[go: up one dir, main page]

SI21661A - Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber - Google Patents

Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber Download PDF

Info

Publication number
SI21661A
SI21661A SI200300322A SI200300322A SI21661A SI 21661 A SI21661 A SI 21661A SI 200300322 A SI200300322 A SI 200300322A SI 200300322 A SI200300322 A SI 200300322A SI 21661 A SI21661 A SI 21661A
Authority
SI
Slovenia
Prior art keywords
cells
autoclavable
electrofusion
electrofusion chamber
chamber
Prior art date
Application number
SI200300322A
Other languages
Slovenian (sl)
Inventor
Marko Kreft
Sonja Grilc
Igor Poberaj
CHOWDHURY Helena HAQUE
Robert ZOREC
Original Assignee
Celica, D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celica, D.O.O. filed Critical Celica, D.O.O.
Priority to SI200300322A priority Critical patent/SI21661A/en
Priority to PCT/SI2004/000048 priority patent/WO2005063961A2/en
Publication of SI21661A publication Critical patent/SI21661A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The subject of the invention belonging to the filed of biomedicine technology is a procedure of evaluation of the fraction of hybrid cells and cell products - hybridoms - in a cell vaccine, which comprises measurement of surface area of colocalized pixels on a picture taken by a multichannel confocal microscope, as well as an autoclavable electrofusion chamber intended for multiple use in preparation of hybridom cells. The procedure for quantification of fraction of hybrid cells enables the evaluation of a hybrid cell fraction by measuring surface areas of colocalised pixels and simultaneous visualisation and documentation of the procedure. The applicability of the procedure is wide also for any cases where fractions of one or several cell types or structures on a picture are determined. The subject of invention is also a respective autoclavable electrofusion chamber, more precisely, a chamber for the fusion of biological cells in the electrical field. The invention refers to the structure of the electrofusion chamber which is intended for multiple application. The chamber is composed of an upper part (1), lower part (2), glass plate (4) with electrodes, o-ring, cover and nut, which all can be autoclaved separately and put together as a sterile electrofusion chamber very easily in a sterile particle-free chamber. Besides, it is possible to change the size of the electrofusion surface by changing individual parts of the electrofusion chamber and thus fuse various volumes of cell suspensions in the chamber. The electrofusion chamber is made of biocompatible materials and is suitable for preparation of hybrid cells for human vaccines.

Description

POSTOPEK ZA EVALVACIJO DELEŽA HIBRIDNIH CELIC IN CELIČNIH IZDELKOV S KONFOKALNO MIKROSKOPIJO INPROCEDURE FOR EVALUATION OF SHARE OF HYBRID CELLS AND WHOLE PRODUCTS BY CONFOCAL MICROSCOPY AND

AVTOKLAVABILNA ELEKTROFUZIJSKA KAMRICAAUTOCLAWABLE ELECTROFUSION CHAMBER

Predmet izuma, ki sodi v področje biomedicinske tehnologije, je postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov hibridomov v celični vakcini, ki obsega meritve površine kolokaliziranih pikslov v sliki, posneti z večkanalnim konfokalnim mikroskopom in avtoklavabilna elektrofuzijska kamrica, namenjena za večkratno uporabo pri pripravi hibridomskih celic. Izum sodi v razred C12N13/00 mednarodne patentne klasifikacije.The subject matter of the invention within the field of biomedical technology is a method for evaluating the proportion of hybrid cells and cell products of hybridomas in a cell vaccine, comprising measurements of the surface area of colocalized pixels in an image taken with a multi-channel confocal microscope and autoclavable electrofusion chamber for multiple use hybridoma cells. The invention belongs to class C12N13 / 00 of the international patent classification.

Tehnični problem, ki ga predložen izum uspešno rešuje je postopek za zanesljivo in hitro določitev deleža hibridnih celic pri fuziji med dvema vzorcema fluorescenčno označenih celic in konstrukcija ustrezne fuzijske kamrice iz biokompatibilnih materialov za večkratno uporabo v humani medicini.A technical problem that the present invention successfully solves is a process for the reliable and rapid determination of the percentage of hybrid cells in the fusion between two samples of fluorescently labeled cells and the construction of a suitable fusion chamber made of biocompatible materials for human use.

Na področju biomedicinske tehnologije je v zadnjem času veliko zanimanje za fuzijo dendritskih in tumorskih celic za pripravo vakcin za antitumorsko imunoterapijo. Dendritske celice so imunoaktivne celice, ki imajo sposobnost, da na svoji površini prezentirajo antigene. Tumorske celice pa so donorji antigenov. S fuzijo dendritskih in tumorskih celic dobimo hibridne celice, ki izražajo specifične tumorske antigene in delujejo imunostimulatorno (Gong et al., PNAS, 97 (6), 2000; Kugler et al., Nature Medicine, 6 (3), 2000; Orentas et al., Cellular lmmunology 213, 4-13 (2001); Zhang et al., World J Gastroenterol., 9(3)2003).In the field of biomedical technology, there has been a great interest recently in the fusion of dendritic and tumor cells for the preparation of vaccines for antitumor immunotherapy. Dendritic cells are immunoactive cells that have the ability to present antigens on their surface. Tumor cells, however, are antigen donors. Fusion of dendritic and tumor cells yields hybrid cells that express specific tumor antigens and are immunostimulatory (Gong et al., PNAS, 97 (6), 2000; Kugler et al., Nature Medicine, 6 (3), 2000; Orentas et al. al., Cellular lmmunology 213, 4-13 (2001); Zhang et al., World J Gastroenterol., 9 (3) 2003).

io Na tem področju sta odprta dva velika sklopa problemov: izdelava naprave za reproducibilno pripravo hibridnih celic z elektrofuzijo in v tej zvezi določanje učinkovitosti fuzije celic.io There are two major sets of problems in this field: the construction of a device for the reproducible preparation of hybrid cells by electro-fusion, and in this respect the determination of the efficiency of cell fusion.

Ocena učinkovitosti fuzije in nastajanja hibridnih celic je odločilna za uporabo hibridnih celic pri raziskavah in pri uporabi v terapevtske namene, is Postopek po izumu omogoča hitro in natančno določitev učinkovitosti fuzije. Natančnost metode določa raba mikroskopije, hitrost postopka pa je taka, kot je pri rabi postopkov pretočne citometrije, metode, ki je bila do sedaj pogosto uporabljana metoda za določevanje deleža fuziranih celic v celičnih vakcinah. Temeljni problem postopka znane pretočne citometrije je neobčutljivost, kar prispeva k razmeroma velikemu deležu tako imenovanih lažno pozitivnih rezultatov. Postopek po predloženem izumu, ki uspešno odpravlja to pomanjkljivost, smo uvedli s pomočjo konfokalne mikroskopije in ni uporaben le za reševanje specifičnega problema, to je za določevanje deleža hibridomov v celični vakcini, pač pa je njegova uporabnost širša. Uporabimo ga lahko v vseh primerih, kjer merimo bodisi deleže celic ali drugih struktur v nekem preparatu, ki so označeni z različnimi fluorescenčno označenimi sondami.Assessment of the efficiency of fusion and the formation of hybrid cells is crucial for the use of hybrid cells in research and in therapeutic applications, and the method according to the invention allows for the rapid and accurate determination of the efficiency of fusion. The precision of the method is determined by the use of microscopy, and the speed of the procedure is the same as that used in flow cytometry procedures, a method that has hitherto been a commonly used method for determining the proportion of fused cells in cellular vaccines. A fundamental problem with the known flow cytometry procedure is insensitivity, which contributes to the relatively high proportion of so-called false positives. The method of the present invention, which successfully remedies this defect, was introduced by confocal microscopy and is not only useful for solving a specific problem, that is, for determining the proportion of hybridomas in a cell vaccine, but its utility is wider. It can be used in all cases where we measure either the proportions of cells or other structures in a preparation that are labeled with different fluorescently labeled probes.

Elektrofuzija je proces, pri katerem pride zaradi delovanja električnega polja na celice v suspenziji do združitve dveh ali več celic v novo celico (hibridna celica). Hibridna celica ima fiziološke lastnosti obeh fuzijskih partnerjev. Za pripravo celičnih hibridomov se v zgoraj omenjenih študijah uporabljata dve metodi: fuzija z uporabo polietilen glikola in elektrofuzijo.Electro-fusion is the process by which the action of an electric field on cells in suspension results in the fusion of two or more cells into a new cell (a hybrid cell). The hybrid cell has the physiological properties of both fusion partners. Two methods are used to prepare cell hybridomas in the studies mentioned above: fusion using polyethylene glycol and electrofusion.

Elektrofuzija daje signifikantno večji odstotek fuziranih celic kot metoda fuzije s polietilen glikolom (Orientas et al., 2001).Electrofusion gives a significantly higher percentage of fused cells than the polyethylene glycol fusion method (Orientas et al., 2001).

Proces elektrofuzije poteka v treh stopnjah (Zimmermann U,. Rev Physiol Biochem Pharmacol. 1986; 105:176-256). V prvi stopnji (alignment) pridejo celice, ki jih damo v elektrofuzijski postopek, med is seboj v tesen kontakt. Celice morajo biti v električno prevodnem mediju. Za vzpostavitev tesnega kontakta med celicami se večinoma uporablja postopek dielektroforeze. V tem postopku pride do gibanja, migracije in orientacije celic v nehomogenem izmeničnem električnem polju. Celice med elektrodama se postavijo v vrste (»pearl chains«) v smeri največje gostote električnega polja. V naslednji stopnji (fuzija) so celice izpostavljene kratkemu intenzivnemu električnemu pulzu (ali več pulzom), običajno je to DC pulz, ki povzroči permeabilizacijo celične membrane in nato zlitje dveh membran na mestu, kjer sta celici v tesnem kontaktu. V tretji stopnji (»post-alignment«) pride do stabilizacije fuzijskega produkta. Z uporabo dielektroforeze ostanejo celice v tesnem kontaktu. Fuzirani celici se zaokrožita v hibridno celico.The electrofusion process takes place in three stages (Zimmermann U,. Rev Physiol Biochem Pharmacol. 1986; 105: 176-256). In the first stage, the cells that are put into the electro-fusion process come in close contact with each other. Cells must be in electrically conductive medium. Dielectrophoresis is mostly used to establish close contact between cells. This process results in the movement, migration and orientation of cells in a non-homogeneous alternating electric field. The cells between the electrodes are placed in pearl chains in the direction of maximum electric field density. In the next stage (fusion), the cells are exposed to a short intense electric pulse (or several pulses), usually a DC pulse, which causes the permeabilization of the cell membrane and then the merging of the two membranes at the point where the cells are in close contact. In the third stage (post-alignment), the fusion product is stabilized. Using dielectrophoresis, the cells remain in close contact. The fused cells are rounded up into a hybrid cell.

Proces elektrofuzije poteka v elektrofuzijski kamrici, ki ima v osnovi 5 prostor za suspenzijo celic in vsaj en par nasproti postavljenih elektrod, tako da je suspenzija celic med procesom elektrofuzije med elektrodama.The electrofusion process takes place in an electrofusion chamber, which basically has 5 spaces for suspending the cells and at least one pair opposite the placed electrodes, so that the cell suspension during the electrofusion process is between the electrodes.

Elektrodi sta povezani z napajalnikom (AC oz. DC virom toka).The electrodes are connected to the power supply (AC or DC power source).

Elektrofuzijska kamrica, namenjena za pripravo vakcin, mora omogočati fuzijo dovolj velikega volumna celične suspenzije in omogočati mora reproducibilnost elektrofuzijskega postopka.The electrofusion chamber intended for the preparation of vaccines must be capable of fusing a sufficiently large volume of cell suspension and must allow reproducibility of the electrofusion process.

Kugler et al. (2000) v zgoraj omenjenem članku uporablja za pripravo vakcin Biorad-ovo elektroporacijsko kiveto. Kamrica je v osnovi konstruirana tako, da generira homogeno električno polje. Kot smo že omenili, je pogoj za uspešno elektrofuzijo, dielektroforetična ureditev celic is med dvema elektrodama. Za optimizacijo te faze elektrofuzije Kugler et al. (2000) uporablja kapljico parafinskega voska (»dielectrical wax«), ki jo nanese na eno stran elektroporacijske kivete. Taka rešitev otežuje standardizacijo in ponovljivost elektrofuzijskega postopka. Tako prirejeno kamrico je težko čistiti ali ponovno sterilizirati in zato ni primerna za ponovno uporabo.Kugler et al. (2000) used Biorad's electroporation cuvette to prepare vaccines in the aforementioned article. The camphor is basically designed to generate a homogeneous electric field. As mentioned earlier, the condition for successful electrofusion is the dielectrophoretic arrangement of cells between two electrodes. To optimize this electrofusion phase, Kugler et al. (2000) used a drop of paraffin wax (dielectrical wax) applied to one side of an electroporation cuvette. Such a solution makes it difficult to standardize and repeat the electrofusion process. The chamber so adapted is difficult to clean or re-sterilize and therefore not suitable for reuse.

Tipi elektrofuzijske kamrice, ki so na tržišču, so pretežno namenjeni za enkratno uporabo npr. Microslide 450 (za elektrodi ima nameščeni dve cevi iz nerjavečega jekla na stekleno površino, kar ustvarja divergentno električno polje) in Microslide 453 (dve palici nerjavečega jekla (ali zlata) sta nameščeni vzporedno in ustvarjata homogeno električno polje) ali 454 Meander Fusion Chamber (Genetronics, Inc., ΒΤΧ Instruments, San Diego, CA). Tudi pri teh tipih kamric je problem reproducibilnost fuzijskega postopka, ker fuzijski prostor ni omejen in je težko doseči vedno enako gostoto celic, glede na površino izpostavljenih elektrod.The types of commercially available electrofusion chambers are mainly intended for single use e.g. Microslide 450 (for electrodes has two stainless steel tubes mounted on the glass surface, creating a divergent electric field) and Microslide 453 (two stainless steel bars (or gold) mounted side by side and creating a homogeneous electric field) or 454 Meander Fusion Chamber (Genetronics , Inc., ΒΤΧ Instruments, San Diego, CA). Even with these types of chambers, the problem is the reproducibility of the fusion process, since the fusion space is not limited and it is difficult to achieve the same cell density, depending on the surface of the exposed electrodes.

Drugi problem, ki se pojavlja pri kamricah za enkratno uporabo, je nepreciznost pri izdelavi elektrod, kar tudi vpliva na slabšo reproducibilnost fuzijskega postopka. Ker naj bi bile sorazmerno poceni, io so kamrice za enkratno uporabo večinoma iz materialov, ki niso biokompatibilni.Another problem encountered with single-use chambers is the inaccuracy in electrode fabrication, which also affects the poor reproducibility of the fusion process. Because they are relatively inexpensive, io disposable chambers are mostly made of materials that are not biocompatible.

Elektrofuzijska kamrica, namenjena za pripravo vakcin, mora zagotavljati tudi sterilnost fuzijskega produkta. Vsi deli kamrice, ki pridejo v kontakt s suspenzijo celic, morajo biti sterilni. Fuzija mora potekati v is zaprtem sistemu, ki preprečuje vsako možno kontaminacijo med fuzijskim postopkom. Elektrofuzijske kamrice za enkratno uporabo, ki so komercialno na voljo, so ali nesterilne ali pa pred-sterilizirane, običajno z gama žarki, in uporabne samo za raziskovalne namene.The electrofusion chamber intended for the preparation of vaccines must also ensure the sterility of the fusion product. All parts of the cam that come into contact with the cell suspension must be sterile. The fusion must take place in an closed system that prevents any possible contamination during the fusion process. The commercially available disposable electrofusion chambers are either non-sterile or pre-sterilized, usually with gamma rays, and are useful for research purposes only.

Iz vsega navedenega je jasno, da obstaja potreba po novem tipu 20 elektrofuzijske kamrice, ki bo omogočala pridobivanje dovolj velikih količin hibridnih celic, ki so potrebne za pripravo vakcin. Konstrukcijska rešitev mora biti taka, da bo omogočala reproducibilnost elektrofuzijskega postopka, zagotavljala sterilnost elektrofuzijskega postopka in ustrezala standardom za humano uporabo (biokompatibilnost materialov), ekonomična in okolju prijazna.From all of the above, it is clear that there is a need for a new type 20 electrofusion chamber that will allow the production of sufficient large quantities of hybrid cells to be prepared for the preparation of vaccines. The design solution must be such as to enable reproducibility of the electrofusion process, ensure sterility of the electrofusion process and meet standards for humane use (biocompatibility of materials), economical and environmentally friendly.

Problemov, ki se pojavljajo v zvezi s pripravo hibridnih celic (hibridomov) za vakcine je torej več, predvsem pa izstopajo:There are several problems with the preparation of hybrid cells (hybridomas) for vaccines.

- problem fuzije večjih in različnih volumnov suspenzije celic;- the problem of fusion of large and different volumes of cell suspension;

- zagotavljanje dovolj velikega procenta fuziranih celic; sterilnost (in apirogenost);- providing a sufficiently large percentage of the fused cells; sterility (and pyrogenicity);

biokompatibilnost materialov, ki pridejo v kontakt s suspenzijo celic;biocompatibility of materials that come into contact with cell suspension;

- zmanjšanje stroškov za pripravo vakcin s konstrukcijo kamrice, namenjene za večkratno uporabo in za hitro evalvacijo deleža hibridov tudi že v sami fuzijski kamrici.- the reduction of the cost of preparing vaccines with a reusable chamber design and for the rapid evaluation of the proportion of hybrids already in the fusion chamber itself.

Znani postopki za določanje hibridomov so doslej ocenjevali is učinkovitost fuzije tako, da so uporabljali pretočno citometrijo, ki je hitrejša od mikroskopskih postopkov. Uporaba mikroskopa pa omogoča vizualizacijo in dokumentacijo posameznih celic. Hibridne celice se na mikroskopski ravni ločijo od nehibridnih celic. Pregledovanje celic s klasično mikroskopijo je sila zamudna metoda. Doslej so mikroskop uporabljali izključno za vizualizacijo, ocenjevanje učinkovitosti fuzije z mikroskopom pa bi bilo časovno prezahtevno in subjektivno.Known methods for determining hybridomas have thus far been evaluated for fusion efficiency using flow cytometry that is faster than microscopic procedures. The use of a microscope enables visualization and documentation of individual cells. Hybrid cells are separated from non-hybrid cells at the microscopic level. Examination of cells by classical microscopy is a time-consuming method. So far, microscopes have been used solely for visualization, and evaluating the effectiveness of fusion with a microscope would be time consuming and subjective.

Najenostavnejši tip kamrice sestoji iz mikroskopskega stekelca, na katerega sta prilepljeni dve vzporedni žici. Ta tip kamrice se uporablja za približno določanje optimalnega električnega polja, ki povzroči dielektrično ureditev in fuzijo celic. Med žici kanemo kapljico s suspenzijo celic in pod mikroskopom opazujemo posamezne stopnje fuzije. Ta tip kamrice omogoča fuzijo le majhnega volumna celic. Problem je tudi sterilnost.The simplest type of cam consists of a microscope glass, to which two parallel wires are attached. This type of cell is used to approximate the optimum electric field that results in dielectric arrangement and cell fusion. A droplet of cells was suspended between the wires and individual fusion rates were observed under the microscope. This type of cam allows fusion of only a small volume of cells. Sterility is also a problem.

Patentni dokumenti, kot npr. U.S. Pat.No. 4,441,972, U.S. Pat.No. 4,578,168, U.S. Pat.No. 4.764, 473, U.S. Pat.No. 2002164776 rešujejo problem fuzije večjih volumnov suspenzije celic in problem izvedbe (konfiguracije) elektrod, ki generirajo nehomogeno električno polje.Patent documents such as e.g. U.S. Pat.No. No. 4,441,972, U.S. Pat. Pat.No. No. 4,578,168, U.S. Pat. Pat.No. 4.764, 473 U.S. Pat. Pat.No. 2002164776 solve the problem of fusion of large volumes of cell suspension and the problem of implementation (configuration) of electrodes that generate a non-homogeneous electric field.

U.S. Pat. No. 4,441,972 opisuje tip kamrice, kjer je fuzijski prostor w določen z zgornjo in spodnjo elektrodno ploščo v obliki diska. Vsaj ena od elektrod ima na površini več koncentrično razporejenih žlebov. Na vrhovih teh se ustvari nehomogeno električno polje. Konstrukcija kamrice je mehansko zapletena in zahteva natančno nastavljanje vzporednih elektrod. Prostor med vzporednima elektrodama je težko očistiti. Ni is verjetno, da bi ta sistem omogočal fuzijo večjih količin celic.U.S. Pat. No. No. 4,441,972 describes a type of cam where the fusion space w is defined by a disk-shaped upper and lower electrode plate. At least one of the electrodes has several grooves arranged concentrically on the surface. A homogeneous electric field is created at the tips of these. The design of the cam is mechanically complex and requires fine tuning of the parallel electrodes. The space between the parallel electrodes is difficult to clean. It is unlikely that this system would allow the fusion of large quantities of cells.

U.S. Pat.No. 4,578,168 opisuje kamrico, kjer je nameščenih več ploščatih mrežastih žičnih elektrod. Laminatna konstrukcija v kaseti omogoča namestitev zaporedja distančnikov in mrežastih žičnih elektrod. Ta izvedba omogoča fuzijo suspenzij celic v večjih volumnih za večkratno uporabo vključno za večkratno sterilizacijo. Slaba lastnost te kamrice pa je, da se celice ujamejo v mrežni strukturi in jih je zato težko odstraniti po izvršenem postopku fuzije.U.S. Pat.No. No. 4,578,168 describes a chamber where several flat mesh wire electrodes are mounted. The laminate structure in the cassette allows the installation of a series of spacers and mesh wire electrodes. This embodiment enables the fusion of cell suspensions in large volumes for multiple use, including multiple sterilization. However, a bad feature of this cell is that the cells are trapped within the network structure and therefore difficult to remove after the fusion process is performed.

U.S. Pat.No. 4,764,473 opisuje kamrico, ki ima konično cilindrično jedro, okoli katerega sta naviti žičnati elektrodi v obliki dvojne vijačnice, in posode, ki po obliki sledi cilindričnemu jedru. Ozek vmesni prostor med tema dvema deloma je prostor za suspenzijo celic. Kamrica omogoča fuzijo manjših volumnov celične suspenzije (optim. 0,3 ml) druga njena pomanjkljivost pa je, da ni avtoklavabilna.U.S. Pat.No. No. 4,764,473 describes a cam having a tapered cylindrical core around which double wire helix wire electrodes are wound, and a container following the cylindrical core in shape. The narrow space between these two parts is the space for cell suspension. Chamomile allows the fusion of smaller volumes of cell suspension (optim. 0.3 ml), but its disadvantage is that it is not autoclavable.

Pri dokumentu US2002164776 oziroma njegovem ekvivalentu EP1245669 je poudarjeno, da kamrica omogoča procesiranje večjih volumnov celic. Elektrode so laminarne in kontinuirne in so konfigurirane io tako, da generirajo nehomogeno polje. Elektrode imajo površino iz električno prevodnega materiala in so oblikovane valovito. Uporabijo se lahko katerikoli el. prevodni materiali: z ogljikom obogatena plastika ali polprevodniki. Zato je ta tehnologija primerna za izdelavo kamric z brizganjem mase v kalupe, kar je idelano za pripravo kamric za enkratno is uporabo. Taka je tudi primerna za sterilizacijo z obsevanjem.Document US2002164776, or its equivalent EP1245669, emphasizes that the chamber enables the processing of larger cell volumes. The electrodes are laminar and continuous and are configured io to generate a non-homogeneous field. The electrodes have a surface of electrically conductive material and are wavy. Any el. conductive materials: carbon-enriched plastics or semiconductors. Therefore, this technology is suitable for the production of molds by injection molding into the molds, which is ideally suited for the preparation of disposable and used molds. It is also suitable for radiation sterilization.

Dokument US 4804450 opisuje napravo za fuziranje celic, ki ima fuzijski prostor, v katerem je par elektrod. Ti sta nameščeni tako, da imata enake dimenzije (višino), da se minimizira nehomogenost električnega polja.US 4804450 describes a cell fusion device having a fusion space containing a pair of electrodes. They are arranged so that they have the same dimensions (height) to minimize the inhomogeneity of the electric field.

Pri dokumentu U.S. Pat.No. 4,832,814. je naprava sestavljena iz tanke plasti-filma elektrod, ki so nanešene z jedkanjem na optično prozorno spodnjo plast s kanalom, ki definira meje s fotokopolimernim materialom, ki je nanešen kot laminat med zgornjo optično prozorno in spodnjo ploščo.With U.S. document Pat.No. No. 4,832,814. is a device consisting of a thin layer-film of electrodes applied by etching to an optically transparent bottom layer with a channel defining the boundaries with photocopolymer material applied as a laminate between the top optically transparent and the bottom panel.

Na vrhu je optična plošča, ki zapre kanal in ima odprtino prek katere lahko v kanal vnesemo celice. Napravo je lahko narediti z optičnimi orodji. Med takim postopkom nastane izdelek, kije zaradi narave dela že sterilen. Tudi volumen kamrice se lahko poljubno spreminja s spreminjanjem votlin v laminatu, kamor se namešča celice. Elektrode so iz kroma ali mešanice oksidov indija in kositra, kar pa je težko uskladiti z biokompatibilnostjo. Dobra lastnost take kamrice pa je, da omogoča določitev deleža hibridomov z mikroskopijo, kar je predmet tega izuma.At the top is an optical panel that closes the channel and has an opening through which cells can be inserted into the channel. The device can be made using optical tools. During this process, a product is created that is already sterile due to the nature of the work. Also, the volume of the oyster can be arbitrarily varied by changing the cavities in the laminate where the cells are placed. The electrodes are either chromium or a mixture of indium and tin oxides, which is difficult to reconcile with biocompatibility. However, it is a good feature of such a cell that it allows determination of the proportion of hybridomas by microscopy, which is the object of the present invention.

Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po izumu je hiter postopek za kvantifikacijo deleža hibridnih celic, ki nastanejo pri fuziji celic. Postopek temelji na uporabi konfokalnega mikroskopa. Po postopku po izumu lahko hitro in zanesljivo analiziramo veliko število celic. Vsak vzorec celic označimo s fluorescenčnim barvilom. Celice barvamo vitalno. Za različne vzorce is uporabimo barvila z različnimi emisijskimi spektri (npr. rdeč in zelen). Po označevanju celice uredimo z dielektroforezo v visokofrekvenčnem izmeničnem električnem polju tako, da se dotikajo. Nato celice zlijemo (npr. z električnim sunkom). Preiskovanje posameznih hibridnih celic pod konfokalnim mikroskopom temelji na dvojni fluorescenci hibridnih celic.The process for evaluating the fraction of hybrid cells and cell products by confocal microscopy according to the invention is a rapid process for quantifying the fraction of hybrid cells that result from cell fusion. The procedure is based on the use of a confocal microscope. According to the process of the invention, a large number of cells can be quickly and reliably analyzed. Each cell sample is labeled with fluorescent dye. Cells are vitally colored. For different is samples, dyes with different emission spectra (eg red and green) are used. After labeling, the cells are arranged by dielectrophoresis in a high-frequency alternating electric field so that they are contacted. The cells are then fused (eg with an electric shock). Examination of single hybrid cells under a confocal microscope is based on double fluorescence of hybrid cells.

2o Delež hibridnih celic določimo na slikah posnetih s konfokalnim mikroskopom tako, da izmerimo površino, ki jo zasedajo piksli z dvojno fluorescenco. To površino primerjamo z vsemi piksli, ki označujejo le dele z enojno fluorescenco. Elektronski šum slike odstranimo z dvodimenzionalnim filtriranjem slike. Pred primerjavo intenzitet različnih kanalov slike nastavimo kontrast posameznega kanala tako, da intenzitete pikslov zasedajo vse razpoložljivo območje. Nato določimo prazno vrednost intenzitete, ki loči intenzitete ozadja slike od intenzitete signala fluorescenčno označenih celic. Pražno vrednost intenzitete uporabimo za binarizacijo slike. Pri binarizaciji se slika, ki ima intenzitete celotnega območja, pretvori v dvonivojsko sliko. Računalniški program prešteje vse piksle z nadpražno intenziteto. Razmerje med številom pikslov, ki imajo nadpražno intenziteto pri obeh kanalih in številom pikslov, ki imajo nadpražno intenziteto pri najmanj enem kanalu, predstavlja delež hibridnih celic glede na vse celice.2o Determine the proportion of hybrid cells in images taken with a confocal microscope by measuring the area occupied by dual-fluorescence pixels. This surface is compared with all pixels that indicate only single fluorescence sections. Electronic image noise is eliminated by two-dimensional image filtering. Before comparing the intensities of different image channels, adjust the contrast of each channel so that pixel intensities occupy all available range. We then determine a blank intensity value that separates the background image intensities from the signal intensity of the fluorescently labeled cells. We use the empty intensity value to binarize the image. In binarization, an image that has intensities of the entire area is converted to a two-level image. The computer program counts all pixels with above-average intensity. The ratio of the number of pixels having an above-average intensity for both channels to the number of pixels having an above-average intensity for at least one channel represents the proportion of hybrid cells with respect to all cells.

Nadalje ima avtoklavabilna kamrica za elektrofuzijo po izumu naslednje značilnosti:Furthermore, the autoclavable electrofusion chamber according to the invention has the following characteristics:

elektrode so naparjene na steklo prek maske z optičnim postopkom s tem, da je debelina kovinskega biokompatibilnega nanosa, dimenzij do polovice premera celic. Rob elektrod, ki so med sabo oddaljeni od 50 do 350 mikrometrov, ustvarja nehomogeno polkrožno polje, ki je ključno za dielektroforezo med dvema ali več pasov, naThe electrodes are charged to the glass through an optical process mask, with a thickness of metal biocompatible coating, up to half the diameter of the cells. The edge of the electrodes, which are 50 to 350 micrometers apart, creates a non-homogeneous semicircular field, which is crucial for dielectrophoresis between two or more bands, at

2o ravnino položenih trakov elektrod. Trakovi elektrod so naparjeni tako, da so paralelni ali pa so nanešeni pod koti, da ustvarjajo gradient električnega polja, tako, da omogočajo določitev optimalnih parametrov fuzije v enem poskusu v eni suspenziji. Gradient električnega polja je zaradi nanosa elektrod pod koti, in tako kodiran v x, y koordinatah. To omogoča analizo optimalnih pogojev fuzije tako, da se analizira deleže fuzijskih celic v različnih regijah ravnine, ki ima površino nanešeno z elektrodami;2o plane of the laid electrode bands. The electrode strips are paired so that they are parallel or applied at angles to create an electric field gradient, so as to allow optimal fusion parameters to be determined in one experiment in one suspension. The electric field gradient is encoded in x, y coordinates due to the electrode deposition. This allows the optimal fusion conditions to be analyzed by analyzing the proportions of the fusion cells in different regions of the plane having an electrode-applied surface;

konstrukcija kamrice je izvedena tako, da omogoča preprosto (sterilno) razstavljanje in sestavljanje, avtoklaviranje in omogoča uporabo biokompatibilnih materialov. Način sterilizacije z avtoklaviranjem (ali suhe sterilizacije) v primerjavi s sterilizacijo z žarki gama ali etilen oksidom ima več prednosti;The construction of the chamber is designed to allow simple (sterile) disassembly and assembly, autoclaving and to allow the use of biocompatible materials. The method of autoclaving (or dry sterilization) sterilization has several advantages over sterilization by gamma or ethylene oxide;

z menjavo delov fuzijske kamrice, dela z oznako EL.B, ki imajo različno velike centralne odprtine, omogočajo fuzijo različno velikih volumnov suspenzij celic. Celice pa se lahko is hitro in preprosto oddvojijo, kar je prednost v primerjavi s patentom USP4832814;by changing the fusion chamber portions, parts labeled EL.B having differently sized central openings allow the fusion of differently large volumes of cell suspensions. Cells, however, can be quickly and easily removed, which is an advantage over USP4832814;

posebna rešitev konektorjev omogoča hitro sestavljanje in razstavljanje fuzijske kamrice.a special connector solution enables quick assembly and disassembly of the fusion chamber.

Izum bomo podrobneje obrazložili na osnovi izvedbenega primera in slik, od katerih kaže:The invention will be explained in more detail on the basis of an embodiment and figures, of which:

slika 1 Figure 1 dva vzorca različnih celic, označenih z dvema različnima fluorescenčnima barviloma, posneta s konfokalnim mikroskopom; two samples of different cells, indicated by two different ones fluorescent dyes taken with confocal a microscope; slika 2 Figure 2 hibridna dvojnofluorescenčna celica, z diagramom intenzitet hybrid double-fluorescence cell, with intensity chart 5 5 zelene in rdeče fluorescence za tri sosednje celice; green and red fluorescence for three adjacent cells; slika 3 Figure 3 graf korelacije med štetjem celic z dvojno fluorescenco in meritvijo površine, ki jo zasedajo piksli z dvojno fluorescenco; graph of the correlation between counting cells with double fluorescence and by measuring the area occupied by dual-fluorescence pixels; slika 4 Figure 4 primerjava rezultatov analize vzorcev s pretočnim citometrom z rezultati pridobljenimi po postopku po izumu s comparison of the results of the analysis of the samples with the flow cytometer with the results obtained by the method according to the invention with 10 10 konfokalnim mikroskopom; confocal microscope; slika 5 Figure 5 shema elektrofuzijske kamrice - pogled od zgoraj - brez pokrova (»top plan view«); schematic of an electrofusion cam - top view - none top plan view; slika 6 Figure 6 skica vzdolžnega prereza elektrofuzijske kamrice, skozi os A-A; sketch of a longitudinal cross-section of an electrofusion chamber through the axis A-A; 15 slika 7 15 Figure 7 skica steklene plošče z elektrodami- pogled od zgoraj (ni v merilu); sketch of glass panel with electrodes - top view (not in scale); slika 8 Figure 8 skica izvedbe priključka na vir napajanja (AC oziroma DC)- pogled na kamrico od strani (slika 8A) ali od zgoraj (slika 8B); sketch of the connection to the power source (AC or DC) - camera view from the side (Fig. 8A) or from above (Fig 8B); 20 slika 9 20 Figure 9 vodila za vijake in matico; guides for screws and nuts; slika 10 Figure 10 risba vseh delov kamrice. drawing of all parts of the camel.

Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po predloženem izumu bo podrobneje obrazložen v nadaljevanju.The process for evaluating the proportion of hybrid cells and cell products by confocal microscopy according to the present invention will be explained in more detail below.

Celične vakcine, pripravljene s fuzijo dentritskih (antigen 5 prezentirajočih) celic in tumorskih celic, so vedno bolj v ospredju, saj vzbudijo imunsko zavrnitev tumorjev pri skoraj vseh raziskanih živalih (Scott-Taylor et al., 2000, Biochemica et Biophysica Acta, 1500, 265-279). Pri razvoju postopkov za elektrofuzijo je pomembna kvantifikacija deleža hibridnih celic. V ta namen so doslej raziskovalci uporabljali pretočno io citometrijo (Jaroszeski et al., 1994, Analytical biochemistry, 216, 271-275). Za vizualizacijo in dokumentacijo pa so uporabljali različne mikroskopske tehnike, ki so bile zamudne in zaradi subjektivnosti neprimerne za natančno kvantifikacijo (Gottfried et al., 2002, Cancer lmmunity, 2, 15266).Cellular vaccines prepared by fusion of dentritic (antigen 5 presenting) cells and tumor cells are increasingly at the forefront of stimulating tumor immune rejection in almost all animals studied (Scott-Taylor et al., 2000; Biochemica et Biophysica Acta, 1500; 265-279). Quantification of the fraction of hybrid cells is important in the development of electrofusion procedures. To date, researchers have used flow cytometry (Jaroszeski et al., 1994, Analytical Biochemistry, 216, 271-275). However, various microscopic techniques were used for visualization and documentation, which were time consuming and, due to subjectivity, unsuitable for accurate quantification (Gottfried et al., 2002; Cancer lmmunity, 2, 15266).

is Razviti postopek po izumu omogoča ocenjevanje deleža hibridnih celic z analizo površine na slikah, posnetih s konfokalnim mikroskopom. S tem postopkom lahko analiziramo veliko število celic po elektrofuziji. Dva vzorca različnih celic smo označili z dvema različnima fluorescenčnima barviloma. Sliki 1 in 2 posneti s konfokalnim mikroskopom smo analizirali na dva načina:is The developed method according to the invention enables the estimation of the proportion of hybrid cells by analyzing the surface area on images taken with a confocal microscope. With this procedure, a large number of cells can be analyzed after electrofusion. Two samples of different cells were labeled with two different fluorescent dyes. Figures 1 and 2 were taken using a confocal microscope in two ways:

i) prešteli smo celice z dvojno fluorescenco in izračunali odstotek teh celic glede na vse označene celice;i) we counted the cells with double fluorescence and calculated the percentage of these cells with respect to all the cells labeled;

ii) izmerili smo površino, ki jo zasedajo piksli z dvojno fluorescenco.ii) We measured the area occupied by dual-fluorescence pixels.

Drug način je bil veliko hitrejši od štetja celic. Rezultati obeh postopkov imajo veliko stopnjo korelacije, kar je razvidno iz slike 3. Iste vzorce smo analizirali tudi s pretočnim citometrom. Tudi ti rezultati korelirajo z rezultati pridobljenimi po novi metodi s konfokalnim mikroskopom (slika 4), vendar je korelacijski koeficient nizek.Another way was much faster than cell counting. The results of both procedures have a high degree of correlation, as can be seen in Figure 3. The same samples were also analyzed with a flow cytometer. These results also correlate with the results obtained by the new method with a confocal microscope (Figure 4), but the correlation coefficient is low.

Povprečni odstotek hibridnih celic, določenih s konfokalnim mikroskopom, je bil dvakrat manjši od povprečnega odstotka hibridnih celic, ki smo ga določili s pretočno citometrijo. Ta razlika je verjetno zaradi večje selektivnosti novega postopka s konfokalnim mikroskopom. Pretočni io citometer namreč lahko zazna tudi agregate nezlitih, zlepljenih celic in jih opredeli kot hibridne celice.The average percentage of hybrid cells determined by a confocal microscope was twice less than the average percentage of hybrid cells determined by flow cytometry. This difference is probably due to the greater selectivity of the new confocal microscope procedure. The flow-through cytometer can also detect aggregates of non-merged, glued cells and identify them as hybrid cells.

Za fluorescenčno označevanje celic smo uporabljali fluorescenčni barvili: zelen 5-chloromethyl fluorescein diacetate (CMFDA, 7 μΜ) in rdeč 6-chloromethyl benzoyl amino tetramethylrhodamine (CMTMR, 5 μΜ).Fluorescence dyes were used for the fluorescence labeling of cells: green 5-chloromethyl fluorescein diacetate (CMFDA, 7 μΜ) and red 6-chloromethyl benzoyl amino tetramethylrhodamine (CMTMR, 5 μΜ).

Uporabljali smo elektroporator z vijačno kamrico Eppendorf Multiporator®. Volumen kamrice je bil 250 pl. Uporabljali smo tudi lastno planarno kamrico predmet izuma, z volumnom 5 ml (slika 10). Stike med celicami smo dosegli z dielektroforezo. Za 30 sekund smo dovedli izmenično električno polje (280 V/cm, 2 MHz). Elektrofuzijo smo povzročili s sunkom visoke napetosti (1600-2800 V/cm) za 30 ps, nato smo ponovno dovedli izmenično električno polje (280 V/cm, 2 MHz) za 30 sekund. Suspenzijo celic smo analizirali s konfokalnim mikroskopom in pretočno citometrijo.We used an Eppendorf Multiporator® screwdriver electroporator. The volume of the camel was 250 pl. We also used our own planar chamber of the invention, with a volume of 5 ml (Figure 10). Cell contact was achieved by dielectrophoresis. An alternating electric field (280 V / cm, 2 MHz) was brought in for 30 seconds. Electrofusion was caused by a high-voltage shock (1600-2800 V / cm) for 30 ps, then re-introduced an alternating electric field (280 V / cm, 2 MHz) for 30 seconds. Cell suspension was analyzed by confocal microscope and flow cytometry.

Odstotek hibridnih celic smo določili s štetjem rumenih - dvojno fluorescenčnih celic. Odstotek smo izračunali glede na vse preštete celice v suspenziji.The percentage of hybrid cells was determined by counting yellow - double fluorescent cells. The percentage was calculated with respect to all cells counted in suspension.

Odstotek hibridnih celic smo določili tudi z analizo konfokalne slike v 5 smislu meritve površine, ki jo zasedajo piksli s kolokalizirano rdečo in zeleno fluorescenco. Odstotek smo izračunali glede na vse fluorescenčne piksle. Določili smo prazno vrednost, ki je ločevala intenzitete ozadja od intenzitet signala zelenih in rdečih celic. Prazna vrednost je bila 41 od vseh 255 nivojev intenzitet, kar ustreza 16 % maksimalne intenzitete. Isto io prazno vrednost smo uporabili za določanje dvojnofluorescenčnih hibridnih celic. Elektronski šum, ki bi povzročil precenitev kolokaliziranih pikslov, smo odstranili z Gaussovim filtriranjem.The percentage of hybrid cells was also determined by analyzing the confocal image in 5 terms of measuring the area occupied by pixels with colocalized red and green fluorescence. The percentage was calculated with respect to all fluorescence pixels. An empty value was determined that separated the background intensities from the signal intensities of the green and red cells. The blank value was 41 of all 255 levels of intensity, corresponding to 16% of maximum intensity. The same io blank value was used to determine the double-fluorescence hybrid cells. The electronic noise that would cause the colocalized pixels to be overestimated was removed by Gaussian filtering.

Po zaključenem postopku zlivanja celic smo suspenzijo celic analizirali s konfokalnim mikroskopom. Uporabili smo konfokalni mikroskop Zeiss is 510 z objektivom Plan-Neofluoar (20x, NA = 0,5). Fluorescenco CMFDA smo vzbujali z argonskim laserjem pri 488 nm, CMTMR pa s He/Ne laserjem pri 543 nm. Fluorescenci CMFDA in CMTMR smo ločili z BP 505530 nm in LP 560 nm emisijskimi filtri. Odstotek zlitih celic smo najprej določili s štetjem celic na posneti sliki. Slika 2 kaže sliko s hibridno celico.After the cell fusion process was completed, the cell suspension was analyzed by a confocal microscope. We used a Zeiss is 510 confocal microscope with a Plan-Neofluoar lens (20x, NA = 0.5). CMFDA fluorescence was excited with an argon laser at 488 nm and CMTMR with a He / Ne laser at 543 nm. The fluorescents of CMFDA and CMTMR were separated by BP 505530 nm and LP 560 nm emission filters. The percentage of fused cells was first determined by counting the cells in the captured image. Figure 2 shows a picture with a hybrid cell.

Za potrditev, da gre za hibridno dvojnofluorescenčno celico, smo narisali linijski diagram intenzitet zelene in rdeče fluorescence za tri sosednje celice (profil, ki je narisan v diagramu, v sliki pokriva puščica). Črtkana črta označuje zeleno fluorescenco, polna črta pa rdečo fluorescenco. Leva in desna celica sta enojnofluorescenčni, sredinska, hibridna celica pa je dvojnofluorescenčna. Merilce predstavlja 100 gm. Povprečen delež hibridnih celic, določen s štetjem pri vseh poskusih je bil 4,1 ± 0,3%, (n= 47), značilno več kot delež navideznih hibridnih celic pri kontrolnem poskusu brez elektrofuzije (0,2 + 0,1 %, n= 12).To confirm that this is a hybrid double-fluorescence cell, we drew a line diagram of the green and red fluorescence intensities for the three adjacent cells (the profile drawn in the diagram is covered by an arrow in the figure). The dashed line indicates green fluorescence and the solid line indicates red fluorescence. The left and right cells are single-fluorescence, the center and the hybrid cell are double-fluorescence. The meter is 100 gm. The average proportion of hybrid cells determined by counting in all experiments was 4.1 ± 0.3%, (n = 47), significantly higher than the proportion of virtual hybrid cells in the control experiment without electrofusion (0.2 + 0.1%, n = 12).

Iste slike smo analizirali tudi po opisanem hitrejšem postopku z meritvijo površin kolokaliziranih pikslov. Slika 3 kaže rezultate ocenjevanja deleža hibridnih celic na oba načina s konfokalnim mikroskopom. Rezultati so statistično značilno korelirani (R=0,9; P < 0,001, n=59). Delež površine io kolokaliziranih pikslov torej predstavlja delež hibridnih celic v suspenziji. Z meritvami površine kolokaliziranih pikslov smo izračunali povprečen delež hibridnih celic 4,3 ± 0,3 % (n = 47), ki se ni značilno razlikoval od deleža hibridnih celic določenega s štetjem (4,1 ± 0,3%, n= 47).The same images were also analyzed according to the faster procedure described by measuring the surfaces of colocalized pixels. Figure 3 shows the results of estimating the proportion of hybrid cells both ways using a confocal microscope. The results were statistically significantly correlated (R = 0.9; P <0.001, n = 59). The fraction of the io surface area of the colocalized pixels therefore represents the fraction of hybrid cells in suspension. By measuring the surface area of the colocalized pixels, the average proportion of hybrid cells was calculated to be 4.3 ± 0.3% (n = 47), which was not significantly different from the proportion of hybrid cells determined by counting (4.1 ± 0.3%, n = 47 ).

Delež hibridnih celic, določen s konfokalnim mikroskopom smo tudi is primerjali z deležem, ki smo ga določili po klasični metodi s pretočnim citometrom. Diagram na sliki 4 kaže, da sta deleža hibridnih celic določena z meritvami površine kolokaliziranih pikslov na konfokalnih slikah (abscisa) in s pretočnim citometrom (ordinata), korelirana (črni krogci: fuzija celic PC-12 in celic DC; beli krogci: enake celice brez fuzije).The proportion of hybrid cells determined by a confocal microscope was also compared to that determined by the classical flow cytometer method. The diagram in Figure 4 shows that the proportions of hybrid cells are determined by measurements of the surface area of colocalized pixels on confocal images (abscissa) and flow cytometer (ordinate), correlated (black circles: fusion of PC-12 cells and DC cells; white circles: identical cells without fusion).

Razmeroma majhen koeficient korelacije (R = 0,3; P < 0,05) je verjetno posledica večje selektivnosti konfokalnega mikroskopa in neselektivnosti metode pretočne citometrije. Povprečen delež hibridnih celic, določen s konfokalnim mikroskopom (meritve površine: 4,3 ± 0,3; štetje hibridnih celic: 4,1 ± 0,3, n=47) je manjši od deleža, ki smo ga določili s pretočno citometrijo (9,1 ± 0,8, n=47), saj pretočni citometer lahko celične agregate zazna kot hibridne celice. Deleži hibridnih celic, določeni po vseh uporabljenih metodah, so značilno (P<0,001) večji od deležev, določenih pri kontrolnih celicah, kjer nismo uporabili elektrofuzije.The relatively small correlation coefficient (R = 0.3; P <0.05) is probably due to the higher selectivity of the confocal microscope and the indiscriminate flow cytometry method. The average proportion of hybrid cells determined by a confocal microscope (surface measurements: 4.3 ± 0.3; counting of hybrid cells: 4.1 ± 0.3, n = 47) is less than the proportion determined by flow cytometry ( 9.1 ± 0.8, n = 47), as the flow cytometer can detect cell aggregates as hybrid cells. The proportions of hybrid cells determined by all the methods used are significantly (P <0.001) greater than the proportions determined for control cells where no electrofusion was used.

Za odpravo pomanjkljivosti obstoječih elektrofuzijskih kamric, smo razvili nov tip elektrofuzijske kamrice. Predložena kamrica je namenjena za večkratno uporabo, tj. kamrica, ki je kompaktna, vendar lahka, trpežna, enostavna za čiščenje in vzdrževanje in tudi omogoča določitev optimalnih io fuzijskih pogojev in deleža fuzije kar s konfokalnim mikroksopom. Kamrico je mogoče sterilizirati (ne da bi pri tem materiali izgubljali na kvaliteti) z avtoklaviranjem. Sterilizacija z avtoklaviranjem ima več prednosti v primerjavi z ostalimi načini sterilizacije, predvsem je to najenostavnejši in najcenejši način sterilizacije. Stroški avtoklaviranja so minimalni. Tudi is nakup enote za avtoklaviranje je neprimerljivo cenejši kot instalacija enote za sterilizacijo z etilen oksidom, ali gama žarki (Co-60 ,Cs-137, radioizotopi, accel. elektroni). Etilen oksid je toksičen in potencialno karcinogen. Elektrofuzijska kamrica za večkratno uporabo po izumu ima šest ločenih delov, ki jih je mogoče avtoklavirati ločeno in jih v brezprašni sterilni komori zelo enostavno sestaviti v sterilno elektrofuzijsko kamrico.To eliminate the shortcomings of existing electrofusion chambers, we have developed a new type of electrofusion chambers. The presented cam is intended for multiple use, ie. chamomile, which is compact but lightweight, durable, easy to clean and maintain and also allows to determine optimal io fusion conditions and fusion rates with confocal microxop. The chamber can be sterilized (without losing quality materials) by autoclaving. Autoclaving sterilization has several advantages over other methods of sterilization, in particular it is the simplest and cheapest method of sterilization. The cost of autoclaving is minimal. Also, the purchase of an autoclaving unit is incomparably cheaper than the installation of an ethylene oxide sterilization unit or gamma rays (Co-60, Cs-137, radioisotopes, accel. Electrons). Ethylene oxide is toxic and potentially carcinogenic. The reusable electrofusion chamber according to the invention has six separate parts, which can be autoclaved separately and very easily assembled into a sterile electrofusion chamber in a dust-free sterile chamber.

Adaptabilna elektrofuzijska kamrica po izumu je prilagojena za fuzijo različnih volumnov suspenzije celic. Kamrica je konstruirana tako, da z menjavo enega dela elektrofuzijske kamrice, ki ima različno velike centralne odprtine, spreminjamo velikost elektrofuzijske površine tj. efektivno dolžino elektrod, ki je v kontaktu s suspenzijo celic. Rešuje problem nabave kamric za različne volumne celic. Večkratna uporaba kamrice je ne le ekonomična, ampak je tudi skladna z zmanjšanjem obremenitve okolja pri njenem uničenju, kar je tudi problem kamric za enkratno uporabo.The adaptive electrofusion chamber according to the invention is adapted for the fusion of different cell suspension volumes. The camphor is designed so that by changing one part of the electrofusion chamber, which has differently large central openings, we change the size of the electrofusion surface, ie. the effective length of the electrodes in contact with the cell suspension. Solves the problem of purchasing chamomile for different cell volumes. Not only is repeated use economical, but it is also consistent with reducing the environmental burden of its destruction, which is also a problem with single use chambers.

Izum se nanaša tudi na dimenzije in obliko elektrod za uniformno tretiranje celic po vsej fuzijski površini. Debelina elektrod in razdalja med elektrodami je definirana s toleranco ± 0,9 nm. Globina elektrod je manjša io od polmera celic, ki so v suspenziji med elektrodami, tako da se generira nehomogeno električno polje za dielektroforetično ureditev celic v območju največje gostote električnega polja, kar je pogoj za uspešno fuzijo. Poleg tega je predmet izuma tudi nameščanje trakov elektrod, ki so bodisi razporejeni vzporedno ali pa pod kotom, da ustvarijo gradient električnega polja, ki je različen v različnih poljih z x, y koordinatami steklene podlage dna elektrofuzijske kamrice.The invention also relates to the dimensions and shape of electrodes for uniform treatment of cells throughout the fusion surface. The thickness of the electrodes and the distance between the electrodes is defined with a tolerance of ± 0.9 nm. The depth of the electrodes is smaller than the radius of the cells suspended in the electrodes, so that a non-homogeneous electric field is generated for the dielectrophoretic arrangement of cells in the region of maximum electric field density, which is a condition for successful fusion. In addition, the subject of the invention is the placement of electrode strips that are either arranged in parallel or at an angle to create an electric field gradient that is different in different fields with the x, y coordinates of the glass substrate of the bottom of the electrofusion chamber.

Priključek na elektrode se da odklopiti od elektrod, za razliko od nekaterih izvedb, kjer so konektorji fiksirani na elektrode. Problem je rešen z vzmetnimi kontakti, ki se vzpostavijo ob sestavljanju kamrice. RešitevThe connection to the electrodes can be detached from the electrodes, unlike some designs where the connectors are fixed to the electrodes. The problem is solved by the spring contacts that are established when assembling the cam. The solution

2o omogoča lažje čiščenje in vzdrževanje sterilnosti kamrice.2o makes it easier to clean and maintain the sterility of the oyster.

Zaradi predložene konstrukcije fuzijske kamrice je omogočeno avtoklaviranje posameznih delov, ki so obenem iz biokompatibilnih materialov, da ustreza pogojem za humano uporabo.Due to the proposed construction of the fusion chamber, it is possible to autoclave individual parts, which are at the same time made of biocompatible materials, to meet the conditions for human use.

Sliki 5 in 6 prikazujeta konstrukcijsko rešitev elektrofuzijske kamrice po izumu, pri čemer je le-ta sestavljena iz naslednjih delov: spodnjega dela 1 kamrice s fiksno odprtino, zgornjega dela 2 z odprtino, katere premeri so lahko različni, med obema deloma nameščene steklene plošče 4 z elektrodami (prikazani na sliki 7), O-ringa nameščenega v ugrez 3, ki je izveden v spodnji strani zgornjega dela 2 kamrice. Spodnji del 1 in zgornji del 2 ohišja kamrice povezujejo štirje vijaki (izvedba obrob lukenj za vijake, ki so fiksirani v spodnjem delu 2 kamrice je prikazana na slikah 9A in 9B). Slika 9C prikazuje prečni prerez matice. Kontaktna plošča 5 (slika 8A, 8B) io se pritrdi na zgornji del 1 kamrice z istimi vijaki, ki pričvrstijo vse dele kamrice. Kamrico se sestavi tako, da se na podlago položi spodnji del 2 kamrice, v posebno ležišče z utorom 3 se namesti stekleno ploščo 4 z elektrodami, nato se na štiri vijake nasadi zgornji del 1 kamrice, na enem delu pa še kontaktno ploščo 5 na dva vijaka. S tremi do štirimi zavoji matic is se vse sestavne dele kamrice pričvrsti.5 and 6 show a structural solution of an electrofusion chamber according to the invention, which consists of the following parts: the lower part 1 of the fixed-hole chamber, the upper part 2 with an opening whose diameters may be different, glass panes 4 are arranged between the two portions. with electrodes (shown in Figure 7), an O-ring placed in the draft 3, which is made in the lower side of the upper part 2 of the cam. The lower part 1 and the upper part 2 of the casing of the casing are connected by four screws (the design of the holes for the screw holes fixed in the lower part 2 of the casing is shown in Figures 9A and 9B). Figure 9C shows a cross-section of a nut. The contact plate 5 (Figures 8A, 8B) io is attached to the upper part 1 of the chamber with the same screws that secure all parts of the chamber. The chamber is assembled by placing the bottom of the chamber 2 on the substrate, a glass panel 4 with electrodes is placed in a special slot with slot 3, then the upper part of the chamber 1 is placed on four screws and the contact plate 5 on two in one part. screws. With three to four turns of nuts is, all the components of the chamber are fastened.

Zgornji del 1 kamrice služi kot nosilec steklene plošče 4 z elektrodami (slika 10). Za enostavnejšo namestitev steklene plošče 4 z elektrodami ima zgornji del 1 na zgornji strani ležišče-utor (slika 10) za stekleno ploščo 4 z elektrodami, ki sega po vsej dolžini zgornjega dela 1, mora pa biti toliko ožja od zgornjega dela 1, da je na vogalih zgornjega dela 1 prostor za namestitev vijakov. Velikost steklene plošče 4 z elektrodami dimenzijsko ustreza velikosti utora 3 na zgornjem delu 1.The upper part 1 of the cam serves as a glass plate support 4 with electrodes (Figure 10). For ease of installation of the glass panel 4 with the electrodes, the upper part 1 on the upper side has a slot-groove (Figure 10) for the glass panel 4 with the electrodes, which extends along the entire length of the upper part 1, but must be so narrower than the upper part 1 that at the corners of the upper 1 space for mounting the screws. The size of the glass panel 4 with the electrodes corresponds in dimension to the size of the slot 3 in the upper part 1.

Spodnji del 2 nalega na stekleno ploščo 4 z elektrodami in je enakih zunanjih dimenzij kot zgornji del 1A. Oba dela 1 in 2 služita kot dva dela enotnega ohišja. Spodnji del 2 ima centralno okroglo odprtino. V naši izvedbi je odprtina okrogla, lahko pa je tudi drugačne oblike. Spodnji del 2 ima na ploskvi, ki nalega na stekleno ploščo 4 z elektrodami ugrez 3. V ugrez 3 je nameščen O-ring, ki služi za tesnenje prostora za suspenzijo celic. Popolno tesnenje prostora za suspenzijo celic dosežemo s pomočjo štirih vijakov, ki so nameščeni asimetrično na vogalih zgornjega dela 1 in segajo aksialno skozi štiri odprtine na vogalih spodnjega dela 2 tako, da io lahko s pomočjo matic tesno stisnemo stekleno ploščo 4 z elektrodami med zgornjim delom 1 in spodnjim delom 2. Vijaki so postavljeni asimetrično zato, da omogočajo vedno pravilno orientacijo spodnjega dela 2. Vijaki imajo na vrhovih odstružene navoje za hitro vdevanje matice. Velikost prostora za suspenzijo celic je določena z velikostjo centralne is okrogle odprtine v spodnjem delu 2, pri čemer dno prostora za suspenzijo celic tvori steklena plošča 4 z elektrodami, stransko steno pa predstavlja obod centralne okrogle odprtine. Velikost centralne okrogle odprtine je poljubna, odvisno od volumna suspenzije, ki jo želimo imeti v elektrofuzijskem postopku. V ta namen je praktično izdelati več spodnjih delov 2 z različnimi velikostmi centralne okrogle odprtine in jih menjati, glede na volumen suspenzije celic, ki ga želimo pripraviti.The lower part 2 rests on the glass panel 4 with electrodes and is of the same external dimensions as the upper part 1A. Both parts 1 and 2 serve as two parts of a single housing. The lower part 2 has a central circular opening. In our version, the opening is round, but it can also be of different shapes. The lower part 2 has a draft 3. In the draft 3, an O-ring is used to seal the space for suspending the cells in the surface adjacent to the glass plate 4 with the electrodes. Complete sealing of the cell suspension space is achieved by means of four screws mounted asymmetrically at the corners of the upper part 1 and extending axially through the four openings at the corners of the lower part 2 so that io can be used to tighten the glass plate 4 with the electrodes between the upper parts by means of nuts. 1 and bottom 2. The screws are positioned asymmetrically to allow the bottom 2 to be correctly oriented at all times. The screws are threaded off at the tips for quick screwing in the nut. The size of the cell suspension space is determined by the size of the central and circular opening in the lower portion 2, wherein the bottom of the cell suspension space is formed by a glass plate 4 with electrodes, and the side wall represents the circumference of the central circular opening. The size of the central circular aperture is arbitrary, depending on the volume of suspension desired in the electrofusion process. For this purpose, it is practical to make several lower parts 2 with different sizes of the central circular aperture and to change them according to the volume of cell suspension that we want to prepare.

Elektrofuzijska kamrica po izumu ima pokrov z držalom (slika 10). Pokrov ima raven, vsaj 2 mm debel rob, ki dimenzijsko ustreza obodu centralne okrogle odprtine v spodnjem delu 2. Skozi dno pokrova segajo kot kapilare tanke luknjice za izenačevanje tlaka in izpust zraka. Dno pokrova je ravno in naleže na suspenzijo s celicami in skozi kapilare iztisne eventualne zračne mehurčke, kar prispeva k večji reproducibilnosti fuzijskega postopka.The electrofusion chamber according to the invention has a lid with a holder (Figure 10). The lid shall have a straight edge, at least 2 mm thick, which corresponds in dimension to the circumference of the central circular opening in the lower part 2. Through the bottom of the lid, thin holes for equalizing pressure and air outlet extend through the capillaries. The bottom of the lid is flat and fits into the cell suspension and expels any air bubbles through the capillaries, which contributes to the reproducibility of the fusion process.

Slika 7 prikazuje skico tlorisa steklene ploščo z elektrodami. Elektrode so izvedene tako, da je električno prevodna snov naparjena na steklo s foto postopkom. Debelina elektrod je manjša ali enaka polovici premera celice (0,5 do 4,5 pm). Stopnja tolerance je ± 0,9 nm. Razdalja med io elektrodami je od 50 do 350 pm. Elektrode so lahko razporejene kot krožno fuzijsko polje z interkalarnimi trakovi vzporednih elektrod. Lahko pa so elektrode nameščene pod kotom, da z njimi ustvarimo gradient električnega polja na različnih področjih na površini na x,y koordinatah steklene plošče.Figure 7 shows a blueprint of the electrode glass pane. The electrodes are designed in such a way that the electrically conductive substance is charged to the glass by a photo process. The thickness of the electrodes is less than or equal to half the diameter of the cell (0.5 to 4.5 pm). The tolerance level is ± 0.9 nm. The distance between io electrodes is from 50 to 350 pm. The electrodes can be arranged as a circular fusion field with intercalary bands of parallel electrodes. Alternatively, the electrodes may be angled to create an electric field gradient in different areas of the surface at the x, y coordinates of the glass pane.

Iz slik 5, 8 in 10 je razvidna izvedba priključka elektrod na vir AC oz.DC. Spodnji del 2 ima asimetrično na strani, ki pokriva mesto kontaktov na stekleni plošči z elektrodami, vzmetne kontakte, ki se vzpostavijo ob sestavljanju elektrofuzijske kamrice po izumu.Figures 5, 8 and 10 show the design of the electrode connection to the AC source or D.C. The lower part 2 has asymmetrical side, which covers the location of the contacts on the glass panel with the electrodes, spring contacts that are made when assembling the electrofusion chamber according to the invention.

Zunanje dimenzije kamrice so take, da jo je mogoče namestiti v okvir mikroskopske mizice. Odprtina v zgornjem delu 1 in steklena plošča 4 omogočata opazovanje procesa fuzije, brez nevarnosti, da bi se fuzijski material kontaminiral.The outer dimensions of the chamber are such that it can be placed in the frame of a microscopic table. The opening in the upper part 1 and the glass plate 4 allow the fusion process to be observed without the risk of the fusion material becoming contaminated.

Elektrofuzijska kamrica za pripravo hibridomov za humano uporabo mora biti sterilna in apirogena. Vsi deli ekektrofuzijske kamrice so iz biokompatibilnih materialov, ki so avtoklavabilni tj. prenesejo temperaturo avtoklaviranja (od 120-130°C) in niso občutljivi na vlago.The electrofusion chamber for the preparation of hybridomas for human use must be sterile and pyrogen-free. All parts of the electrofusion chamber are made of biocompatible materials that are autoclavable ie. withstand the temperature of autoclaving (from 120-130 ° C) and are not sensitive to moisture.

Elektrofuzijska kamrica, namenjena za pripravo vakcin, mora biti tudi obstojna na depirogenizacijo. Postopek depirogenizacije posameznih delov kamrice poteka (pred parno sterilizacijo) v suhem sterilizatirju 1 uro pri 200°C ali 30 min pri 250°C, oziroma z inkubacijo čez noč v 0,1 M raztopini NaOH.The electrofusion chamber intended for the preparation of vaccines must also be resistant to de-oxygenation. The depyrogenation process of the individual portions of the chamber is performed (before steam sterilization) in a dry sterilizer for 1 hour at 200 ° C or 30 minutes at 250 ° C, or by incubation overnight in 0.1 M NaOH solution.

io Na elektrofuzijski kamrici se lahko izvede postopek za evalvacijo deleža hibridnih celic in tudi optimizacijo pogojev elektrofuzije (trakovi elektrod izvedeni pod kotom).io The procedure for evaluating the fraction of hybrid cells and also for optimizing the conditions of electrofusion (electrode strips performed at an angle) can be performed on the electrofusion chamber.

Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po izumu uspešno rešuje zastavljene tehnične probleme.The process for evaluating the proportion of hybrid cells and cell products by confocal microscopy according to the invention successfully solves the technical problems posed.

Doslej so raziskovalci poročali o uspešnih fuzijah celic z relativno visokim deležem hibridnih celic (do 30%). Za kvantifikacijo deleža hibridnih celic so običajno uporabljali pretočni citometer (Hayashi et al., 2002, Clinical lmmunology, 104, 14-20; Gong et al., 2000, Proč Natl AcadSo far, researchers have reported successful cell fusions with a relatively high proportion of hybrid cells (up to 30%). A flow cytometer was commonly used to quantify the proportion of hybrid cells (Hayashi et al., 2002; Clinical lmmunology, 104, 14-20; Gong et al., 2000, Away Natl Acad

Sci USA, 97, 5011; Gong et al., 2000, Journal lmmunology, 165, 170511; Akasaki et al., 2001, Journal lmmunotherapy, 24, 106-113). Poročali so tudi, da ugotavljanje deleža hibridnih celic s pretočnim citometrom ne zadošča, saj lahko agregati celic prispevajo k previsokemu izmerjenemu deležu hibridnih celic (Hayashi et al., 2002). Postopek po izumu to težavo uspešno rešuje. Ocenjevanje deleža hibridnih celic z meritvami površin kolokaliziranih pikslov je hitro, specifično za hibridne celice in omogoča hkratno vizualizacijo in dokumentiranje postopka.Sci USA, 97,5011; Gong et al., 2000, Journal of Immunology, 165, 170511; Akasaki et al., 2001, Journal lmmunotherapy, 24, 106-113). It has also been reported that determining the proportion of hybrid cells with a flow cytometer is not sufficient, as cell aggregates may contribute to the over-measured proportion of hybrid cells (Hayashi et al., 2002). The process of the invention successfully solves this problem. Estimating the proportion of hybrid cells by measuring the surface area of colocalized pixels is fast, specific to hybrid cells, and allows the process to be visualized and documented simultaneously.

V primerjavi z običajno konfokalno mikroskopijo je ocenjevanje deleža hibridnih celic hitro. Čas, potreben za analizo posameznega vzorca, je enak času, ki je potreben za analizo s pretočno citometrijo. Analiziramo lahko enako število celic v posameznem vzorcu kot pri pretočni citometriji. Za vizualizacijo in dokumentacijo analize ne potrebujemo dodatne metode.Compared to conventional confocal microscopy, estimation of the percentage of hybrid cells is rapid. The time required for analysis of a single sample is equal to the time required for analysis by flow cytometry. The same number of cells in each sample can be analyzed as in flow cytometry. No additional method is needed to visualize and document the analysis.

Postopek s konfokalnim mikroskopom je bolj selektiven od pretočne citometrije, saj lahko pretočna citometrija napačno zazna agregate nezlitih, zlepljenih celic kot hibridne celice. Postopek za ocenjevanje deleža hibridnih celic z analizo površine na slikah, posnetih s konfokalnim mikroskopom, je občutljiv in hiter, zato je primeren za ocenjevanje vzorcev z veliko celicami.The confocal microscope procedure is more selective than flow cytometry, as flow cytometry can erroneously detect the aggregates of non-merged, glued cells as hybrid cells. The procedure for estimating the proportion of hybrid cells by surface analysis on images taken with a confocal microscope is sensitive and rapid, and is therefore suitable for the evaluation of large cell samples.

Tudi nova konstrukcija avtoklavabilne elektrofuzijske kamrice za izvedbo postopka po izumu omogoča njeno večkratno uporabo, kamrica sama pa je kompaktna, vendar lahka, trpežna, enostavna za čiščenje in vzdrževanje. Kamrico je mogoče tudi zelo enostavno sterilizirati.Also, the new construction of the autoclavable electrofusion chamber for carrying out the process according to the invention allows its multiple use, and the chamber itself is compact but lightweight, durable, easy to clean and maintain. The camphor can also be very easily sterilized.

Claims (22)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo,1. A method for evaluating the proportion of hybrid cells and cell products by confocal microscopy, 5 označen s tem da vsak vzorec celic označimo s fluorescenčnim barvilom, po označevanju celice uredimo z dielektroforezo v visokofrekvenčnem izmeničnem električnem polju tako, da se dotikajo, nakar sledi preiskovanje posameznih hibridnih celic pod konfokalnim mikroskopom, io ki temelji na dvojni fluorescenci hibridnih celic, pri čemer delež hibridnih celic določimo na slikah posnetih s konfokalnim mikroskopom tako, da izmerimo površino, ki jo zasedajo tisti piksli, ki imajo dvojno fluorescenco; da to površino primerjamo z vsemi piksli, ki označujejo le dele z enojno fluorescenco, pri čemer pred primerjavo intenzitet is različnih kanalov slike nastavimo kontrast posameznega kanala tako, da intenzitete pikslov zasedajo vse razpoložljivo območje, nakar določimo pražno vrednost intenzitete, ki loči intenzitete ozadja slike od intenzitete signala fluorescenčno označenih celic; da pražno vrednost intenzitete uporabimo za binarizacijo slike, pri čemer se pri binarizaciji5, characterized in that each sample of cells is labeled with fluorescence dye, after labeling the cells are edited by dielectrophoresis in a high-frequency alternating electric field so that they are touched, followed by examination of individual hybrid cells under a confocal microscope, io based on double fluorescence of hybrid cells, determining the proportion of hybrid cells in images taken with a confocal microscope by measuring the area occupied by those pixels having double fluorescence; to compare this area with all pixels that denote only single fluorescence sections, adjusting the contrast of a single channel before comparing intensities from different image channels so that pixel intensities occupy all available range, and then determine the intensity threshold that separates the background intensities of the image the signal intensity of the fluorescently labeled cells; to use the intensity threshold value to binarize the image, where in binarization 20 slika, ki ima intenzitete celotnega območja, pretvori v dvonivojsko sliko, nakar z računalniškim programom preštejemo vse piksle z nadpražno intenziteto.The 20 image, which has intensities of the entire area, is converted to a two-tier image, and then all pixels with above-average intensity are counted with a computer program. 2. Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po zahtevku 1, označen s tem, da celice barvamo vitalno.A method for evaluating the proportion of hybrid cells and cell products by confocal microscopy according to claim 1, characterized in that the cells are stained vitally. 3. Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po zahtevku 1 in 2, označen s tem, da za različne vzorce uporabimo barvila z različnimi emisijskimi spektri io (n. pr. rdeč in zelen).Process for evaluating the proportion of hybrid cells and cell products by confocal microscopy according to claims 1 and 2, characterized in that dyes with different emission spectra of io (eg red and green) are used for different samples. 4. Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po zahtevkih od 1 do 3, označen s tem, is da za eliminacijo elektronskega šuma slike, ki bi povzročil precenjenje kolokaliziranih pikslov, uporabimo dvodimenzionalno filtriranje slike.Method for evaluating the proportion of hybrid cells and cell products by confocal microscopy according to claims 1 to 3, characterized in that two-dimensional image filtering is used to eliminate the electronic noise of the image, which would cause an overestimation of colocalized pixels. 5. Postopek za evalvacijo deleža hibridnih celic in celičnih izdelkov s konfokalno mikroskopijo po zahtevkih od 1 do 4,5. A method for evaluating the proportion of hybrid cells and cell products by confocal microscopy according to claims 1 to 4, 20 označen s tem, da lahko iste metode rabimo za evalvacijo deležov populacij v suspenziji celic tudi za druge namene v biomedicinski biotehnologiji.20, characterized in that the same methods can be used to evaluate the proportion of populations in cell suspension for other purposes in biomedical biotechnology. 6. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 1 do 5, označena s tem, da je sestavljena iz zgornjega dela (1), spodnjega dela (2), steklene plošče (4) z elektrodami in priključkoma na vir AC oziroma DC signala,An autoclavable electrofusion chamber according to claims 1 to 5, characterized in that it consists of an upper part (1), a lower part (2), a glass panel (4) with electrodes and connectors to the AC or DC signal source, 5 O-ringa, pokrova in matice.5 O-rings, cap and nut. 7. Avtoklavabilna elektrofuzijska kamrica, po zahtevku 6, označena s tem, da sta zgornji del (1) in spodnji del (2) enakih zunanjih dimenzij in imata io centralno krožni odprtini, delujeta kot polovici skupnega ohišja in se povezujeta na štirih mestih asimetrično, za vselej pravilno sestavljanje.Autoclavable electrofusion chamber according to claim 6, characterized in that the upper part (1) and the lower part (2) are of the same outer dimensions and have a centrally circular orifice, act as halves of the common housing and are connected in four places asymmetrically, for always proper assembly. 8. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih 6 in 7, označena s tem, is da ima utor (3) enake dimenzije kot steklena plošča (4), tako, da steklena plošča nalega v utor (3) in ima spodnji del (2) na spodnji strani nameščen utor (3) za O-ring, dimenzij, ki ustrezajo različnim dimenzijam v osrednji odprtini spodnjega dela (2), utor (3) pa obliko dimenzije O-ringa.Autoclavable electrofusion chamber according to claims 6 and 7, characterized in that the groove (3) has the same dimensions as the glass panel (4), such that the glass plate fits into the groove (3) and has a lower part (2) an O-ring groove (3) is installed on the underside, of dimensions corresponding to different dimensions in the central opening of the lower part (2), and the groove (3) has the shape of an O-ring dimension. 9. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 8, označena s tem, da velikost centralne krožne odprtine v spodnjem delu (2), določa velikost elektrofuzijske površine.An autoclavable electrofusion chamber according to claims 6 to 8, characterized in that the size of the central circular opening in the lower part (2) determines the size of the electrofusion surface. 10. Avtoklavabilna elektrofuzijska kamrica, po zahtevku 9,An autoclavable electrofusion chamber according to claim 9, 5 označena s tem, daje velikost centralne krožne odprtine v spodnjem delu (2) poljubna, in se z njo določi volumen elektrofuzata in s tem število celic v fuziji.5, characterized in that the size of the central circular aperture in the lower part (2) is arbitrary and determines the volume of the electro-fusate and thus the number of cells in the fusion. 11. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 10, io označena s tem, da ima zgornji del (1) štiri vijake in da imajo vijaki na vrhu odstružene vijačnice za hitro vdevanje matice in da ima spodnjem delu (2) v isti osi štiri odprtine skozi katere sežejo vijaki.Autoclavable electrofusion chamber according to claims 6 to 10, io characterized in that the upper part (1) has four screws and the screws at the top have been removed screws for fast threading of the nut and that the lower part (2) has the same axis four openings through which screws extend. isis 12. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 11, označena s tem, da so deli iz avtoklavabilnih biokompatibilnih materialov.Autoclavable electrofusion chamber according to claims 6 to 11, characterized in that the parts are made of autoclavable biocompatible materials. 13. Avtoklavabilna elektrofuzijska kamrica, po zahtevku 12,An autoclavable electrofusion chamber according to claim 12, 20 označena s tem, da so deli iz biokompatibilnih materialov po standardih ASTM.20, characterized in that the parts are made of biocompatible materials according to ASTM standards. 14. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 13, označena s tem, da ima več parov vzporednih elektrod, pri čemer so razdalje med elektrodami in njihove globine definirane s toleranco ± 0,9 nm.Autoclavable electrofusion chamber according to claims 6 to 13, characterized in that it has several pairs of parallel electrodes, the distances between the electrodes and their depths being defined with a tolerance of ± 0.9 nm. 15. Avtoklavabilna elektrofuzijska kamrica, po zahtevku 14, označena s tem, da je globina elektrod v primerjavi s premerom celic v suspenziji med elektrodami taka, da generira nehomogeno polje.An autoclavable electrofusion chamber according to claim 14, characterized in that the depth of the electrodes, compared to the diameter of the cells in suspension between the electrodes, is such as to generate a non-homogeneous field. 16. Avtoklavabilna elektrofuzijska kamrica, po zahtevku 14, označena s tem, da je globina elektrod < polmeru celic.An autoclavable electrofusion chamber according to claim 14, characterized in that the electrode depth is <cell radius. isis 17. Avtoklavabilna elektrofuzijska kamrica, po zahtevku 14, označena s tem, da je globina elektrod največ 0,5 do 4,5 pm.Autoclavable electrofusion chamber according to claim 14, characterized in that the depth of the electrodes is not more than 0.5 to 4.5 pm. 18. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 17,18. Autoclavable electrofusion chamber according to claims 6 to 17, 20 označena s tem, da ima spodnji del (2) asimetrično na strani, ki pokriva mesto kontaktov na stekleni plošči z elektrodami, vzmetne električne kontakte, ki se vzpostavijo ob sestavljanju elektrofuzijske kamrice.20, characterized in that the lower part (2) has asymmetrical sides, which cover the location of the contacts on the glass panel with the electrodes, spring-loaded electrical contacts, which are established when the electrofusion chamber is assembled. 25 19. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 18, označena s tem, da ima pokrov raven, vsaj 2 mm širok rob, ki dimenzijsko ustreza obodu centralne odprtine spodnjega dela (2) in da ima ravno dno, ki nalega na suspenzijo celic, skozi katerega segajo luknjice (kapilare), skozi (v)Autoclavable electrofusion chamber according to claims 6 to 18, characterized in that the lid has a straight, at least 2 mm wide edge, which dimensionally corresponds to the circumference of the central opening of the lower part (2) and has a flat bottom that rests on the suspension of cells through which holes (capillaries) pass through (in) 5 katere je mogoče iztisniti zračne mehurčke, in da ima držalo.5 which can be blown out of the air and has a holder. 20. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 19, označena s tem, da je njene dele zelo enostavno sestaviti v funkcionalno elektrofuzijsko io kamrico in da je elektrofuzijsko kamrico zelo enostavno razstaviti v sestavne dele elektrofuzijske kamrice.An autoclavable electrofusion chamber according to claims 6 to 19, characterized in that its parts are very easy to assemble into a functional electrofusion chamber and that the electrofusion chamber is very easy to disassemble into the components of the electrofusion chamber. 21. Avtoklavabilna elektrofuzijska kamrica, po zahtevku od 6 do 20, označena s tem,21. Autoclavable electrofusion chamber according to claim 6 to 20, characterized in that 15 da jo je mogoče namestiti v okvir mikroskopske mizice.15 that it can be mounted in the frame of a microscopic table. 22. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 14 do 18, označena s tem, da so elektrode nameščene pod kotom, da z njimi ustvarimo gradient 20 električnega polja na različnih področjih površine steklene plošče.An autoclavable electrofusion chamber according to claims 14 to 18, characterized in that the electrodes are angled to create a gradient of 20 electric fields in different areas of the glass plate surface. 23. Avtoklavabilna elektrofuzijska kamrica, po zahtevkih od 6 do 22, označena s tem, da omogoča analizo optimalnih pogojev fuzije tako, da se analizira deleže fuzijskih celic v različnih regijah ravnine, ki ima elektrode nanesene na stekleni površini.Autoclavable electrofusion chamber according to claims 6 to 22, characterized in that it allows the optimal fusion conditions to be analyzed by analyzing the proportions of the fusion cells in different regions of the plane having the electrodes deposited on the glass surface.
SI200300322A 2003-12-30 2003-12-30 Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber SI21661A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200300322A SI21661A (en) 2003-12-30 2003-12-30 Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber
PCT/SI2004/000048 WO2005063961A2 (en) 2003-12-30 2004-12-28 Electrofusion chamber and method for the quantification of hybridoma yields

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200300322A SI21661A (en) 2003-12-30 2003-12-30 Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber

Publications (1)

Publication Number Publication Date
SI21661A true SI21661A (en) 2005-06-30

Family

ID=34738131

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200300322A SI21661A (en) 2003-12-30 2003-12-30 Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber

Country Status (2)

Country Link
SI (1) SI21661A (en)
WO (1) WO2005063961A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2069782B1 (en) * 2006-09-05 2010-12-29 Celica, Biomedical Center, d.o.o. Method for determining the quantity and quality of hybridomas
JP6165574B2 (en) * 2013-09-26 2017-07-19 シスメックス株式会社 Filter member and cell acquisition method
CN114488505A (en) * 2020-11-12 2022-05-13 邑流微测股份有限公司 microscope observation stage
CN112903952B (en) * 2021-01-21 2022-05-27 北京航空航天大学 Metal plate structure damage evaluation system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3501865A1 (en) * 1985-01-22 1986-07-24 GCA Corp., Bedford, Mass. Process and apparatus for the electrofusion of cells
FR2628531B1 (en) * 1988-03-08 1992-10-02 Chemunex Sa METHOD FOR SEARCHING, SPECIFIC DETECTION AND NUMBERING OF MICRO-ORGANISMS, INSTALLATION FOR IMPLEMENTING SAID METHOD
US20030141294A1 (en) * 2002-01-28 2003-07-31 Jaroszeski Mark J. Electrofusion chamber

Also Published As

Publication number Publication date
WO2005063961A2 (en) 2005-07-14
WO2005063961A3 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
ES2624685T3 (en) Rapid microbial detection and antimicrobial susceptibility test
US11327004B2 (en) Live-cell computed tomography
Cheung et al. Intracellular protein and nucleic acid measured in eight cell types using deep‐ultraviolet mass mapping
JP5328663B2 (en) Apparatus and method for analyzing biological samples
JP2019141081A (en) System and method for sorting sperm
WO2021033750A1 (en) Cell analyzer system and cell analysis method
CN112424329B (en) Systems and methods for cell imaging, analysis and measurement
HU195245B (en) Process and equipment for selection of specified biological cells from cell-set and for inspection of minimum one characteristics of the specified cells
US9933415B2 (en) Internal focus reference beads for imaging cytometry
KR20120089769A (en) System and method for time-related microscopy of biological organisms
CN105181649B (en) A kind of Novel free marking mode identifies cell instrument method
JP6639906B2 (en) Biological sample detection method
WO2009032827A2 (en) Electroporative flow cytometry
JP5289064B2 (en) Apparatus and method for imaging and modification of biological samples
SI21661A (en) Procedure for evaluation of fraction of hybrid cells and cell products by means of confocal microscopy and autoclavable electrofusion chamber
JP2023541824A (en) Automated analysis of cell cultures
EP3646010A1 (en) Quantitative liquid biopsy diagnostic system and methods
CN103992949B (en) The detection device of a kind of nano material induced DNA damage and method for quick
Vindiš et al. Gene electrotransfer into mammalian cells using commercial cell culture inserts with porous substrate
JP7153365B2 (en) Isolated cell specimen, method for producing isolated cell specimen, and method for detecting target cells
CN110476058B (en) Method for classifying and counting cells in sample, bioassay kit, and microwell array plate
RU2558229C2 (en) Set and method for preparing multi-layered agarose blocks on surface of micro-slides for microscoly
US20240053269A1 (en) Method and device for determining the state of cells in reactors
Vindiš et al. Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics 2022, 14, 1959
WO2022015250A1 (en) Biomolecule locating device and the relevant method thereof

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20050131

KO00 Lapse of patent

Effective date: 20070821