SI21861A - Sensor based sun tracker - Google Patents
Sensor based sun tracker Download PDFInfo
- Publication number
- SI21861A SI21861A SI200400238A SI200400238A SI21861A SI 21861 A SI21861 A SI 21861A SI 200400238 A SI200400238 A SI 200400238A SI 200400238 A SI200400238 A SI 200400238A SI 21861 A SI21861 A SI 21861A
- Authority
- SI
- Slovenia
- Prior art keywords
- sun
- light sensor
- operational amplifier
- tracking
- inverting input
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 claims description 8
- 239000000700 radioactive tracer Substances 0.000 description 4
- 230000001953 sensory effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Control Of Position Or Direction (AREA)
Abstract
Description
SENZORSKI SONČNI SLEDILNI«SENSORY SOLAR FOLLOWERS «
Izum se nanaša na področje solarne tehnike, ki se ukvarja z razvojem in proizvodnjo najrazličnejših elektronskih naprav, ki v povezavi z motoriziranimi sledilnimi nosilnimi konstrukcijami, na katere so pritrjeni razni sončni sprejemniki, omogočajo avtomatsko obračanje teh sončnih sprejemnikov po soncu tako, da sončni žarki padajo na njih po eni ali obeh oseh vedno pravokotno.The invention relates to the field of solar engineering, which is engaged in the development and production of a variety of electronic devices that, in conjunction with motorized track-mount structures to which various solar receivers are attached, allow these solar receivers to be automatically rotated so that the sun's rays fall always perpendicular to them on one or both axes.
Tehnični problem, ki ga rešuje izum, je takšen senzorski sončni sledilnik, katerega elektronska logika bo na izredno zanesljiv, zelo preprost in poceni način v povezavi s primernim detektorjem položaja sonca omogočala vklapljanje in izklapljanje manjših in tudi večjih enosmernih motorjev sledilne nosilne konstrukcije, na katero so pritrjeni razni sončni sprejemniki, tako, da bodo ti sončni sprejemniki v toku dneva vedno obrnjeni natančno proti soncu in to po eni osi ali z uporabo dveh elektronskih logik in dveh detektorjev položaja sonca po obeh oseh. Hkrati bo ta elektronska logika v povezavi s primernim detektorjem položaja sonca omogočala tudi ultra natančno sledenje soncu, s pomočjo dodatnega jutranjega svetlobnega senzorja nameščenega na tem detektorju položaja sonca pa bo zaznavala prve jutranje sončne žarke in tako omogočila takojšnje jutranje vračanje sončnih sprejemnikov nazaj proti vzhodu.A technical problem solved by the invention is such a sensor solar tracker whose electronic logic will, in an extremely reliable, very simple and inexpensive way, in conjunction with a suitable sun position detector, enable the smaller and larger DC motors of the tracking structure to be switched on and off. various solar receivers are attached, so that these solar receivers will always face exactly the sun during one day, either by one axis or by using two electronic logics and two sun position detectors on both axes. At the same time, this electronic logic, in conjunction with a suitable sun position detector, will also allow for ultra-accurate sun tracking, with the help of an additional morning light sensor mounted on that sun position detector, which will detect the first morning sun rays, thus allowing the sun to return eastward immediately in the morning.
Znanih tehničnih rešitev (senzorskih sončnih sledilnikov), ki s pomočjo detektorjev položaja sonca in elektronske logike omogočajo motorizirano (s pomočjo enosmernega motorja) sledenje soncu je veliko. Vsem je skupno to, da njihova elektronska logika za sledenje po eni osi dobiva podatke o položaju sonca iz nekega detektorja položaja sonca, katerega glavni del so poljubni svetlobni senzorji, le ta pa je vedno nameščen nekje na sončnem sprejemniku (obrača se skupaj s sončnim sprejemnikom). Za sledenje po drugi osi vse znane tehnične rešitve uporabljajo še en enak sklop elektronske logike in detektorja položaja sonca s to razliko, da je ta drugi detektor položaja sonca na sončnem sprejemniku za 90 stopinj zarotiran glede na prvega.There are a number of well-known technical solutions (sensor-based solar trackers) that allow a lot of motorized (one-way motor) tracking of the sun with the help of sun position detectors and electronic logic. What they all have in common is that their electronic one-axis tracking logic receives information about the position of the sun from some sun position detector, the main part of which is arbitrary light sensors, and this one is always located somewhere on the solar receiver (turns with the solar receiver ). For the second axis tracking, all known technical solutions utilize another identical set of electronic logic and sun position detectors, except that this second sun position detector is rotated 90 degrees relative to the first in the solar receiver.
Vse znane tehnične rešitve se razlikujejo po tem, da imajo različne detektorje položaja sonca in različne zgradbe elektronskih logik, ki služijo za krmiljenje vklopov in izklopov enosmernih motorjev sledilnih konstrukcij. Vsaka od znanih rešitev pa ima svoje prednosti in tudi pomanjkljivosti.All known technical solutions differ in that they have different sun position detectors and different electronic logic structures that serve to control the on and off motors of DC motors of tracking structures. Each of the known solutions has its advantages and disadvantages.
Elektronske logike po patentih US4649899, US4245153 in US4190766 za vklope in izklope enosmernih motorjev uporabljajo mehanske releje, ki ne omogočajo veliko vklopnih in izklopnih manipulacij in tako zmanjšujejo zanesljivost delovanja (življenjsko dobo) tem sončnim sledilnikom.The electronic logics of US4649899, US4245153 and US4190766 use mechanical relays to switch on and off DC motors, which do not allow many on and off manipulations, thus reducing the reliability (lifetime) of these solar trackers.
Elektronske logike po patentih US6005236, DE10043525, US4262195, US4632091 US4612488, US4510385, US4320288, US4302710, US4297572, US4225781,Electronic logic according to the patents US6005236, DE10043525, US4262195, US4632091 US4612488, US4510385, US4320288, US4302710, US4297572, US4225781,
US4223214, US4883340, US4223174, US4151408, US4146785, US4146784,US4223214, US4883340, US4223174, US4151408, US4146785, US4146784,
US3917942, DE4306656, US4361758, US5512742 in US4649900 vsebujejo večje število elektronskih elementov, kar jim zmanjšuje zanesljivost delovanja, hkrati pa tudi niso poceni. Poleg tega nekatere od omenjenih elektronskih logik za vklope in izklope enosmernih motorjev uporabljajo mehanske releje.US3917942, DE4306656, US4361758, US5512742 and US4649900 contain a large number of electronic components, which reduces their reliability but are not cheap. In addition, some of the electronic logic mentioned above uses mechanical relays to switch on and off DC motors.
Elektronska logika po patentu US4349733 ima sicer majhno število elektronskih elementov, vendar ne omogoča vrtenje sledilne konstrukcije še v obratni smeri, poleg tega pa za vklop in izklop enosmernega motorja uporablja mehanski rele.The electronic logic of US4349733 has a small number of electronic elements, but it does not allow the tracer to rotate in the opposite direction, and uses a mechanical relay to switch the DC motor on and off.
Elektronski logiki po patentih JP6045631 in US4730602 sta sicer najpreprostejši, vendar ne omogočata zelo natančnega sledenja soncu in priklopa močnejših motorjev.The electronic logic behind JP6045631 and US4730602 are the simplest, but they do not allow for very accurate tracking of the sun and the connection of more powerful engines.
Po izumu je problem rešen z dovršeno elektronsko logiko, ki je zgrajena le iz štirih uporov, dveh enakih operacijskih ojačevalnikov in treh fotodiod, ki so sicer sestavni del preprostega detektorja položaja sonca. Izum bo opisan s pomočjo treh slik, ki prikazujejo:According to the invention, the problem is solved by sophisticated electronic logic, which consists of only four resistors, two identical operational amplifiers and three photodiodes, which are otherwise an integral part of a simple sun position detector. The invention will be described by means of three pictures showing:
Slika 1: detektor položaja sonca za sledenje soncu od vzhoda proti zahodu z dodanim jutranjim svetlobnim senzorjem - prikazan je primer, ko sta vzhodni in zahodni svetlobni senzor enako osvetljenaFigure 1: Sun-to-west sun tracking position detector with the addition of a morning light sensor - an example is shown when the eastern and western light sensors are equally illuminated
Slika 2: detektor položaja sonca za sledenje soncu od vzhoda proti zahodu z dodanim jutranjim svetlobnim senzorjem - prikazan je primer, ko vzhodni in zahodni svetlobni senzor nista enako osvetljenaFigure 2: Sun-to-west sun tracking position detector with the addition of a morning light sensor - an example is shown when the eastern and western light sensors are not equally illuminated
Slika 3: elektronska logika (elektronsko vezje) senzorskega sončnega štedilnikaFigure 3: Electronic logic (electronic circuit) of the sensor solar cooker
Senzorski sončni sledilnik tvorita detektor položaja sonca 16 in elektronska logika. Ta sestav omogoča sledenje soncu od vzhoda proti zahodu. Za sledenje soncu po višini se uporabi še en enak senzorski sončni sledilnik s to majhno razliko, da njegov detektor položaja sonca 16 nima jutranjega svetlobnega senzorja 3 in da je na sončnem sprejemniku za 90 stopinj zarotiran glede na prvega, ki kot rečeno omogoča sledenje soncu od vzhoda proti zahodu. V nadaljevanju je zaradi velike podobnosti med senzorskim sončnim sledilnikom za sledenje soncu od vzhoda proti zahodu in senzorskim sončnim sledilnikom za sledenje soncu po višini opisan le senzorski sončni sledilnik, ki omogoča sledenje soncu od vzhoda proti zahodu.The sensor solar tracker consists of a sun position detector 16 and electronic logic. This assembly allows the sun to be traced from east to west. Another high sensor sun tracker is used to track the sun in height, with the slight difference that its sun position detector 16 does not have a morning light sensor 3 and that it is rotated 90 degrees relative to the first in the solar receiver, which, as said, allows sun tracking from east to west. In the following, due to the great similarity between the sensor sun tracer from east to west and the sensor sun tracer in altitude, only the sensory sun tracer allowing sun tracing from east to west is described.
Detektor položaja sonca 16 je sestavljen iz vzhodnega svetlobnega senzorja 1, zahodnega svetlobnega senzorja 2, jutranjega svetlobnega senzorja 3 in iz pregrade 11. Za vse tri svetlobne senzorje so uporabljene fotodiode, ki niso nič drugega kot majhne sončne celice. Anode in katode svetlobnih senzorjev (fotodiod) se vodijo v elektronsko logiko in predstavljajo njen vhod. Detektor položaja sonca 16 je vedno nameščen na robu sončnega sprejemnika (najbolje nekje na zgornjem robu le tega) in se po soncu obrača skupaj z njim.The sun position detector 16 consists of an eastern light sensor 1, a western light sensor 2, a morning light sensor 3 and a barrier 11. Photodiodes other than small solar cells are used for all three light sensors. The anodes and cathodes of the light sensors (photodiodes) are guided into electronic logic and represent its input. The sun position detector 16 is always positioned on the edge of the sun receiver (preferably somewhere on the upper edge of it) and rotates with it after the sun.
Elektronska logika je sestavljena iz štirih uporov in iz dveh enakih operacijskih ojačevalnikov. Na vhodu elektronske logike sta upor 4 in upor 5. Ena sponka upora 4 je priključena na anodo vzhodnega svetlobnega senzorja 1, na anodo jutranjega svetlobnega senzorja 3, na neinvertirajoč vhod operacijskega ojačevalnika 6 in na invertirajoč vhod operacijskega ojačevalnika 8. Druga sponka upora 4 je priključena na katodo vzhodnega svetlobnega senzorja 1, na katodo jutranjega svetlobnega senzorja 3 in na maso. Ena sponka upora 5 je priključena na anodo zahodnega svetlobnega senzorja 2, na neinvertirajoč vhod operacijskega ojačevalnika 8 in na invertirajoč vhod operacijskega ojačevalnika 6. Druga sponka upora 5 je priključena na katodo zahodnega svetlobnega senzorja 2 in na maso. Upornost upora 4 mora biti približno enaka tisti notranji upornosti vzhodnega svetlobnega senzorja 1, ki jo ima le ta takrat, ko je osvetljen z jakostjo sončnega obsevanja 1000 W/m2. Upornost upora 5 mora biti približno enaka tisti notranji upornosti zahodnega svetlobnega senzorja 2, ki jo ima le ta takrat, ko je osvetljen z jakostjo sončnega obsevanja 1000 W/m2. Najbolje je (ni pa nujno), da so vsi trije svetlobni senzorji enaki, saj sta potem enaka tudi upora 4 in 5. Na izhoda operacijskih ojačevalnikov 6 in 8 je direktno priključen enosmerni motor 10, ki obrača sledilno nosilno konstrukcijo, na katero so pritrjeni sončni sprejemniki in seveda tudi detektor položaja sonca 16. Operacijska ojačevalnika 6 in 8 morata biti obvezno enaka in takega tipa, da za delovanje ne potrebujeta dvojne napajalne napetosti, da njuna izhoda omogočata stik z maso (da tok lahko teče skozi izhodno sponko tudi nazaj v operacijski ojačevalnik) in da sta njuna izhoda napetostno in tokovno dovolj zmogljiva, da lahko napajata izbran enosmerni motor 10. Operacijska ojačevalnika 6 in 8 morata biti priključena na enojno enosmerno napajalno napetost +U, ki je enaka nazivni napajalni napetosti priključenega enosmernega motorja 10. Del elektronske logike sta še upora 7 in 9. Ena sponka upora 7 je priključena na invertirajoč vhod operacijskega ojačevalnika 6, druga pa na izhod operacijskega ojačevalnika 6. Ena sponka upora 9 je priključena na invertirajoč vhod operacijskega ojačevalnika 8, druga pa na izhod operacijskega ojačevalnika 8. S pomočjo uporov 7 in 9, ki morata imeti vsaj približno enaki upornosti, se nastavlja ojačanje operacijskih ojačevalnikov, ki direktno vpliva na natančnost sledenja in sicer večji kot sta upornosti uporov 7 in 9, večja je natančnost sledenja in obratno. Največjo možno (ultra) natančnost sledenja se doseže, če upora 7 in 9 preprosto odstranimo (neskončna upornost). Na natančnost sledenja poleg uporov 7 in 9 vpliva še višina pregrade 11 in sicer višja kot je pregrada 11, večja je natančnost sledenja in obratno.The electronic logic consists of four resistors and two identical operational amplifiers. At the input of the electronic logic are resistor 4 and resistor 5. One resistor terminal 4 is connected to the anode of the light sensor 1, to the anode of the morning light sensor 3, to the non-inverting input of the operational amplifier 6 and to the inverting input of the operational amplifier 8. The other resistor terminal 4 is connected to the cathode of the eastern light sensor 1, to the cathode of the morning light sensor 3 and to ground. One resistor terminal 5 is connected to the anode of the western light sensor 2, to the non-inverting input of the operational amplifier 8 and to the inverting input of the operational amplifier 6. The other terminal of the resistor 5 is connected to the cathode of the western light sensor 2 and to ground. The resistance of resistor 4 must be approximately equal to the internal resistance of the eastern light sensor 1, which is only present when illuminated by a solar irradiance of 1000 W / m 2 . The resistance of resistor 5 must be approximately equal to the internal resistance of the western light sensor 2 that it has only when illuminated by a solar irradiance of 1000 W / m 2 . It is best (but not necessary) that all three light sensors are the same, since resistors 4 and 5 are then the same. The outputs of the operational amplifiers 6 and 8 are directly connected to a DC motor 10, which rotates the supporting structure to which they are attached. solar receivers and of course the sun position detector 16. The operational amplifiers 6 and 8 must be of the same type and type so that they do not require dual supply voltage so that their outputs allow contact with the mass (so that current can flow through the output terminal also back to operational amplifiers) and that their outputs are voltage and current sufficient to supply the selected DC motor 10. Operational amplifiers 6 and 8 must be connected to a DC direct current + U equal to the rated supply voltage of the connected DC motor 10. Part the electronic logic is also resistors 7 and 9. One resistor terminal 7 is connected to the inverting input of the operational amplifier 6, the other is connected to the output of the operational amplifier 6. One resistor terminal 9 is connected to the inverting input of the operational amplifier 8 and the other to the output of the operational amplifier 8. By means of resistors 7 and 9, which must have at least about the same resistance, the amplification of the operational amplifiers is set, which directly affects the tracking accuracy, the higher the resistances of resistors 7 and 9, the higher the tracking accuracy and vice versa. The highest (ultra) tracking accuracy is achieved by simply removing resistors 7 and 9 (infinite resistance). In addition to resistors 7 and 9, tracking accuracy is influenced by the height of barrier 11, the higher the barrier 11, the higher the tracking accuracy and vice versa.
Senzorski sončni štedilnik, ki je predmet izuma, kot celota deluje na sledeč način. V primeru, ko je smer sončnih žarkov 14 vzporedna pregradi 11 (takrat sončni žarki padajo pravokotno na sončni sprejemnik), sta vzhodni svetlobni senzor 1 in zahodni svetlobni senzor 2 enako osvetljena. To ima za posledico, da sta njuni izhodni napetosti U1 in U2 enaki. Napetosti U1 in U2 sta hkrati tudi vhodni napetosti na invertirajočima in neinvertirajočima vhodoma operacijskih ojačevalnikov 6 in 8. Ker na vhodu operacijskih ojačevalnikov 6 in 8 ni diferenčne razlike, sta izhoda operacijskih ojačevalnikov 6 in 8 enaka in sicer 0 voltov. Enosmerni motor 10 in tudi sončni sprejemnik v tem primeru mirujeta. Ker pa sonce 12 čez dan potuje od vzhoda proti zahodu, kar je prikazano s puščico 15, pregrada 11 kmalu naredi senco vzhodnemu senzorju 1, kar zmanjša napetost U1 in tako je sedaj napetost U2 večja od napetosti U1. To ima za posledico, da se izhodna napetost operacijskega ojačevalnika 8 poveča, saj je na njegovem neinvertirajočem vhodu večja napetost kot na njegovem invertirajočem vhodu. Ker ostane izhod operacijskega ojačevalnika 6 na masi (na njegovem neinvertirajočem vhodu je manjša napetost kot na njegovem invertirajočem vhodu), se enosmerni motor 10 zavrti in sončni sprejemnik se skupaj z detektorjem položaja sonca 16 začne obračati proti zahodu. Ko sončni žarki spet padajo pravokotno na sončni sprejemnik, sta napetosti U1 in U2 znova enaki in enosmerni motor 10, kakor tudi potovanje sončnega sprejemnika, se ustavi. Ta sekvenca vklopov in izklopov enosmernega motorja 10 se ponavlja čez cel dan vse do večera, ko se potovanje sončnega sprejemnika ustavi. Takrat je U1 = U2 = 0 V. Nato ostaneta sončni sprejemnik in z njim tudi detektor položaja sonca 16 obrnjena proti zahodu vse do pojava prvih jutranjih sončnih žarkov na vzhodu. Ko se pojavijo prvi jutranji sončni žarki, le te zazna jutranji svetlobni senzor 3, ki je v toku dneva vedno v senci, zjutraj, ko vzhodni svetlobni senzor 1 in zahodni svetlobni senzor 2 še vedno »gledata« proti zahodu, pa je le ta obrnjen naravnost proti vzhodu. Tako je sedaj zahvaljujoč jutranjemu svetlobnemu senzorju 3 napetost U1 večja od napetosti U2 in izhodna napetost operacijskega ojačevalnika 6 se poveča, saj je na njegovem neinvertirajočem vhodu večja napetost kot na njegovem invertirajočem vhodu. Ker ostane izhod operacijskega ojačevalnika 8 na masi (na njegovem neinvertirajočem vhodu je manjša napetost kot na njegovem invertirajočem vhodu), se enosmerni motor 10 zavrti v nasprotni smeri in sončni sprejemnik se skupaj z detektorjem položaja sonca 16 začne obračati nazaj proti vzhodu, vse dokler sončni žarki spet ne padajo pravokotno na sončni sprejemnik. Takrat sta napetosti U1 in U2 spet enaki, jutranji svetlobni senzor 3 je v senci in spet se začne ponavljati zgoraj omenjena sekvenca vklopov in izklopov enosmernega motorja 10.The sensor solar cooker of the invention as a whole operates as follows. In the case where the direction of the sun's rays 14 is parallel to the barrier 11 (then the sun's rays fall perpendicularly to the solar receiver), the eastern light sensor 1 and the western light sensor 2 are equally illuminated. This results in their output voltages U1 and U2 being the same. The voltages U1 and U2 are also the input voltages at the inverting and non-inverting inputs of the operational amplifiers 6 and 8. Since there is no differential difference at the input of the operational amplifiers 6 and 8, the outputs of the operational amplifiers 6 and 8 are equal to 0 volts. The DC motor 10 and also the solar receiver are stationary in this case. However, as the sun 12 travels from east to west during the day, as shown by arrow 15, the barrier 11 soon makes a shadow to the east sensor 1, which reduces the voltage U1, and so now the voltage U2 is greater than the voltage U1. This results in the output voltage of the operational amplifier 8 being increased, since there is more voltage at its non-inverting input than at its inverting input. As the output of the operational amplifier 6 remains grounded (at its non-inverting input there is less voltage than at its inverting input), the DC motor 10 rotates and the sun receiver, together with the sun position detector 16, starts to turn west. When the sun's rays fall again perpendicularly to the solar receiver, the voltages U1 and U2 are again the same, and the DC motor 10, as well as the travel of the solar receiver, is stopped. This sequence of starts and stops of the DC 10 engine repeats throughout the day until the evening when the travel of the solar receiver stops. Then U1 = U2 = 0 V. Then the solar receiver and with it the sun position detector 16 are turned westwards until the first morning rays of the east appear. When the first morning rays appear, it is detected by the morning light sensor 3, which is always in the shade during the day, and in the morning, when the eastern light sensor 1 and the western light sensor 2 are still facing west, it is inverted. straight east. Thus, thanks to the morning light sensor 3, the voltage U1 is greater than the voltage U2, and the output voltage of the operational amplifier 6 is increased because there is more voltage at its non-inverting input than at its inverting input. As the output of the operational amplifier 8 remains on the ground (there is less voltage at its non-inverting input than at its inverting input), the DC motor 10 rotates in the opposite direction and the sun receiver, together with the sun position detector 16, starts to turn back east until the sun again, the rays do not fall perpendicular to the solar receiver. At that time, the voltages U1 and U2 are the same again, the morning light sensor 3 is in the shade and the above mentioned sequence of starting and stopping of the DC motor 10 starts again.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200400238A SI21861A (en) | 2004-08-31 | 2004-08-31 | Sensor based sun tracker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200400238A SI21861A (en) | 2004-08-31 | 2004-08-31 | Sensor based sun tracker |
Publications (1)
Publication Number | Publication Date |
---|---|
SI21861A true SI21861A (en) | 2006-02-28 |
Family
ID=35953444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200400238A SI21861A (en) | 2004-08-31 | 2004-08-31 | Sensor based sun tracker |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI21861A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7665459B2 (en) | 2007-04-18 | 2010-02-23 | Energistic Systems, Llc | Enclosed solar collector |
-
2004
- 2004-08-31 SI SI200400238A patent/SI21861A/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7665459B2 (en) | 2007-04-18 | 2010-02-23 | Energistic Systems, Llc | Enclosed solar collector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3917942A (en) | Sun tracking control apparatus | |
Lynch et al. | Simple electro-optically controlled dual-axis sun tracker | |
Sawant et al. | Design and analysis of automated dual axis solar tracker based on light sensors | |
US3626825A (en) | Radiation-sensitive camera shutter and aperture control systems | |
US4122334A (en) | Illumination control apparatus for compensating solar light | |
US7252432B1 (en) | Efficient method of sharing diode pins on multi-channel remote diode temperature sensors | |
JPS6019441B2 (en) | Detection circuit of photocell pattern sensing device | |
EP3546956A1 (en) | Circuit for measuring a resistance | |
JPS6168613A (en) | Apparatus for turning direction operable unit to one light source | |
US4777479A (en) | Switch position indicator | |
Aldair et al. | Design and Implementation of Neuro-Fuzzy Controller Using FPGA for Sun Tracking System. | |
US20230047388A1 (en) | Magnetic induction circuit, magnetic-controlled switch circuit, circuit board, magnetic-controlled device, and magnetic-controlled lamp | |
Pradeep et al. | Development of dual-axis solar tracking using arduino with lab view | |
SI21861A (en) | Sensor based sun tracker | |
US20090114267A1 (en) | Clock operated step function solar tracker | |
US3678485A (en) | Shaft angle transducers | |
EP0099718B1 (en) | An intermediate value selection circuit | |
US2973456A (en) | Lamp flasher with daylight-responsive inhibiting means | |
US3899689A (en) | Electric power source | |
US3428861A (en) | Photo-electric timer control | |
US4190766A (en) | Sun tracking system | |
Salawu et al. | An electronic sun finder and solar tracking system | |
WO1985001847A1 (en) | Current-impulse converter circuit with variable time constant | |
CN202372860U (en) | Solar cell panel sampling and tracking sensing device | |
CN107783049B (en) | Level transfer system suitable for multi-battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20051216 |
|
KO00 | Lapse of patent |
Effective date: 20080429 |