SG10201803000QA - High density bond coat for ceramic or ceramic matrix composites - Google Patents
High density bond coat for ceramic or ceramic matrix compositesInfo
- Publication number
- SG10201803000QA SG10201803000QA SG10201803000QA SG10201803000QA SG10201803000QA SG 10201803000Q A SG10201803000Q A SG 10201803000QA SG 10201803000Q A SG10201803000Q A SG 10201803000QA SG 10201803000Q A SG10201803000Q A SG 10201803000QA SG 10201803000Q A SG10201803000Q A SG 10201803000QA
- Authority
- SG
- Singapore
- Prior art keywords
- ceramic
- bond coat
- high density
- coating material
- matrix composites
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title abstract 3
- 239000011153 ceramic matrix composite Substances 0.000 title abstract 3
- 239000011248 coating agent Substances 0.000 abstract 4
- 238000000576 coating method Methods 0.000 abstract 4
- 239000000463 material Substances 0.000 abstract 4
- 238000000034 method Methods 0.000 abstract 2
- 239000000758 substrate Substances 0.000 abstract 2
- 229910000676 Si alloy Inorganic materials 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 238000000151 deposition Methods 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000007921 spray Substances 0.000 abstract 1
- 239000000725 suspension Substances 0.000 abstract 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5093—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
- C04B41/5096—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/005—Selecting particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
- F05D2230/311—Layer deposition by torch or flame spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
- F05D2230/312—Layer deposition by plasma spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/11—Shroud seal segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/22—Non-oxide ceramics
- F05D2300/222—Silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/514—Porosity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
- F05D2300/6033—Ceramic matrix composites [CMC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
HIGH DENSITY BOND COAT FOR CERAMIC OR CERAMIC MATRIX COMPOSITES A method that includes introducing a suspension comprising a coating material and a carrier into a heated plume of a thermal spray device. The coating material may include silicon or a silicon alloy. The method further includes directing the coating material using the heated plume toward a substrate that includes a ceramic or a ceramic matrix composite and depositing the coating material to form a bond coat directly on the substrate such that the bond coat defines a porosity of less than about percent by volume. FIG. 2 30
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762524825P | 2017-06-26 | 2017-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
SG10201803000QA true SG10201803000QA (en) | 2019-01-30 |
Family
ID=62620644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG10201803000QA SG10201803000QA (en) | 2017-06-26 | 2018-04-11 | High density bond coat for ceramic or ceramic matrix composites |
Country Status (4)
Country | Link |
---|---|
US (1) | US10858725B2 (en) |
EP (1) | EP3421636A1 (en) |
CA (1) | CA3002272A1 (en) |
SG (1) | SG10201803000QA (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11702728B2 (en) | 2019-05-28 | 2023-07-18 | Rolls-Royce Corporation | Post deposition heat treatment of coating on ceramic or ceramic matrix composite substrate |
US11466589B2 (en) | 2019-12-20 | 2022-10-11 | Raytheon Technologies Corporation | Environmental barrier coating with porous bond coat layer |
US11686208B2 (en) | 2020-02-06 | 2023-06-27 | Rolls-Royce Corporation | Abrasive coating for high-temperature mechanical systems |
US11512379B2 (en) * | 2020-07-01 | 2022-11-29 | Rolls-Royce Corporation | Post deposition heat treatment of bond coat and additional layers on ceramic or CMC substrate |
FR3113261B1 (en) * | 2020-08-06 | 2023-01-06 | Safran | SURFACE PREPARATION PROCESS COMPATIBLE WITH THE Y/Y' COATING AND THE SPS DEPOSIT PROCESS |
JP7674100B2 (en) * | 2020-12-28 | 2025-05-09 | 三菱重工航空エンジン株式会社 | Thermal barrier coating application method and heat-resistant member |
US20240109813A1 (en) * | 2021-02-05 | 2024-04-04 | Oerlikon Metco (Us) Inc. | Oxidation barrier materials and process for ceramic matrix composites |
US11555452B1 (en) * | 2021-07-16 | 2023-01-17 | Raytheon Technologies Corporation | Ceramic component having silicon layer and barrier layer |
CN114276169A (en) * | 2021-12-30 | 2022-04-05 | 广东省科学院新材料研究所 | Self-healing high-density environmental barrier coating and preparation method and application thereof |
US20230250032A1 (en) * | 2022-02-07 | 2023-08-10 | General Electric Company | Bond coat including metal oxides and oxygen getters |
EP4253593A1 (en) * | 2022-04-01 | 2023-10-04 | Raytheon Technologies Corporation | Suspension plasma spray columnar growth control methods and articles manufactured therefrom |
US12281575B2 (en) * | 2023-01-20 | 2025-04-22 | Rtx Corporation | Ceramic component having silicon layer and barrier layer |
US12196107B2 (en) | 2023-02-22 | 2025-01-14 | General Electric Company | Turbine engine with a blade having woven core and toughened region |
CN119910128B (en) * | 2025-04-03 | 2025-06-10 | 成都航宇超合金技术有限公司 | Integrated casting method for hollow turbine blade with air film holes |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060222777A1 (en) * | 2005-04-05 | 2006-10-05 | General Electric Company | Method for applying a plasma sprayed coating using liquid injection |
US20080072790A1 (en) | 2006-09-22 | 2008-03-27 | Inframat Corporation | Methods of making finely structured thermally sprayed coatings |
US8658255B2 (en) * | 2008-12-19 | 2014-02-25 | General Electric Company | Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability |
FR2959244B1 (en) | 2010-04-23 | 2012-06-29 | Commissariat Energie Atomique | PROCESS FOR PREPARING A MULTILAYER COATING ON A SURFACE OF A SUBSTRATE BY THERMAL PROJECTION |
WO2012129431A1 (en) * | 2011-03-23 | 2012-09-27 | Rolls-Royce Corporation | Bond layers for ceramic or ceramic matrix composite substrates |
US20150044444A1 (en) | 2012-04-23 | 2015-02-12 | The University Of Connecticut | Method of forming thermal barrier coating, thermal barrier coating formed thereby, and article comprising same |
US20140193664A1 (en) | 2013-01-07 | 2014-07-10 | General Electric Company | Recoating process and recoated turbine blade |
US20140193760A1 (en) | 2013-01-09 | 2014-07-10 | General Electric Company | Coated article, process of coating an article, and method of using a coated article |
WO2014160245A1 (en) * | 2013-03-13 | 2014-10-02 | Rolls-Royce Corporation | Directed vapor deposition of environmental barrier coatings |
US9890089B2 (en) | 2014-03-11 | 2018-02-13 | General Electric Company | Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating |
US9669365B2 (en) | 2014-06-11 | 2017-06-06 | United Technologies Corporation | Suspension plasma spray apparatus and use methods |
US20160068941A1 (en) | 2014-09-04 | 2016-03-10 | Hifunda Llc | Method for preparing coatings or powders by mixed-mode plasma spraying |
US20160376691A1 (en) * | 2015-05-27 | 2016-12-29 | University Of Virginia Patent Foundation | Multilayered thermal and environmental barrier coating (ebc) for high temperature applications and method thereof |
US10745793B2 (en) | 2015-06-04 | 2020-08-18 | Raytheon Technologies Corporation | Ceramic coating deposition |
FR3057580B1 (en) * | 2016-10-18 | 2023-12-29 | Commissariat Energie Atomique | METHOD FOR COATING A SURFACE OF A SOLID SUBSTRATE WITH A LAYER COMPRISING A CERAMIC COMPOUND, AND COATED SUBSTRATE THUS OBTAINED |
-
2018
- 2018-04-11 SG SG10201803000QA patent/SG10201803000QA/en unknown
- 2018-04-20 CA CA3002272A patent/CA3002272A1/en active Pending
- 2018-05-30 EP EP18175070.4A patent/EP3421636A1/en active Pending
- 2018-06-25 US US16/017,448 patent/US10858725B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CA3002272A1 (en) | 2018-12-26 |
US10858725B2 (en) | 2020-12-08 |
EP3421636A1 (en) | 2019-01-02 |
US20180371600A1 (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG10201803000QA (en) | High density bond coat for ceramic or ceramic matrix composites | |
MX2019001870A (en) | Thermal spraying of ceramic materials. | |
EP3282038A3 (en) | High temperature oxidation protection for composites | |
EP3418420A3 (en) | Impurity barrier layer for ceramic matrix composite substrate | |
BR112018015021A2 (en) | methods for producing abrasive and glass bonded abrasive articles and abrasive article precursors | |
TW200738907A (en) | Thermal barrier coatings and processes for applying same | |
MX2018004464A (en) | Particle and aerosol-forming system comprising such particles. | |
EP2617869A3 (en) | Process of fabricating a thermal barrier coating and an article having a cold sprayed thermal barrier coating | |
WO2007095376A3 (en) | Method and apparatus for coating particulates utilizing physical vapor deposition | |
SG153768A1 (en) | Porous protective coating for turbine engine components | |
GB0906842D0 (en) | An article and a method of making an article | |
JP2017125837A5 (en) | ||
WO2015191280A3 (en) | Powder coatings | |
ATE541955T1 (en) | RAW MATERIAL COMPOSITION FOR THERMAL SPRAYING | |
GB201212407D0 (en) | Composition for forming a seed layer | |
MX2016011894A (en) | Process for printing and securing three-dimensional pattern on non-fibrous substrates and article comprising non-fibrous surface having three-dimensional pattern thereon. | |
SG10201810134RA (en) | Thermal barrier coatings and processes | |
MX2020002257A (en) | Aerosol-generating article with improved outermost wrapper. | |
SG11201907483RA (en) | Element for cultivating at least one plant and method for producing the element | |
EP2612954A3 (en) | Applying bond coat using cold spraying processes and articles thereof | |
MX2020000161A (en) | Powder coating method and coated article. | |
EP3724366A4 (en) | Mechanically alloyed metallic thermal spray coating material and thermal spray coating method utilizing the same | |
WO2014144862A3 (en) | Synthesis of silicon containing materials using liquid hydrosilane compositions through direct injection | |
MY189751A (en) | Preparation method for composite porous structure and composite porous structure made thereby | |
SG162785A1 (en) | Microwave process for forming a coating |