SE524343C2 - Rotary screw compressor, driven by electric motor with rotary speed which increases when torque is reduced - Google Patents
Rotary screw compressor, driven by electric motor with rotary speed which increases when torque is reducedInfo
- Publication number
- SE524343C2 SE524343C2 SE0302739A SE0302739A SE524343C2 SE 524343 C2 SE524343 C2 SE 524343C2 SE 0302739 A SE0302739 A SE 0302739A SE 0302739 A SE0302739 A SE 0302739A SE 524343 C2 SE524343 C2 SE 524343C2
- Authority
- SE
- Sweden
- Prior art keywords
- compressor
- pressure
- motor
- torque
- electric motor
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/08—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Direct Current Motors (AREA)
Abstract
Description
25 30 524 345 »u 1- 2 Detta syfte ernås enligt uppfinningen med en kompressor, som drivs av en motor vars varvtal är starkt momenttalsberoende inom ett avsett arbetsintervall. Föredragna ut- föringsfonner framgår av de beroende kraven. 25 30 524 345 »u 1- 2 This object is achieved according to the invention with a compressor, which is driven by a motor whose speed is strongly torque-dependent within a designated working interval. Preferred embodiments are set out in the dependent claims.
Föreliggande uppfinning beskrivs närmare med hjälp av ritningen, på vilken Figur l visar i längdsnitt en känd skruvkompressor; Figur 2 är ett snitt längs linjen Il-ll i fig. 1; Figur 3 visar schematiskt ett system, i vilken kompressorn ingår; Figur 4 visar schematiskt en vanligen använd kompressormotors moment som funktion av dess varvtal; och Figur 5 visar motsvarande diagram för föreliggande kompressorrnotor.The present invention is described in more detail with the aid of the drawing, in which Figure 1 shows in longitudinal section a known screw compressor; Figure 2 is a section along the line II-III in fi g. 1; Figure 3 schematically shows a system in which the compressor is included; Figure 4 schematically shows the torque of a commonly used compressor motor as a function of its speed; and Figure 5 shows the corresponding diagram for the present compressor notes.
En kortfattad beskrivning av uppbyggnad och arbetsprincip hos en skruvkom- pressor ges med hänvisning till fig. 1 och 2.A brief description of the structure and working principle of a screw compressor is given with reference to fi g. 1 and 2.
Ett par i varandra ingripande skruvrotorer 101, 102 är roterbart anordnade i ett arbetsrum begränsat av tvâ ändväggar 103, 104 och en mantelvägg 105, som sträcker sig mellan dessa. Mantelväggen 105 har en form, som i huvudsak motsvarar den hos två varandra skärande cylindrar, såsom framgår av fig. 2. Varje rotor 101, 102 har ett flertal lober 106 resp. 107 och mellanliggande spår lll resp. 112, vilka sträcker sig i en helix- linje längs rotom. En rotor 101 är av hanrotortyp med större delen av varje lob 106 belä- gen utanför delningscirkeln och den andra rotorn 102 är av honrotortyp med större delen av varje lob 107 belägen innanför delningscirkeln. Honrotom 102 har vanligen fler lober än hanrotom 101. En vanlig kombination är att hanrotom 101 har 4 lober och honrotom 102 har 6 lober.A pair of interlocking screw rotors 101, 102 are rotatably arranged in a working space bounded by two end walls 103, 104 and a jacket wall 105 extending therebetween. The jacket wall 105 has a shape which substantially corresponds to that of two intersecting cylinders, as shown in fi g. 2. Each rotor 101, 102 has a number of lobes 106 resp. 107 and intermediate tracks lll resp. 112, which extend in a helix line along the rotor. One rotor 101 is of the male rotor type with most of each lobe 106 located outside the pitch circle and the other rotor 102 is of the female rotor type with most of each lobe 107 located inside the pitch circle. Female rotor 102 usually has more lobes than male rotor 101. A common combination is that male rotor 101 has 4 lobes and female rotor 102 has 6 lobes.
Den för komprimering avsedda gasen, vanligen luft, tillförs kompressorns arbets- rum genom en inloppsport 108 och komprimeras sedan i V-formiga arbetskamrat, som bildas mellan rotorerna och arbetsrummets väggar. Varje arbetskammare förflyttar sig mot höger i fig. 1 då rotorema 101, 102 roterar. Volymen hos en arbetskammare minskar då kontinuerligt under den senare delen av sin cykel, efter det att kommunikation med inloppsporten 108 har skurits av. Därigenom komprimeras gasen och den komprimerade gasen lämnar kompressorn genom en utloppsport 109. Förhållandet mellan utloppstryck- et och inloppstrycket är bestämt av det inbyggda volymförhållandet mellan en arbets- kammares volym omedelbart efter det att dess kommunikation med inloppsporten 108 har skurits av och dess volym när den börjar kommunicera med utloppsporten 109.The gas to be compressed, usually air, is supplied to the working space of the compressor through an inlet port 108 and is then compressed into V-shaped co-workers, which are formed between the rotors and the walls of the working space. Each chamber moves to the right in fi g. 1 as the rotors 101, 102 rotate. The volume of a working chamber then decreases continuously during the latter part of its cycle, after communication with the inlet port 108 has been cut off. Thereby, the gas is compressed and the compressed gas leaves the compressor through an outlet port 109. The relationship between the outlet pressure and the inlet pressure is determined by the built-in volume ratio of a working chamber volume immediately after its communication with the inlet port 108 has been cut off and its volume starts communicating with the outlet port 109.
Figur 3 visar en kompressor K, som företrädesvis är en skruvkompressor och som via en axel 1 drives av en motor M. Kompressom har en inloppsport 6 i vilken en 10 l5 20 25 30 524 343 3 inloppsledning 2 mynnar. Ledningen 2 är försedd med en backventil 3, som tillåter till- försel av luft till kompressorn men förhindrar strömning i motsatt riktning. I sin andra ände har kompressorn en utloppsport 7, som via en ledning 4 är förbunden med en tryck- tank T. Ett eller flera verktyg V, som driven av komprimerad luft matas med tryckluft från tanken T via en ledning 5. Vidare finns i tanken en tryckgivare 9, som via en signal- ledning 10 är förbunden med ett styrorgan 8, som reglerar motorns igångsättning och avstängning.Figure 3 shows a compressor K, which is preferably a screw compressor and which is driven via a shaft 1 by a motor M. The compressor has an inlet port 6 in which an inlet line 2 opens. The line 2 is provided with a non-return valve 3, which allows the supply of air to the compressor but prevents flow in the opposite direction. At its other end, the compressor has an outlet port 7, which is connected via a line 4 to a pressure tank T. One or more tools V, which are driven by compressed air, are supplied with compressed air from the tank T via a line 5. Further in the tank a pressure sensor 9, which is connected via a signal line 10 to a control means 8, which regulates the start-up and shut-off of the motor.
Trycket i tanken T skall variera mellan ett högsta tryck Pl och ett lägsta tryck P2.The pressure in the tank T must vary between a maximum pressure P1 and a minimum pressure P2.
Motom M driver kompressorn K till trycket i tanken har nått trycket P 1, varefter motorn M stängs av. När trycket i tanken T har sjunkit till P2, börjar motorn M att åter driva kompressorn och tillföra komprimerad luft till tanken T. Backventilen 3 hindrar kom- primerad luft från tanken T att strömma tillbaka genom kompressom K och inloppsled- ningen 2.The motor M drives the compressor K until the pressure in the tank has reached the pressure P 1, after which the motor M is switched off. When the pressure in the tank T has dropped to P2, the motor M begins to drive the compressor again and supply compressed air to the tank T. The non-return valve 3 prevents compressed air from the tank T from flowing back through the compressor K and the inlet line 2.
Figur 4 visar schematiskt en momentkurva som fiinktion av varvtalet för en asynkronmotor. Axlarna är ej graderade. För ett moment MZA har motom ett varvtal N4.Figure 4 schematically shows a torque curve as a function of the speed of an asynchronous motor. The shoulders are not graduated. For a torque MZA, the motor has a speed of N4.
När motoms moment ökar till M1 A sjunker varvtalet till Ng. I ett arbetsområde för denna asynkronmotor är sambandet i åtminstone i huvudsak linjärt. Asynkronmotom har såle- des den egenskapen att en relativt stor momentökning AMk = (M1 A-MgA) leder till en re- lativt ringa minskning av motorns varvtal.When the engine torque increases to M1 A, the speed drops to Ng. In a working range of this asynchronous motor, the relationship is at least substantially linear. The asynchronous motor thus has the property that a relatively large torque increase AMk = (M1 A-MgA) leads to a relatively small decrease in the motor speed.
Denna egenskap hos asynkronmotom leder till att när trycket i tanken, se figur 3, har sjunkit till P2 startas motorn, varvid kompressorn börjar komprimera luft. På grund av den ringa varvtalsökning som erfordras för att höja motorns moment från MM till M1 A kommer kompressorn i detta momentområdet att arbeta med nära maximal kapaci- tet. Detta ger en snabb tryckökning i tanken T. En kompressor driven med en asynkron- motor leder således till kort drifttid för kompressom för att åstadkomma det önskade högsta trycket i tanken T. Under denna korta tid förbrukas en förhållandevis ringa mängd luft, som sänker trycket i tanken T. Resultatet blir en frekvent igångsättning av motorn för att hålla trycket i tanken T inom det önskade tryckintervallet. Dessa moment med frekvent igångsättning och avstängning av motom förkortar kraftigt dess livslängd.This property of the asynchronous motor leads to the fact that when the pressure in the tank, see Figure 3, has dropped to P2, the motor is started, whereby the compressor begins to compress air. Due to the small increase in speed required to increase the engine torque from MM to M1 A, the compressor in this torque range will operate at close to maximum capacity. This gives a rapid pressure increase in the tank T. A compressor driven by an asynchronous motor thus leads to a short operating time for the compressor to achieve the desired maximum pressure in the tank T. During this short time a relatively small amount of air is consumed, which lowers the pressure in tank T. The result is a frequent start-up of the engine to keep the pressure in tank T within the desired pressure range. These steps with frequent starting and shutting down of the motor greatly shorten its service life.
Denna kortare livslängd kan bero på överhettning av motorns lidningar.This shorter service life may be due to overheating of the engine wiring.
Figur 5 visar liksom figur 4 schematiskt en momentkurva som funktion av varv- talet. Den i denna figur visade momentkurvan avser en kommutatormotor. Även figur 5 saknar graderade axlar. Momenten M1 K och MgK i figur 5 motsvarar momenten M1 A och MgA i figur 4. För ett moment MgK har kommutatormotorn ett varvtal N2. När kommuta- 10 20 25 524 345 ..- .- 4 torrnotorns moment har ökat till Mm har varvtalet sjunkit till Nl. Även för kommuta- torrnotorn är detta samband i arbetsområdet åtminstone i huvudsak linjärt. För denna motor gäller att en relativt stor momentökning AMk = (MlK-MZK) leder till en relativt stor minskning av motorns varvtal.Figure 5, like Figure 4, schematically shows a torque curve as a function of the speed. The torque curve shown in this figure refers to a commutator motor. Even 5 gur 5 lacks graded axes. Torques M1 K and MgK in Figure 5 correspond to steps M1 A and MgA in Figure 4. For a torque MgK, the commutator motor has a speed N2. When the torque of the commutator has increased to Mm, the speed has dropped to Nl. Even for the commutator dryer, this connection in the work area is at least substantially linear. For this engine, a relatively large torque increase AMk = (MlK-MZK) leads to a relatively large decrease in the engine speed.
Denna egenskap hos kommutatorrnotom leder till att när trycket i tanken, se figur 3, har sjunkit till Pzg startas motom, varvid kompressorn börjar komprimera luft. På grund av den stora varvtalsökning som erfordras for att höja motorns moment från MgK till Mm måste kompressorn arbeta betydligt längre tid för att uppnå maximalt tryck än vad den skulle erfordra med en asynkronmotor. Detta leder till att det går åt betydligt längre tid att med en kommutatormotordriven kompressor att uppnå trycket Pl i tanken.This property of the commutator motor leads to the fact that when the pressure in the tank, see Figure 3, has dropped to Pzg, the motor is started, whereby the compressor begins to compress air. Due to the large increase in speed required to increase the torque of the motor from MgK to Mm, the compressor must work significantly longer to achieve maximum pressure than it would require with an asynchronous motor. This means that it takes much longer with a commutator motor-driven compressor to achieve the pressure P1 in the tank.
Under denna längre tid, som kompressorn arbetar, förbrukas betydligt mera luft än vad som är fallet med en asynkronmotordriven kompressor, som betydligt snabbare uppnår maximalt tryck i behållaren. Således har man med en kommutatorrnotor betydligt färre starter än med en asynkronmotor, som driver samma kompressor för att hålla tanken T trycksatt.During this longer time that the compressor is operating, significantly more air is consumed than is the case with an asynchronous motor-driven compressor, which achieves maximum pressure in the container much faster. Thus, a commutator motor has significantly fewer starts than an asynchronous motor, which drives the same compressor to keep the tank T pressurized.
Enligt en fördragen utföringsform använder man sig av en kompressor, som har ett relativt lågt inre volymförhållande. Med inre volymtbrhållande menas förhållandet mellan minimal och maximal instängd gängvolym in den använda skruvrotorkompres- sorn. Detta inre volymförhållande bör vara sådant, kompressoms K tryck är lägre än P2 + 0,85 * (P1 - P2) när gängvolymen av den arbetskammare, som börjar kommunicera med tanken T, har sin minimala volym. Detta innebär, att kompressoms utloppstryck i angivna arbetskammare är högst lika med tankens lägsta tryck plus 85 % av skillnaden mellan tankens högsta och lägsta tryck. Det är föredraget, att kompressom är optimerad for ett inre volymtörhållande, vid vilket kompressoms tryck i öppningsögonblicket är lika med det lägsta arbetstrycket P2 i tryckbehållaren Det är speciellt föredraget, att kompressom är optimerad för ett inre volymförhållande, vid vilket kompressoms tryck i öppningsögonblicket är lägre än det lägsta arbetstrycket P2 i tryckbehållaren.According to a preferred embodiment, a compressor is used which has a relatively low internal volume ratio. By internal volume maintenance is meant the ratio between minimum and maximum trapped thread volume in the screw rotor compressor used. This internal volume ratio should be such that the pressure of the compressor K is lower than P2 + 0.85 * (P1 - P2) when the thread volume of the working chamber, which begins to communicate with the tank T, has its minimum volume. This means that the outlet pressure of the compressor in the specified working chambers is at most equal to the lowest pressure of the tank plus 85% of the difference between the highest and lowest pressure of the tank. It is preferred that the compressor is optimized for an internal volume ratio, at which the pressure of the compressor at the moment of opening is equal to the lowest working pressure P2 in the pressure vessel. It is especially preferred that the compressor is optimized for an internal volume ratio, at than the lowest working pressure P2 in the pressure vessel.
Claims (6)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0302739A SE524343C2 (en) | 2003-10-17 | 2003-10-17 | Rotary screw compressor, driven by electric motor with rotary speed which increases when torque is reduced |
KR1020067007565A KR20060097018A (en) | 2003-10-17 | 2004-09-30 | compressor |
JP2006535298A JP2007508494A (en) | 2003-10-17 | 2004-09-30 | Screw compressor |
CNB2004800299889A CN100458164C (en) | 2003-10-17 | 2004-09-30 | Screw compressor |
PCT/SE2004/001390 WO2005038257A1 (en) | 2003-10-17 | 2004-09-30 | Compressor |
US10/575,542 US20070207045A1 (en) | 2003-10-17 | 2004-09-30 | Compressor |
EP04775488A EP1687539A1 (en) | 2003-10-17 | 2004-09-30 | Compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0302739A SE524343C2 (en) | 2003-10-17 | 2003-10-17 | Rotary screw compressor, driven by electric motor with rotary speed which increases when torque is reduced |
Publications (3)
Publication Number | Publication Date |
---|---|
SE0302739D0 SE0302739D0 (en) | 2003-10-17 |
SE0302739L SE0302739L (en) | 2004-07-27 |
SE524343C2 true SE524343C2 (en) | 2004-07-27 |
Family
ID=29398751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE0302739A SE524343C2 (en) | 2003-10-17 | 2003-10-17 | Rotary screw compressor, driven by electric motor with rotary speed which increases when torque is reduced |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070207045A1 (en) |
EP (1) | EP1687539A1 (en) |
JP (1) | JP2007508494A (en) |
KR (1) | KR20060097018A (en) |
CN (1) | CN100458164C (en) |
SE (1) | SE524343C2 (en) |
WO (1) | WO2005038257A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11015602B2 (en) | 2012-02-28 | 2021-05-25 | Atlas Copco Airpower, Naamloze Vennootschap | Screw compressor |
BE1020311A3 (en) | 2012-02-28 | 2013-07-02 | Atlas Copco Airpower Nv | SCREW COMPRESSOR. |
BE1020312A3 (en) * | 2012-02-28 | 2013-07-02 | Atlas Copco Airpower Nv | COMPRESSOR DEVICE, AS WELL AS USE OF SUCH SET-UP. |
EP3118458B1 (en) * | 2015-07-15 | 2017-08-30 | ABB Technology Oy | Method and apparatus in connection with a screw compressor |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855515A (en) * | 1972-03-06 | 1974-12-17 | Waters Associates Inc | Motor control circuit |
US3860363A (en) * | 1973-05-10 | 1975-01-14 | Chicago Pneumatic Tool Co | Rotary compressor having improved control system |
US4052135A (en) * | 1976-05-11 | 1977-10-04 | Gardner-Denver Company | Control system for helical screw compressor |
US4068980A (en) * | 1976-10-01 | 1978-01-17 | Gardner-Denver Company | Compressor startup control |
CH660100A5 (en) * | 1981-12-18 | 1987-03-13 | Cerac Inst Sa | DEVICE FOR DRIVING A COMPRESSOR. |
US4686439A (en) * | 1985-09-10 | 1987-08-11 | A. T. Hunn Company | Multiple speed pump electronic control system |
JPS6338693A (en) * | 1986-07-31 | 1988-02-19 | Nippon Air Brake Co Ltd | Pressure regulating method for rolling stock |
CN1011728B (en) * | 1986-12-15 | 1991-02-20 | 瑞典转子机械公司 | Screw rotor compressor and refrigeration plant |
US5602957A (en) * | 1993-06-07 | 1997-02-11 | General Electric Company | Permanent magnet direct current motor |
CN2155519Y (en) * | 1993-06-30 | 1994-02-09 | 李敬茂 | Energy-saving air conditioner |
US5580221A (en) * | 1994-10-05 | 1996-12-03 | Franklin Electric Co., Inc. | Motor drive circuit for pressure control of a pumping system |
FI104205B (en) * | 1994-11-24 | 1999-11-30 | Sarlin Hydor Oy | Method and apparatus for controlling a fluid compression system |
DE9419651U1 (en) * | 1994-12-08 | 1995-02-02 | Hatlapa Uetersener Maschinenfabrik GmbH & Co, 25436 Uetersen | Compressor system |
US5979168A (en) * | 1997-07-15 | 1999-11-09 | American Standard Inc. | Single-source gas actuation for screw compressor slide valve assembly |
US6146101A (en) * | 1998-05-22 | 2000-11-14 | Chang; Ming-Yi | Automatic control device for an air compressor |
JP3837278B2 (en) * | 2000-08-10 | 2006-10-25 | 株式会社神戸製鋼所 | Compressor operation method |
GB2376505B (en) * | 2001-06-11 | 2003-12-17 | Compair Uk Ltd | Improvements in screw compressors |
JP4069450B2 (en) * | 2003-06-24 | 2008-04-02 | 日立工機株式会社 | Air compressor and control method thereof |
US7081698B1 (en) * | 2003-07-31 | 2006-07-25 | Black & Decker Inc. | Efficient motor |
-
2003
- 2003-10-17 SE SE0302739A patent/SE524343C2/en not_active IP Right Cessation
-
2004
- 2004-09-30 JP JP2006535298A patent/JP2007508494A/en not_active Withdrawn
- 2004-09-30 KR KR1020067007565A patent/KR20060097018A/en not_active Application Discontinuation
- 2004-09-30 EP EP04775488A patent/EP1687539A1/en not_active Withdrawn
- 2004-09-30 US US10/575,542 patent/US20070207045A1/en not_active Abandoned
- 2004-09-30 CN CNB2004800299889A patent/CN100458164C/en not_active Expired - Fee Related
- 2004-09-30 WO PCT/SE2004/001390 patent/WO2005038257A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20070207045A1 (en) | 2007-09-06 |
CN100458164C (en) | 2009-02-04 |
SE0302739L (en) | 2004-07-27 |
SE0302739D0 (en) | 2003-10-17 |
JP2007508494A (en) | 2007-04-05 |
EP1687539A1 (en) | 2006-08-09 |
WO2005038257A1 (en) | 2005-04-28 |
CN1867775A (en) | 2006-11-22 |
KR20060097018A (en) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108953141B (en) | Positive displacement machine according to the screw principle, method for operating a positive displacement machine, vehicle air conditioning system and vehicle | |
CA2677951C (en) | Compressor having a dual slide valve assembly | |
EP0785361B1 (en) | Oil pump apparatus | |
US20040247465A1 (en) | Screw type vacuum pump | |
EP1724436A1 (en) | Rotary type expansion machine | |
CN107202011A (en) | Compound compressor | |
US4704069A (en) | Method for operating dual slide valve rotary gas compressor | |
US4222716A (en) | Combined pressure matching and capacity control slide valve assembly for helical screw rotary machine | |
GB2159980A (en) | Micro-processor control of compression ratio at full load in a helical screw rotary compressor responsive to compressor drive motor current | |
US20080085207A1 (en) | Oil-flooded screw compressor with axial-thrust balancing device | |
CA2885727C (en) | Apparatus and method for enhancing compressor efficiency | |
US6276911B1 (en) | Screw compressor | |
CN1668852A (en) | Compressor with capacity control | |
EP1859163A2 (en) | Pressure sealed tapered screw pump/motor | |
WO2005100780A2 (en) | Variable capacity pump/motor | |
SE524343C2 (en) | Rotary screw compressor, driven by electric motor with rotary speed which increases when torque is reduced | |
CA2642172C (en) | Roots type gear compressor with helical lobes having feedback cavity | |
JP2010077897A (en) | Screw compressor | |
EP1906023A1 (en) | Evacuation apparatus | |
KR101141843B1 (en) | Closed heating system and method of controlling the same | |
JPH11510871A (en) | Discharge pressure control of internal gear pump | |
EP0365805A2 (en) | A device for the control of flow and a high pressure pump | |
CN102171457B (en) | Delivery unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |