP2384727B1 (en) | Ophthalmic laser treatment system | |
US10888461B2 (en) | Laser therapeutic device for ophthalmology | |
SI22509A (en) | Optical system for selective laser trabeculoplastics | |
DE4029530C2 (en) | Modular, pulsed multi-wavelength solid-state laser for medical therapy procedures | |
CN107069408B (en) | Femtosecond high-power supercontinuous white light generating device and method | |
KR100933934B1 (en) | Multi-wavelength skin regeneration laser device | |
CN110277726A (en) | A kind of acousto-optic Q modulation ultraviolet laser | |
US20140379053A1 (en) | Medical mask device which uses optical fibers | |
CN117297759A (en) | Biological tissue minimally invasive cutting system capable of generating mid-infrared femtosecond pulse laser | |
CN107768971B (en) | Apparatus and method for generating femtosecond laser filament arrays using wedge-shaped quartz wafers | |
CN110658632A (en) | Homogenized incoherent light source device | |
CN208656154U (en) | A kind of picosecond laser | |
WO2019078438A1 (en) | Laser generation device | |
WO2019078437A1 (en) | Laser generation device | |
DE10100859A1 (en) | Medical laser therapy device | |
CN207853169U (en) | A kind of pulsed solid stale laser experimental system semiconductor pumped based on fiber coupling | |
CN104167659A (en) | Method for adjusting mode matching of pump light and single-resonance optical parameter cavity | |
CN210443792U (en) | Three-lens high-power laser image transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20070720 |
|
SP73 | Change of data on owner |
Owner name: OPTOTEK D.O.O.; SI Effective date: 20161214 |
|
NC00 | Annulment, publication of a decision on annulment of right due to court decision or non-fulfilment of conditions for patent protection |
Effective date: 20170721 |