[go: up one dir, main page]

SE175860C1 - - Google Patents

Info

Publication number
SE175860C1
SE175860C1 SE175860DA SE175860C1 SE 175860 C1 SE175860 C1 SE 175860C1 SE 175860D A SE175860D A SE 175860DA SE 175860 C1 SE175860 C1 SE 175860C1
Authority
SE
Sweden
Prior art keywords
bare
leading edge
shock
diffuser
plane
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE175860C1 publication Critical patent/SE175860C1/sv

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

KLASS 62 b:4/08 INT. KLASS C 10 h PATENTTID FRAN DEN 14 MA) 1959 BEVIDAT DEN 27 APRIL' 1961 PUBLICERAT DEN 27 JUNI 1961 Ans. 4643/1959 den 14/5 1959Harlin' en ritning GENERAL ELECTRIC Co., SCHENECTADY, N. Y., AMERIKAS FORENTA STATER Barplan for Overljudfartsaerodyner 13ppfinnare: W R Nial Foreliggande uppfinning hanfOr sig till bar-plan, sarskilt for aerodyner, t. ex. flygplan, avsedda att fardas med overljudfart genom ett elastiskt medium, t. ex. luft. CLASS 62 b: 4/08 INT. CLASS C 10 h PATENT PERIOD FROM 14 MAY 1959 PROVIDED 27 APRIL 1961 PUBLISHED 27 JUNE 1961 Ans. 4643/1959, 14/5 1959Harlin 'en drawing GENERAL ELECTRIC Co., SCHENECTADY, N. Y., UNITED STATES OF AMERICA Bar Plan for Soundtrack Aerodynamics 13inventor: W R Nial The present invention relates to bar planes, especially for aerodynamics, e.g. airplanes, intended to travel at supersonic speeds through an elastic medium, e.g. air.

Syftet med uppfinningen liar vent att astadkomma konstruktioner, som ge stone lyftkraft genom utnyttjande av vissa egenskaper hos overljud-tryckvagor, s. k. choekvagor, i det att man anvander sig av en forbattrad diffusoranordning for att stegra det elastiska fluidets tryck i en tryckkammare, t. ex. en i aerodynen befintlig brannkammare eller forbrannkammare, genom att diffusoranordningen har en pa sadant salt forbattrad profilform, att en onskad tryckstegring kan erhallas med fOrhallandevis storre verkningsgrad och under f5rhallanden, som bibehallas stabila mom ett storre variationsomrade for aerodynens driftforhallanden. The object of the invention is to provide constructions which give stone lifting force by utilizing certain properties of acoustic pressure waves, so-called choke waves, in that an improved diffuser device is used to increase the pressure of the elastic fluid in a pressure chamber, e.g. . a fire chamber or combustion chamber located in the aerodynam, in that the diffuser device has a profile shape improved in such a way that a desired pressure increase can be obtained with a relatively higher efficiency and under conditions which maintain a stable range of variation for the aerodynam operating conditions.

Uppfinningen skall i det foljande beskrivas i anslutning till hifogade ritning. PA denna visa fig. 1 och 2 schematiskt och i tvarsnitt tva corn exempel valda utforingsformer av uppfinningen i form av barplan, som lampa sig for aerodyner for overljudf art, t. ex. rammmotorplan eller andra flygplan, medan fig. 3 i perspektiv vicar ett flygplan med barplan av den i fig. 2 visade konstruktionen. The invention will be described in the following in connection with the accompanying drawing. In this, Figs. 1 and 2 show diagrammatically and in cross-section two cornices selected embodiments of the invention in the form of bare planes, which are suitable for aerodynamics for acoustic sound, e.g. frame motor aircraft or other aircraft, while Fig. 3 is a perspective view of a barefoot aircraft of the construction shown in Fig. 2.

Ett barplan innefattar som bekant i princip en aerodynamiskt utformad lyftyta, som -ãr sa utford, att den kan bringa det omgivande mediet att alstra ett upptryck, som pa bar-planet utovar en lyftkraft, genom att barplanet forflyttar sig genom det fluidumformiga mediet, varjamte barplanet kan innehalla en diffusoranordning, vars uppgift i princip fir -att onmvandla en del av den r5relseenergi, som är forenad med den hastigarelativrorelsen mellan fluidet och diffusorn, till nyttig tryckenergi. Det sistnamnda resultatet kan astadkommas genom att diffusorn är sä utformad att den nedbringar den ursprungliga hastiga fluidumstrommens hastighet (under relativrorelsen mellan fluidet och diffusoranordningen) till ett relativt Mgt varde mom ett onskat omrade, exempelvis i en tubulart sluten kammare mom diffusorn. En sadan kammare kan exempelvis utgoras ay en brannkammare eller for-brannkammare i en forbranningsapparat, som lamnar den dri-vkraft som erfordras f8r framdrivning av aerodynen genom fluidet. Otaliga typer av diffusorkonstruktioner aro forut kanda. I sin elementara och allmannast brukliga form bestar en diffusor emellertid av en rorformig kanal, som leder den elastiska fluidumstrommen och vars tvarsnittsarea varierar langs ,stromningsbanan pa sadant salt, att de darav foljande variationerna i fluidets volymsforhallanden (expansionstillstand) ge upphov till den Onskade tryckokningen, resp. motsvarande minskning av strOmningshastigheten. As is well known, a bare plane comprises in principle an aerodynamically designed lifting surface, which is so challenging that it can cause the surrounding medium to produce an impression which exerts a lifting force on the bare plane, by the bare plane moving through the fluid-shaped medium, and The bare plane may contain a diffuser device, the function of which is in principle to convert a part of the kinetic energy associated with the velocity relative motion between the fluid and the diffuser into useful pressure energy. The latter result can be achieved in that the diffuser is designed to reduce the velocity of the original rapid fluid flow (during the relative movement between the fluid and the diffuser device) to a relatively large value in a desired range, for example in a tubular closed chamber with the diffuser. Such a chamber may, for example, be formed in a fire chamber or pre-combustion chamber in a combustion apparatus which leaves the driving force required to propel the aerodyna through the fluid. Countless types of diffuser designs are known in the art. In its elemental and most common form, however, a diffuser consists of a tubular channel which conducts the elastic fluid stream and whose cross-sectional area varies along the flow path of such salt that the resulting variations in the volume ratio (expansion state) of the fluid give rise to the desired pressure increase. resp. corresponding reduction of the flow rate.

DA fluidets stromningshastighet Overskrider ljudets hastighet, storas som bekant tryckforhallandena i och omkring ett barplan, liksom aven inuti en diffusor, genom det fenomen, som benamnes tryck- eller chockvagor. Chockvagor kunna anses vara storningar, som orsakas i fluidumstrommen som foljd av ljudvagor, vilka utga fran oregelbundenheter I barplanets eller diffusorkroppens form som MIA av plotsliga forandringar i stromningsriktningen i narheten av dessa oregelbundenheter. Generellt sett, kan den chockvag, som utgar frail ett givet storstalle, betraktas som enveloppen till de ljudvagor, som utga frau ifragavarande storstalle, varfor den kan framstallas grafiskt genom en linje, som stracker sig i stromningsriktningen och med denna bildar en vinkel, vilken rar proportionell med farhallandet mellan ljudhastigheten och stromningshastigheten. Ifragavarande vinkels storlek blir ocksa beroende av den stromningsaybojande ytans deflexionsvinkel, eller 2— — anfallsvinkel, pa starstallet, dvs. av den grad, 1. vilken ytan stravar att ayboja stramningen. Denna linje kan betraktas som en. diskontinuitetslinje i tryck-hastighetstillstandet hos fluidet, endr fluidets tryck, tathet och temperatur undergâ en plotslig stegring, da fluidet passerar chockvagen, varvid denna tillstandsfarandring sker pa bekostnad av fluidumhastigheten, soma ddrigenom avtar under chockvagsgenomgangen. Foljande relation, som harletts genom betraktande av energifordelningen, kan tjana till att belysa ifragavarande Overgangsfenomen : KEI + P1 = KE2forluster (1) dvs. rarelseenergien KEi plus tryckenergien P1 fore chockvagen är lika med r5relseenergien KE2 plus tryckenergien P2 efter chockva.gen plus de forluster, som kunna vara farknippade med fluidets overgang genom chockvagsdiskontinuiteten. Dessa forluster kunna tillskrivas en ytterst kraftig retardation av fluidets partiklar mom chockvagens mycket ringa bredd (1/300 mm). Denna retardation medfar friktion mellan fluidets molekylarpartiklar, varigenom en del av den forhandenvarande rorelseenergien forvandlas till varmeforluster. Ju kraftigare chockvagen dr, dvs. ju storre tryckskillnad som erhalles mellan dess hada sidor, desto starre blir farlustfaktorn. DA flow rate of fluid Exceeding the speed of sound, as is well known, the pressure conditions in and around a bar plane, as well as inside a diffuser, are disturbed by the phenomenon known as pressure or shock waves. Shock waves can be considered as disturbances caused in the fluid stream as a result of sound waves, which emanate from irregularities in the shape of the bare plane or diffuser body as MIA of sudden changes in the direction of flow in the vicinity of these irregularities. In general, the shock wave emanating from a given large stable can be considered as the envelope of the sound waves emitting from the large stall in question, so that it can be represented graphically by a line extending in the direction of flow and thereby forming an angle which proportional to the distance between the speed of sound and the speed of flow. The magnitude of the angle in question also depends on the deflection angle, or angle of attack, of the flow-bending surface, at the star stable, ie. of the degree to which 1. the surface strains to ayboja the tightening. This line can be considered as one. discontinuity line in the pressure-velocity state of the fluid, the pressure, density and temperature of the fluid change suddenly as the fluid passes the shock wave, this state change occurring at the expense of the fluid velocity, which thereby decreases during the shock wave passage. The following relation, which has been obtained by considering the energy distribution, can serve to shed light on the Transition phenomenon in question: KEI + P1 = KE2 losses (1), ie. the kinetic energy KEi plus the pressure energy P1 before the shock wave is equal to the kinetic energy KE2 plus the pressure energy P2 after the shock wave plus the losses, which may be associated with the transition of the fluid through the shock wave discontinuity. These losses can be attributed to an extremely strong deceleration of the fluid particles in the very small width of the shock carriage (1/300 mm). This deceleration causes friction between the molecular particles of the fluid, whereby part of the existing kinetic energy is converted into heat losses. The more powerful the shock wave dr, ie. the greater the pressure difference obtained between its hot sides, the greater the risk factor.

En tryckstegring orsakad genom en chockvag skulle visserligen kunna utnyttjas for vilka som heist anskade tryckverkningar, men genom att pa detta satt alstrade tryekstegringar aro forenade med en dalig verkningsgrad pa grund av den i ekvationen (1) ovan ingaende forlustfaktorn, har det hittills varit praxis att efterstrava en sadan konstruktion och utformning av alla aerodynamiska a.pparater, sadana som barplan och diffusorer, att man helt undviker chockvagor, eller atminstone nedbringar deras intensitet till minsta majliga storlek. Det dr dock svart, far att inte saga omajligt, att astadkomma en fullstandig eliminering av chockvagor, och darfor maste det vara hogeligen onskvart att kunna konstruera barplan resp. diffusorer pa sadant salt, att forlustfaktorn nedbringas till ett minimum, samtidigt som den med chockvagsbildningen forknippade tryckstegringen tillgodogores. Det dr just detta resultat, som uppnas genom den farbattrade barplansdiffusorutformningen enligt fareliggande uppfinning. It is true that a pressure increase caused by a shock wave could be used for those who have desired pressure effects, but by the fact that pressure increases generated in this way are associated with a poor efficiency due to the loss factor mentioned in equation (1) above, it has hitherto been the practice that strive for such a construction and design of all aerodynamic devices, such as bar planes and diffusers, that one completely avoids shock waves, or at least reduces their intensity to the smallest possible size. It is, however, black, father not to say impossible, to achieve a complete elimination of shock waves, and therefore it must be highly unwise to be able to construct barefloor resp. diffusers on such a salt that the loss factor is reduced to a minimum, at the same time as the pressure increase associated with the shock wave formation is taken into account. It is precisely this result which is achieved by the improved barefloor diffuser design according to the present invention.

Det hanvisas nu till fig. 1, som schematiskt och i tvarsnittsprofil visar ett exempel pa uppfinningens tillampning i samband med ett barplan, vilket ldmpar sig far anvandning som vinge med inbyggt framdrivningsaggregat far ett overljudflygplan, t. ex. ett rammmotorplan. Den relativa hastigheten mellan barplanet och den omgivande luften kan där- vid utnyttjas till att skapa ett lufttryck pa barplanets undersida for erhallande av en barande lyftkraft, samtidigt som den kan utnyttj as till att alstra ett lampligt tryck i en tryckkammare, som ingar i framdrivningsaggregatet. Barplanet kan imiefatta vilken som heist lamplig stromlinjeformad lu.opp 1, som lampar sig far att framfaras ogenom luften under utovande av minsta mojliga luftmotstand och andra storande krafter och som uppvisar ett framkantparti 2 och en luftintagskanal 3, utformad i bdrplanskroppen 1, narmare stamt mellan de motstaende ytorna av en un derdel 4 och en overdel 5, vilka Wallas pa et. bestamt avstand fran varandra med lampligs medel, t. ex. stag O. I kanalens 3 bakre and, parti vidgar sig kanalen till en relativt vid kammare 7, i vilken det dr onskvart att alstra ett Mgt tryck genom diffusionsprocesser i den foregaende delen av kanalen. Bdrplanet kan ges godtyckligt lamplig profilform, t. ex. den i fig. 1 visade med i huvudsak plan Overoch undersida ph de bada delarna 5 resp. 4. Reference is now made to Fig. 1, which schematically and in cross-sectional profile shows an example of the application of the invention in connection with a bare plane, which lends itself to use as a wing with a built-in propulsion unit for an acoustic aircraft, e.g. a frame motor plane. The relative velocity between the bare plane and the ambient air can thereby be used to create an air pressure on the underside of the bare plane to obtain a bearing lifting force, at the same time as it can be used to generate a lamp pressure in a pressure chamber which enters the propulsion unit. The bare plane can comprise any suitable streamlined lu.opp 1, which lamps are allowed to pass through the air while exerting the least possible air resistance and other interfering forces and which have a front edge portion 2 and an air intake duct 3, formed in the floor plane body 1, closer to the stem between the opposite surfaces of a lower part 4 and an upper part 5, which are walled on. determined distance from each other by means of lamps, e.g. stay O. In the rear end of the channel 3, the channel widens to a relatively wide chamber 7, in which it is necessary to generate a Mgt pressure by diffusion processes in the preceding part of the channel. The floor plan can be given an arbitrarily suitable profile shape, e.g. the one shown in Fig. 1 with substantially planar Overoch underside ph the bath parts 5 resp. 4.

Dd flygplanet fardas genom den omgivande luften i den av pilen angivna riktningen, kommer barplanets framkantparti 2 att med sin spetsiga framkant 8 alstra en chockvag, vilgen dr antydd genom linjen 9. Styrkan av denna chockvag ar foretradesvis liten for att begransa de genom densamma orsakade forlusterna till ett minimum, och for detta andamil dr nospartiet eller framkantpartiet 2 i narheten av spetsen 8 utformat till en mycket smal och skarp kant eller egg, som medfor minsta mojliga storning ay luftstramningen i framkantens omedelbara narhet. En liten del av den onskade komprimeringen av luften erhalles med hjalp av denna chockvag 8, samtidigt som den av densamma orsakade energiforlusten begransas till minsta majliga varde. Tryckstegringen till foljd av denna komprimering kommer att jamte de tryckstegringar, som uppsta vid efterfaljande ytor, sasom kommer att beskrivas i det foljande, astadkomma okad lyftkraft pa barplanet. For att undvika, att det Midas en motsvarande chockvag pa aversidan om barplanets 1 averdel 5, vilket skulle tendera till att neutralisera de lyftkraftstegringar, som astadkommas av chockvA.gen 9, dr delens 5 oversida sa utformad, att dess nosparti har positiv anfallsvinkel, varvid namnda oversidas allmanna profit bildar undervinkel med den normala flygriktningen, sasom anges genom farlangningen 10 bakat av den frau framkanten utgaende pilen. Vilken positiv anfallsvinkel som heist ger harvid anskat resultat, sa att den har visade vinkeln av c:a 30 far betraktas endast som ett belysande exempel. Fackmannen inser, att det under dessa omstA.ndigheter kommer att ske en tillracklig luftexpansion intill och strax ovanfor planets oversida far att tryckstegring skall vara praktiskt taget utesluten mom detta omrade. When the aircraft travels through the ambient air in the direction indicated by the arrow, the leading edge portion 2 of the bare plane will with its pointed leading edge 8 produce a shock wave, which is indicated by line 9. The strength of this shock wave is preferably small to compensate for the losses caused by it. to a minimum, and for this purpose the nose portion or the leading edge portion 2 near the tip 8 is formed into a very narrow and sharp edge or edge, which results in the least possible disturbance in the air tightness in the immediate vicinity of the leading edge. A small part of the desired compression of the air is obtained with the aid of this shock wave 8, at the same time as the energy loss caused by it is limited to the smallest monthly value. The pressure increase due to this compression will, together with the pressure increases which occur at subsequent surfaces, as will be described in the following, provide increased lifting force on the bare plane. In order to avoid that there is a corresponding shock wave on the upper side of the upper part 5 of the bare plane 1, which would tend to neutralize the lift increases caused by the shock wave. 9, where the upper side of the part 5 is designed so that its nose has a positive angle of attack. the general profit of the said upper side forms a lower angle with the normal direction of flight, as indicated by the longitudinal line 10 baked by the arrow emanating from the leading edge. The positive angle of attack that heist gives has the desired result, so that it has shown the angle of about 30 fathers is considered only as an illustrative example. Those skilled in the art will appreciate that under these circumstances there will be sufficient air expansion adjacent to and just above the upper surface of the plane that pressure rise should be practically excluded in this area.

For att astadkomma ytterligare kompres- — —3 sion pa undersidan av barplanskroppen 1, innan luften strommar in i kanalen 3, kan nospartiet 2 i omradet strai efter spetsen eller framkanten 8 vara sa utformad, att det uppvisar en slat, gradvis krokt, konkav kompressionsyta 11 (belagen ungefar rnellan de hada streckade granslinjerna 12 och 13). Ytan 11 kan pa. grand av sin i stromningsriktningen gradvis krokta form anses ge upphov till ett oandligt ante sma chockvagor, som lampligen kunna benamnas »chocktillskotb eller »dementarchockvagon fordelade i stromningsriktningen och medforande en gradvis skeende tryckstegring i denna riktning. Denna serie av chocktillskott Sr antydd genom ett fatal representativa linjer 14, 15, 16. Dessa chocktillskott korsa huvudchockvagens 9 bana och avb5ja denna nedat, samtidigt som de medfora en forstarkning av densamma, vilket antytts genom en Okning av linjens 9 tjocklek I riktning fran profilens framkant eller spets 8. For att barplanet skall arbeta pa optimalt satt, bor chockvagen 9 efter sin avbeljning nedat genom chocktillskotten passera ett gott stycke framfor framkanten eller spetsen 17 av barplanets 1 underdel 4, sâ att chockvagen icke traffar nagon punkt pa denna del 4, varigenom den skulle kunna avbojas in i kanalen 3. Saledes skall chockvagen 9 passera utanfor underdelens 4 yttersta stromlinjer, da vagen kommer i rtarheten av spetsen 17, dvs. utanfor den streckade linjen 18, vilken har anses representera delningslinjen mellan den luftstrom, som intrader i kanalen 3, och den luftstrom, som ansluter sig till undersidan av underdelen 4. Vinkeln vid spetsen 8 jamte langden av nospartiet 2 framfOr spetsen 17 och ytans 11 krokning skola yam dimensionerade pa sadant salt, att denna effekt sakersteles. Hur denna dimensionering skall verkstallas for att det avsedda andamalet •skall upprtas, inses utan vidare av fackmannen. grund av den gradvis skeende krokningen hos kompressionsytan 11, blir stromningen Over denna yta i huvadsak forlustfri, samtidigt som en viss, onskvard tryckstegring uppnas intill densamma. Har bortses givetvis fran friktionsforluster vid de olika ytorna. In order to effect further compression on the underside of the bare plane body 1, before the air flows into the duct 3, the nose portion 2 in the area straight after the tip or front edge 8 may be designed so as to have a smooth, gradually curved, concave compression surface. 11 (covered approximately by the hada dashed border lines 12 and 13). Ytan 11 kan pa. due to its gradually curved shape in the direction of flow, it is considered to give rise to an spiritually ante small shock waves, which can aptly be called "shock supplements" or "dementia shock cars distributed in the direction of flow and cause a gradual increase in pressure in this direction. This series of shock additions is indicated by a fatal representative lines 14, 15, 16. These shock additions cross the path of the main shock carriage 9 and deflect it downwards, at the same time as they entail a reinforcement thereof, which is indicated by an increase in the thickness of the line 9 in the direction of the profile. front edge or tip 8. In order for the bare plane to work in an optimal way, the shock carriage 9 should after its deflection downwards through the shock extensions pass a good distance in front of the front edge or tip 17 of the lower part 4 of the bare plane 1, so that the shock carriage does not hit any point on this part 4. whereby it could be deflected into the channel 3. Thus, the shock carriage 9 should pass outside the outermost streamlines of the lower part 4, as the carriage comes in the vicinity of the tip 17, i.e. outside the dashed line 18, which has been considered to represent the dividing line between the air stream entering the duct 3 and the air stream connecting to the underside of the lower part 4. The angle at the tip 8 and the length of the muzzle 2 in front of the tip 17 and the hook 11 surface school yam dimensioned on such salt, that this effect is sakersteles. How this dimensioning is to be carried out in order for the intended purpose • to be established will be readily apparent to those skilled in the art. Due to the gradual curvature of the compression surface 11, the flow over this surface becomes substantially loss-free, at the same time as a certain, inadvertent increase in pressure is obtained adjacent to it. Has of course ignored friction losses at the various surfaces.

Langre nedstriMas frail nospartiets konkava del strommar luften in i kanalen 3, som är generellt parallell med barplansprofilens langdaxel, och underdelens 4 spets 17 astadkommer en plotslig avbojning av strOmningen en viss vinkel, s5. att det uppstar chockvagor 19 och 20. De sistnamnda chockvagornas utgangsvinkel kan givetvis berakna:s i forvag med tillampning av kanda metoder. Chockvagen 19 kan fiirena sig med chockva.gen 9 pa samma satt som chocktillskotten 14, 15 .och 16. Chockvagen 20 ger upphov till ett antal reflekterade chockvagor 21, 22 och 23 mellan kanalens 3 vaggar, vilka reflexioner paga i strOmningsriktningen, tills de sluta med en normalchockvag 24 omedelbart efter kanalens 3 halsparti eller stryphals 25, vilket har sin minsta tvarsnittsarea ungefar vid den med 26 betecknade streckade linj en. Harvid kan kanalen 3 fore kammaren 7 anses indelad i tva. sektioner, namligen en fore och en efter sjalva stryphalsen 25. Den fOrsta sektionen kan. betraktas ,som en overljud-reflexions- eller inloppstryckkammare 27 och stracker sig mellan normalchockvagen 24 och spetsen 17 pa inloppssidan om stryphalsen 25, medan den andra sektionen kan betraktas som en underljud-, diffusions- eller lagtryckskammare 28 och stracker sig fran normalchockvagen 24 till det lage, som är markerat genom den streckade linjen 29 pa nedstromssidan om stryphalsen. Fran namnda underljud- eller diffusionssektion 28 intrader luftstrommen i brannkammaren 7. Sedan luftstrommen Mandats med bransle i brannkammaren och blandningen antants, kunna forbranningsprodukterna pa vanligt salt blisas ut genom utloppsmunstycket 30 for att astadkomma framdrivning av aerodynen p5. forut kant satt. The concave part of the longer downstream frail of the muzzle flows the air into the channel 3, which is generally parallel to the longitudinal axis of the bare plane profile, and the tip 17 of the lower part 4 causes a sudden deflection of the flow at a certain angle, s5. that shock waves 19 and 20 occur. The starting angle of the latter shock waves can of course be calculated in advance with the application of known methods. The shock carriage 19 can move with the shock carriage 9 in the same manner as the shock additions 14, 15 and 16. The shock carriage 20 gives rise to a number of reflected shock carriages 21, 22 and 23 between the cradles of the channel 3, which reflections travel in the direction of flow until they stop. with a normal shock wave 24 immediately after the neck portion or throttle neck 25 of the channel 3, which has its smallest cross-sectional area approximately at the dashed line denoted by 26. In this case, the channel 3 in front of the chamber 7 can be considered divided into two. sections, namely a fore and one after the throat itself 25. The first section can. is regarded as an acoustic reflection or inlet pressure chamber 27 and extends between the normal shock carriage 24 and the tip 17 on the inlet side of the choke neck 25, while the second section may be considered as an acoustic, diffusion or low pressure chamber 28 and extends from the normal shock carriage 24 to the layer, which is marked by the dashed line 29 on the downstream side of the choke neck. From said subsonic or diffusion section 28, the air stream enters the fire chamber 7. Since the air stream is mandated with fuel in the fire chamber and the mixture is heated, the combustion products on ordinary salt can be blown out through the outlet nozzle 30 to effect propulsion of the aerodynium p5. forward edge set.

For att erhalla en given onskad fart eller ett Onskat fartomrade hos flygplanet, kan utformning resp. dimensionering av save bar-planet som diffusorkanalen givetvis .ske pa sadant satt, att ett korrekt och staltilt lage hos normalchockvagen 24 sakerstalles. I princip sker detta genom ldmplig utformning av kamrarna 27, 28 och 7 pa sadant satt, att vid den givna farten de erhallna lufttrycken och stromningshastigheterna (projekterade strainningshastigheterna) i dessa kamrar fa de varden, som erfordras for att lokalisera och bibehalla normalchockvagen 24 pa avsett stalle, exempelvis ett kort stycke nedstroms fran stryphalsen 25. Det inses vidare, att lufthastigheterna i diffusorn under flygningen kunna variera mom ett begransat omrade f Or avtagande hastigheter under den projekterade hastigheten (exempelvis som foljd av en minskning av flygplanets fart under flygning), utan att detta medfor nagon vasentlig forandring av chockvagens 24 'age, dvs. utan att det instabila tillstand uppnas, i vilket normalchockvagen 24 forflyttar sig till inloppssidan om stryphalsen 25 eller halt ut ur kanalens 3 inloppsmynning. Ett liknande omrade for okande hastigheter kan likaledes vara tillatligt, innan det uppstar ett alltfor stort tryckfall i kammaren 7. Dessa omraden bora tydligen vara sa stoma 'som mojligt for att man skall erhalla maximal stabilitet hos normalchockvagen 24 och korrekt hrannkammartryck Mom ett stort omrade fOr varierande flyg- och Infthastigheter. In order to obtain a given desired speed or a desired range of speed in the aircraft, the design resp. dimensioning of the save bar plane as the diffuser channel of course takes place in such a way that a correct and stable position of the normal shock carriage 24 is ensured. In principle, this is done by simply designing the chambers 27, 28 and 7 in such a way that at the given speed the obtained air pressures and flow velocities (projected straining velocities) in these chambers obtain the values required to locate and maintain the normal shock carriage 24 on intended It is further understood that the air velocities in the diffuser during the flight may vary within a limited range of decreasing velocities below the projected velocity (for example as a result of a decrease in the speed of the airplane in flight), but that this entails some significant change in the 24 'age of the shock carriage, i.e. without the unstable state being reached, in which the normal shock carriage 24 moves to the inlet side about the throttle neck 25 or slides out of the inlet mouth of the channel 3. A similar range for increasing speeds may likewise be permissible, before an excessive pressure drop occurs in the chamber 7. These ranges should obviously be as rigid as possible in order to obtain maximum stability of the normal shock carriage 24 and correct round chamber pressure with a large range for varying flight and Infth speeds.

Den oven beskrivna diffusorkonstruktionen ham visat sig ha ytterligare en f8rdel i jamforaise med aldre typer av barplan med. diffusorkanaler. Vid forut kanda anordningar her det vent vanligt att anvanda en ,diffusorkanal bade i den byre och den undre delen av barplanet eller i varje fall en eller flera diffusorka- — 17586.0 — naler anordnade pa ett eller annat sEtt symmetriskt med avseende pa barplansprofilens langdaxel. Vid dessa konstruktioner kommer varje forandring i barplanets anfallsvinkel att strava att orsaka en kraftigare inre chockvag i den ovre diffusionskanalen och en svagare chockvag i den undre. Detta medfor en avsevard forandring av den inre stromningsoch tryckfordelningen och leder ofta till str3pning av diffusorsystemet med atfOljande lag -re mass-strom genom detsamma, lagre tryckutvinning och lagre verkningsgrad. Denna olagenhet forekommer icke i utforandet enligt fig. 1, enar en alining, eller forandring, i anfallsvinkel kommer att inverka endast pa den enda forekommande inre tryckvagen och darfor icke far flagon starande inverkan ph totalfunktionen. The diffuser construction described above has been found to have an additional advantage in comparison with older types of bar planes. diffuser channels. In prior art devices it is common to use a diffuser channel both in the upper and the lower part of the bare plane or in any case one or more diffuser channels arranged in one way or another symmetrically with respect to the long axis of the bare plane profile. In these constructions, any change in the angle of attack of the bare plane will tend to cause a stronger internal shock wave in the upper diffusion channel and a weaker shock wave in the lower one. This entails a considerable change in the internal flow and pressure distribution and often leads to throttling of the diffuser system with consequent lower mass flow through the same, lower pressure recovery and lower efficiency. This malfunction does not occur in the embodiment of Fig. 1, except that an alignment, or change, in angle of attack will affect only the single occurring internal pressure vessel and therefore will not have a flagrant effect on the overall function.

Under vissa konstruktiva och driftmassiga forhallanden kan det tankas intraffa, att ett omrade med sarskilt stort luftmotstand upptrader i narheten av kompressionsytan 11. mom detta omrade farekommer en tendens till relativt avstannande av en del av luftstrommen, vilket saledes inverkar storande pa den normalt onskade stromlinj efardelningen och dennas funktion. Verkningarna av dessa forhallanden kunna emellertid undvikas exempelvis genom anordnande av en kanal 31, som tjanar till att fran den omedelbara narheten av ytan 11 bortleda en avsevard del av namnda relativt stillasthende luft, som salunda avledes halal genom barplanskroppen och darefter antingen utblases i det fria eller oaksa. utnyttjas for kylning av brannkammarens 7 vaggar, dar sa befinnes anskvart. Kanalen 31 tjanar saledes den tvafaldiga uppgiften att dels mojliggara en acceleration av luftstromningen intill ytan 11, dels avleda den darvid bortforda luften for anvandning for ett eller annat nyttigt andamal. Denna gransskiktsbortledningskanal 31 kan givetvis utfOras pa manga olika satt. Salunda kan den t. ex. bestâ av en bred och platt kanal eller av en serie smalare, tubulara kanaler, som strac- ka sig genom barplanet fran dess &Imre till dess bakre ande. En liknande kanal 32 kan vara anordnad awn i underdelen 4 far att rfistadkomma forbattrad kylning, om sâ onskas. Under certain constructive and operational conditions, it may be thought that an area with particularly high air resistance occurs near the compression surface. In this area, there is a tendency for a relative stagnation of a part of the air stream, which thus has a disturbing effect on the normally desired streamline distribution. and its function. However, the effects of these conditions can be avoided, for example, by providing a channel 31, which serves to divert from the immediate vicinity of the surface 11 a considerable part of said relatively stagnant air, which is thus diverted halal through the bare plane body and then either blown out into the open or oaksa. is used for cooling the fire chamber's 7 cradles, where it is located. The duct 31 thus serves the dual task of enabling an acceleration of the air flow adjacent to the surface 11, and of diverting it, thereby diverting the air for use for one or another useful purpose. This spruce layer discharge channel 31 can of course be made in many different ways. Salunda can it e.g. consist of a wide and flat channel or of a series of narrower, tubular channels, which extend through the bare plane from its & Imre to its posterior spirit. A similar duct 32 may be provided in the lower part 4 to provide improved cooling, if desired.

Det är gitetvis icke absolut nodva_ndigt, att den anvanda diffusionskammaren 27 hr av reflekterande typ, sasom visas i fig. 1. sa, lunda kan diffusorn i och far sig vara av vii-ken som heist lamplig, Brut kand konstruktion, t. ex. av den enkla typ, dir chockvagorna elimineras f5re intradet i inloppskanalen 3 och diffusion slier utan att man drar nytta av desamma. It is of course not absolutely necessary that the diffusion chamber 27 hr used be of a reflective type, as shown in Fig. 1. Thus, the diffuser can in and of itself be of the most suitable, Brut kand construction, e.g. of the simple type, the shock waves are eliminated before entering the inlet duct 3 and diffusion slides without taking advantage of them.

I fig. 2 visas ett alternativt utforande, som skiljer sig fran konstruktionen enligt fig. 1 darigenom, att tryckstegringen for astadkommande av extra lyftkraft pa barplanet alstras, icke med hjalp av den konkavt krolita kompressionsytan 11 (fig. 1), utan i stallet med hjalp av en diskontinuerligt eller stegvis krokt, konkav yta 33, som uppvisar en. eller flera diskontinuiteter eller plotsliga vinkelandringar 34 och 35, som avgransa ytsegment, vilka bilda vinkel med varandra, varvid dessa diskontinuiteter eller vinkelhorn ge upphov till var sin chockvag 36 rasp. 37 vilka additivt ansluta sig till huvadchockvagen 9 och medfora den onskade tryckstegringen. Fig. 2 shows an alternative embodiment, which differs from the construction according to Fig. 1 in that the pressure increase for providing extra lifting force on the bare plane is generated, not with the aid of the concave crolite compression surface 11 (Fig. 1), but instead with aided by a discontinuous or stepwise hook, concave surface 33, which has a. or several discontinuities or sudden angular landing rings 34 and 35, which delimit surface segments which form an angle with each other, these discontinuities or angular horns each giving rise to a shock-weak 36 rasp. 37 which additively connect to the main shock carriage 9 and cause the desired pressure increase.

I fig. 3 -visas i perspektiv ett flygplan, for-sett med en vinge konstruerad i enlighet med fig. 2. Det inses, att i stort sett samma konstruktion skulle kunna tillampas for barplanet enligt fig. 1. I fig. 3 visas de hada delar 5 och 4, som bilda barplanets eller vingens overdel rasp. underdel, vara stelt sammanhallna pa avsett inbardes avstand med hjalp av ett antal vertikalstag 6 samt sammanhillande vingspetskonstruktioner 38. Fig. 3 shows in perspective an aircraft, provided with a wing constructed in accordance with Fig. 2. It will be appreciated that substantially the same construction could be applied to the bare plane of Fig. 1. Fig. 3 shows the had parts 5 and 4, which form the upper part of the bare plane or wing rasp. lower part, be rigidly held together at the intended distance by means of a number of vertical struts 6 and cohesive wingtip constructions 38.

Claims (6)

Patentan sprak:The patent language: 1. Barplan far overljudfarts-aerodyner, exempelvis flygplan, uppvisande en overdel (5) och en. paavstand fran derma anordnad underdel (1), varvid overdelens oversida Or i huvudsak plan och utefter barplanets hela djup stracker sig frail barplanets framkant till dess bakkant, och underdelens undersida Or i huvudsak parallell med Overdelens oversida, overdelen och underdelen uppvisa motstaende ytor, som mellan sig bilda en diffusorkanal for mottagande av en del av den luft, som strommar in under overdelens framkant, och diffusorkanalen i stromningsriktningen raknat uppvisar en inloppsappning (3), en averljudsektion med avtagande genomstramningsarea, en halssektion (25) med kanalens minsta genomstramningsarea och en underljudsektion med Mande genomstromningsarea, kannetecknat av att overdelens (5) bversida har positiv anfallsvinkel och att Overdelens framkant (8) hr belagen uppstroms om underdelen (4).Bar planes have supersonic aerodynamics, for example airplanes, having an upper part (5) and a. spaced from the lower part (1), the upper side Or being substantially planar and along the entire depth of the bare plane extending from the leading edge of the bare plane to its trailing edge, and the lower side Or being substantially parallel to the upper part of the upper part, the upper part and the lower part having opposite surfaces forming a diffuser duct for receiving a part of the air flowing in under the leading edge of the upper part, and the diffuser duct in the flow direction straightened has a inlet opening (3), an averaging section with decreasing flow area, a neck section (25) with the smallest flow area and with Mande flow-through area, characterized in that the upper side of the upper part (5) has a positive angle of attack and that the leading edge (8) of the upper part is coated upstream of the lower part (4). 2. Barplan enligt patentanspraliet 1, kannetecknat av att averdelens (5) framkant (8') aranordnad att aistra en chockvag, som passerar pa uppstromssidan om underdelen (4), och att en ba:kat och neat frail overdelens framkant sig strackande kompressionsyta (11; 33) Or. anordnad att Oka det ph overdelens (5) undersida av luftstromningen utiivade upptrycket.Bar plane according to patent claim 1, characterized in that the leading edge (8 ') of the upper part (5) is arranged to create a shock wave, which passes on the upstream side of the lower part (4), and that a bent and neat frail leading edge of the upper part has a compressive surface ( 11; 33) Or. arranged to increase the underside of the ph upper part (5) of the air flow exerting the pressure. 3. Barplan enligt patentanspraket 2, kannetecknat av att kompressionsytan (11) bildas av en konkavt valvd yta, som stracker sig bakat och neat fran tiverdelens framkant (8).Bar plane according to patent claim 2, characterized in that the compression surface (11) is formed by a concavely curved surface, which extends backwards and neatly from the front edge (8) of the transverse part. 4. Barplan enligt patentansprhket 2, kann.etecknat av att kompressionsytan (33) bildas av ett flertal med varandra vinkel bildande ytsegm.ent (31, 35), anordnade att alstra — — sekundara chockvagor pa uppstromssidan om underdelen (4) och passerande utanfor denna.Bar plan according to claim 2, characterized in that the compression surface (33) is formed by a plurality of angularly forming surface segments (31, 35), arranged to generate - - secondary shock waves on the upstream side of the lower part (4) and passing outside this. 5. Barplan enligt nagot av patentanspraken 2-4, kannetecknat av att kompressionsytan (11) är forsedd med en serie Oppningar, som bilda mynningen till en eller fiera gransskiktsayledningskanaler (31, 32) genom barplanets over- och/eller underdel (5, 4) i narheten av diffusorkanalen. Anftirda publikationer: Stockholm 1961. Kungl. Doldr. P. A. Norstedt & Stirlen 510089 Till Patentet N:o F-z1-13 123 Fi 6 2123 31 jo '11 _;am W de 11110*irBare surface according to one of Claims 2 to 4, characterized in that the compression surface (11) is provided with a series of openings which form the mouth of one or more spruce layer guide channels (31, 32) through the upper and / or lower part (5, 4) of the bare surface. ) near the diffuser channel. Ancient publications: Stockholm 1961. Kungl. Doldr. P. A. Norstedt & Stirlen 510089 Till Patentet N: o F-z1-13 123 Fi 6 2123 31 jo '11 _; am W de 11110 * ir 6. 4b4V-4:;, 4,4 wip,„v,-lenw_/1); 6 ------------------- •Nl 16 19 o 22'26 A;32 2_ r9 _ 344 1V1411rA4‘ia 36 3 40.14( 9 3■ IBM 37 7 GENERALSTABENS LITOGR. ANSTALT6. 4b4V-4:;, 4,4 wip, „v, -lenw_ / 1); 6 ------------------- • Nl 16 19 o 22'26 A; 32 2_ r9 _ 344 1V1411rA4'ia 36 3 40.14 (9 3 ■ IBM 37 7 GENERALSTABENS LITOGR INSTALLATION
SE175860D SE175860C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE175860T

Publications (1)

Publication Number Publication Date
SE175860C1 true SE175860C1 (en) 1961-01-01

Family

ID=41964957

Family Applications (1)

Application Number Title Priority Date Filing Date
SE175860D SE175860C1 (en)

Country Status (1)

Country Link
SE (1) SE175860C1 (en)

Similar Documents

Publication Publication Date Title
US2916230A (en) Supersonic airfoil
JP5672005B2 (en) Aircraft leading edge and aircraft nacelle including air vents
US4381017A (en) Air inlet, especially a two-dimensional air inlet set at an angle on one side for gas turbine jet propulsion plants for driving airplanes
US10399687B2 (en) Methods and apparatus to vary an air intake of aircraft engines
US3524458A (en) Intakes for fluid flow
US6293494B1 (en) Aircraft air inlet with airflow guide to prevent flow separation
US3446223A (en) Air intake for gas turbine engines
KR930701319A (en) Thrust device for vertical takeoff and landing aircraft
NO168882B (en) NOZZLE WITH PRESSURE COVER IN VERTICAL DIRECTION.
CN1081493A (en) The S shape conduit of turbo-jet aircraft engine
US20170233084A1 (en) Anti-icing system and aircraft
US3299638A (en) Variable flow deflection means
US8172178B2 (en) Device for generating aerodynamic disturbances so as to protect the outer surface of an aircraft against elevated temperatures
US3583661A (en) Air intake for turbojet aircraft engine
US3065935A (en) Vertical take-off aircraft
US3613827A (en) Device for attenuating noise emitted by the jet of a jet engine
CN105909388B (en) Flow inlet
US3076309A (en) Aircraft jet propulsion apparatus with thrust reversing means
SE175860C1 (en)
Rogallo Internal-flow systems for aircraft
US11124291B2 (en) System to promote accelerated boundary layer ingestion
US2841955A (en) Directional control for jets
BRPI0512457A (en) airplane reactor and airplane comprising at least one reactor
US3251567A (en) Mounting of dual cycle propulsion units in the tail of an aircraft
US2456151A (en) Aircraft engine cooling system