[go: up one dir, main page]

SE1351282A1 - Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst - Google Patents

Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst Download PDF

Info

Publication number
SE1351282A1
SE1351282A1 SE1351282A SE1351282A SE1351282A1 SE 1351282 A1 SE1351282 A1 SE 1351282A1 SE 1351282 A SE1351282 A SE 1351282A SE 1351282 A SE1351282 A SE 1351282A SE 1351282 A1 SE1351282 A1 SE 1351282A1
Authority
SE
Sweden
Prior art keywords
oxidation catalyst
exhaust
valve arrangement
exhaust gases
flow
Prior art date
Application number
SE1351282A
Other languages
Swedish (sv)
Other versions
SE538969C2 (en
Inventor
Torbjörn Eliassen
Magnus Mackaldener
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351282A priority Critical patent/SE538969C2/en
Priority to DE112014004546.2T priority patent/DE112014004546B4/en
Priority to PCT/SE2014/051226 priority patent/WO2015065269A1/en
Publication of SE1351282A1 publication Critical patent/SE1351282A1/en
Publication of SE538969C2 publication Critical patent/SE538969C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Sammandrag Foreliggande uppfinning avser ett ventilarrangemang for att reglera flOdet av avgaser genom en oxidationskatalysator (4) i en avgasledning (2) som aven innefattar en SCR- katalysator (6) vilken är anordnad i en position nedstroms oxidationskatalysatorn (4) med avseende pa avgasernas avsedda strOmningsriktning i avgasledningen (2). Oxidationskatalysatom (4) är anpassad att oxidera kvavemonoxid NO i avgaserna till kvavedioxid NO2. Ventilarrangemanget innefattar en bimetallkomponent (15c, 16, 19, 20c) som andrar form beroende av avgasernas temperatur. Ventilarrangemanget är 10anpassat att reglera avgasflode genom oxidationskatalysatorn (4) sâ att oxidationskatalysatorns kapacitet att oxidera kvavemonoxid (NO) till kvavedioxid (NO2) reduceras dâ bimetallkomponenten (15c, 16, 19, 20c) är i kontakt med avgaser som har en temperatur som overstiger ett forbestamt varde. The present invention relates to a valve arrangement for regulating the flow of exhaust gases through an oxidation catalyst (4) in an exhaust line (2) which also comprises an SCR catalyst (6) which is arranged in a position downstream of the oxidation catalyst (4) with respect to the intended exhaust gases. flow direction in the exhaust line (2). The oxidation catalyst (4) is adapted to oxidize nitrogen monoxide NO in the exhaust gases to nitrogen dioxide NO2. The valve arrangement comprises a bimetallic component (15c, 16, 19, 20c) which changes shape depending on the temperature of the exhaust gases. The valve arrangement is adapted to regulate exhaust flow through the oxidation catalyst (4) so that the oxidation catalyst's capacity to oxidize nitrogen monoxide (NO) to nitrogen dioxide (NO2) is reduced when the bimetallic component (15c, 16, 19, 20c) is in contact with exhaust gases having a temperature exceeding predestined cairn.

Description

Ventilarrangemang f6r att reglera avgasflodet genom en oxidationskatalysator 5 UPPFINNINGENS BAKGRUND OCH KAND TEKNIK Foreliggande uppfinning avser ett ventilarrangemang for att reglera avgasflodet genom en oxidationskatalysator enligt patentkravets 1 ingress. BACKGROUND OF THE INVENTION AND PRIOR ART The present invention relates to a valve arrangement for regulating the exhaust flow through an oxidation catalyst according to the preamble of claim 1.

For att reducera utslappen av kvaveoxid NOx flan forbranningsmotorer anvands bl.a. en teknik som benamns SCR (Selective Catalytic Reduction). Denna teknik innebar att en losning av urea och vatten tillfors i en bestamd dos till avgasema i en avgasledning. Urealosningen kan sprayas in i avgasledningen varefter den finfordelade urealosningen forangas i kontakt med de heta avgasema sâ att ammoniak bildas. Blandningen av ammoniak och avgaser leds darefter genom en SCR-katalysator. Kvavet hos kvaveoxiden i avgasema reagerar har med kvavet i ammoniaken sâ att kvavgas bildas. Syret hos kvaveoxiden reagerar med vatet i ammoniaken sa att vatten bildas. Kvaveoxiden i avgasema reduceras saledes i katalysatorn till kvavgas och vattenanga. Med en korrekt dosering av urea kan forbranningsmotoms utslapp av kvaveoxid i en stor utstrackning reduceras. To reduce emissions of nitrogen oxide NOx flan internal combustion engines, e.g. a technique called SCR (Selective Catalytic Reduction). This technique meant that a solution of urea and water was supplied in a certain dose to the exhaust gases in an exhaust line. The urea solution can be sprayed into the exhaust line, after which the finely divided urea solution is evaporated in contact with the hot exhaust gases so that ammonia is formed. The mixture of ammonia and exhaust gases is then passed through an SCR catalyst. The nitrogen of the nitrogen oxide in the exhaust gases reacts with the nitrogen in the ammonia so that nitrogen gas is formed. The oxygen of the nitrogen oxide reacts with the water in the ammonia so that water is formed. The nitrogen oxide in the exhaust gases is thus reduced in the catalyst to nitrogen gas and water vapor. With a correct dosage of urea, the emission of nitrogen oxide by the internal combustion engine can be greatly reduced.

Kvaveoxid NOx i avgaser bestar av kvavemonoxid NO och kvavedioxid NO2. Konventionella SCR-katalysatorers formaga att avlagsna kvaveoxid fran avgaser är beroende av forhallandet mellan kvavemonoxid NO och kvavedioxid NO2. En SCR- katalysators formaga att reducera mangden kvaveoxid i avgaser är optimal da avgasema innehafter lika mycket kvavemonoxid och kvavedioxid. Avgaser fran i synnerhet dieselmotorer innehaller vanligtvis en betydligt mindre andel kviivedioxid an kvavemonoxid. For att Oka andelen kvavedioxid i avgasema, som leds till en SCRkatalysator, är det kant att anordna en oxidationskatalysator DOC (Diesel Oxidation Catalyst) i avgasledningen i en position uppstrOms SCR-katalysatom. En oxidationskatalysator oxiderar kvavemonoxid till kvavedioxid. Darmed kan andelen kvavedioxid i avgasema hojas. Nitric oxide NOx in exhaust gases consists of nitrogen monoxide NO and nitrogen dioxide NO2. Conventional SCR catalysts' ability to remove nitrogen oxide from exhaust gases depends on the ratio between nitrogen monoxide NO and nitrogen dioxide NO2. The ability of an SCR catalyst to reduce the amount of nitrogen oxide in exhaust gases is optimal as the exhaust gases contain the same amount of nitrogen monoxide and nitrogen dioxide. Exhaust gases from diesel engines in particular usually contain a much smaller proportion of nitrogen dioxide than nitrogen monoxide. In order to increase the proportion of nitrogen dioxide in the exhaust gases which is led to an SCR catalyst, it is advisable to arrange an oxidation catalyst DOC (Diesel Oxidation Catalyst) in the exhaust line in a position upstream of the SCR catalyst. An oxidation catalyst oxidizes nitrogen monoxide to nitrogen dioxide. Thus, the proportion of nitrogen dioxide in the exhaust gases can be increased.

En oxidationskatalysators kapacitet att oxidera kvavemonoxid till kvavedioxid är beroende av avgasemas temperatur och flode. Oxidationskatalysatoms kapacitet att oxidera kvavemonoxid till kvavedioxid är storst vid avgastemperaturer runt 300°C och 2 laga avgasfloden. Under sadana driftsforhaftanden oxiderar oxidationskatalysatom kvavemonoxid till kvavedioxid i en mangd sa att SCR-katalysatom mottar kvaveoxid som innehaller mer kvavedioxid an kvavemonoxid. Overskottet pa kvavedioxid resulterar i att SCR-katalysatoms formaga att eliminera kvaveoxid sjunker drastiskt samtidigt som lustgas bildas vilket är en mycket kraftig vaxthusgas. Ammoniakslipet okar aven. Det är saledes ett problem da en oxidationskatalysator levererar avgaser till en SCR-katalysator som innehafter kvaveoxid med ett overskott pa kvavedioxid. The capacity of an oxidation catalyst to oxidize nitrogen monoxide to nitrogen dioxide depends on the temperature and flow of the exhaust gases. The capacity of the oxidation catalyst to oxidize nitrogen monoxide to nitrogen dioxide is greatest at exhaust temperatures around 300 ° C and 2 layers of exhaust gas. During such operating conditions, the oxidation catalyst oxidizes nitrogen monoxide to nitrogen dioxide in an amount such that the SCR catalyst receives nitrogen oxide which contains more nitrogen dioxide than nitrogen monoxide. The excess nitrogen dioxide results in the SCR catalyst's ability to eliminate nitrogen oxide dropping drastically at the same time as nitrous oxide is formed, which is a very powerful greenhouse gas. Ammonia grinding also increases. It is thus a problem when an oxidation catalyst supplies exhaust gases to an SCR catalyst containing nitrogen oxide with an excess of nitrogen dioxide.

SAMMANFATTNING AV UPPFINNINGEN Syftet med foreliggande uppfinning är att tillhandahalla ett enkelt och tillforlitligt ventilarrangemang med vilken det är mojligt att reducera en oxidationskatalysators kapacitet att oxidera kvavemonoxid till kvavedioxid vid driftstillfallen da oxidationskatalysatom riskerar att leverera kvaveoxid med ett overskott pa kvavedioxid. SUMMARY OF THE INVENTION The object of the present invention is to provide a simple and reliable valve arrangement with which it is possible to reduce the capacity of an oxidation catalyst to oxidize nitrogen monoxide to nitrogen dioxide in operational cases when the oxidation catalyst risks supplying nitrogen oxide with an excess of nitrogen dioxide.

Detta syfte uppnas med ventilarrangemanget av det inledningsvis namnda slaget, vilket kannetecknas av de sardrag som anges i patentkravets 1 kannetecknande del. This object is achieved with the valve arrangement of the type mentioned in the introduction, which can be characterized by the features stated in the characterizing part of the claim 1.

Ventilarrangemanget innefattar saledes en bimetallkomponent som paverkas av avgasemas temperatur. En bimetallkomponent bestar av tva tunna hopfogade metall element med olika varmeutvidgningsfOrmaga. Nar bimetallkomponenten varms upp bojs den pa grand av att den ena metallen utvidgar sig mer an den andra. Vanliga metaller som kan anvandas i bimetaller är exempelvis koppar och stal. Bimetaller är enkla komponenter som har en tillforlitlig funktion. The valve arrangement thus comprises a bimetallic component which is affected by the temperature of the exhaust gases. A bimetallic component consists of two thinly joined metal elements with different thermal expansion capabilities. When the bimetallic component is heated, it is flexed to the extent that one metal expands more than the other. Common metals that can be used in bimetals are, for example, copper and steel. Bimetals are simple components that have a reliable function.

Nar avgasema med en hog temperatur leds till en oxidationskatalysator erhaller den en fOrhojd kapacitet och det fOreligger (Farmed en risk att den oxiderar kviivemonoxid till kvavedioxid en and& stor mangd. DA avgasema har en temperatur Over ett forbestamt varde reglerar ventilarrangemanget avgasflodet genom oxidationskatalysatom sâ att oxidationskatalysatoms kapacitet att oxidera kvavemonoxid till kviivedioxid reduceras. When the high temperature exhaust gases are led to an oxidation catalyst, it acquires an increased capacity and there is a risk that it oxidizes nitrogen monoxide to nitrogen dioxide a large amount. The exhaust gases have a temperature above a predetermined value. The valve arrangement regulates the exhaust flow through the oxidation catalyst catalyst. capacity to oxidize nitrogen monoxide to nitrogen dioxide is reduced.

Bimetallkomponenten paverkar ventilarrangemanget sâ att namnda reglering av avgasflodet genom oxidationskatalysatom erhalls da avgasema uppnar det forbestamda vardet. Bimetallkomponenten kan paverka ventilarrangemanget sâ att det abrupt slar om dâ avgasemas temperatur overstiger det forbestamda vardet. Ventilarrangemanget kan dock med fordel ha en konstruktion sâ att det gradvis borjar reducera oxidationskatalysatorns kapacitet dâ avgasernas temperatur overstiger det forbestamda 3 vardet. Ventilarrangemanget kan i detta fall reducera oxidationskatalysatoms kapacitet i beroende av hur mycket avgasemas temperatur overstiger det forbestamda vardet. En sadan reducering av oxidationskatalysatoms kapacitet resulterar i att den nedstrOms anordnade SCR-katalysator aven vid hoga avgastemperaturer kan mottaga kvaveoxider med ett kvavemonoxid/kvavedioxid forhallande som ger en god reducering av kvaveoxiden i avgasema. The bimetallic component affects the valve arrangement so that said control of the exhaust gas flow through the oxidation catalyst is obtained when the exhaust gases reach the predetermined value. The bimetallic component can affect the valve arrangement so that it strikes abruptly when the exhaust gas temperature exceeds the predetermined value. However, the valve arrangement can advantageously have a construction so that it gradually begins to reduce the capacity of the oxidation catalyst when the temperature of the exhaust gases exceeds the predetermined value. The valve arrangement can in this case reduce the capacity of the oxidation catalyst depending on how much the temperature of the exhaust gases exceeds the predetermined value. Such a reduction in the capacity of the oxidation catalyst results in the SCR catalyst arranged downstream, even at high exhaust gas temperatures, being able to receive nitrogen oxides with a nitrogen monoxide / nitrogen dioxide ratio which gives a good reduction of the nitrogen oxide in the exhaust gases.

Enligt en utforingsform av uppfinningen är ventilarrangemanget anpassat att reglera avgasflOde genom oxidationskatalysatom sâ att oxidationskatalysatoms kapacitet att oxidera kvavemonoxid till kvavedioxid reduceras dâ avgasema har ett flode som understiger ett forbestamt varde. En oxidationskatalysators kapacitet att oxidera kvavemonoxid till kvavedioxid är saledes aven beroende av avgasflOdet genom oxidationskatalysatom. Ett litet och damned langsamt flode av avgaser genom oxidationskatalysatom medfor att avgasema är i kontakt med det aktiva katalysatormaterial under en langre tid vilket leder till att en stone andel av kvavemonoxiden hinner oxideras till kvavedioxid innan den lamnar oxidationskatalysatom. I detta fall tar ventilarrangemanget saledes hansyn till bade avgasemas temperatur och Wide. Avgasemas forbestamda varden avseende temperatur och flode är relaterade till varandra och definierar olika drifttillstand vid vilka oxidationskatalysatoms kapacitet bor reduceras for att kvaveoxiden i avgasema som oxidationskatalysatom levererar till SCR-katalysatom inte ska innehalla en for stor andel kvavedioxid. According to an embodiment of the invention, the valve arrangement is adapted to regulate exhaust gas flow through the oxidation catalyst so that the capacity of the oxidation catalyst to oxidize nitrogen monoxide to nitrogen dioxide is reduced when the exhaust gases have a flow below a predetermined value. The capacity of an oxidation catalyst to oxidize nitrogen monoxide to nitrogen dioxide is thus also dependent on the exhaust gas flow through the oxidation catalyst. A small and damn slow flow of exhaust gases through the oxidation catalyst means that the exhaust gases are in contact with the active catalyst material for a long time, which leads to a stone proportion of the nitrogen monoxide having time to oxidize to nitrogen dioxide before it leaves the oxidation catalyst. In this case, the valve arrangement thus takes into account both the temperature of the exhaust gases and the width. The predetermined values of the exhaust gases with respect to temperature and flow are related to each other and define different operating conditions in which the capacity of the oxidation catalyst should be reduced so that the nitrogen oxide in the exhaust gases that the oxidation catalyst delivers to the SCR catalyst does not contain too much nitrogen dioxide.

Enligt en fOredragen utforingsform av uppfinningen är ventilarrangemanget anpassat att reglera flodet genom oxidationskatalysatom sâ att oxidationskatalysatoms kapacitet reduceras till en niva sâ att den nedstroms anordnade SCR-katalysatom mottar kvaveoxid som innehaller hogst 50 % kviivedioxid. En SCR-katalysators formaga att reducera kvaveoxid är optimal dâ den innehaller 50 % kvavemonoxid och 50 % kvavedioxid. Om andelen kvavemonoxid är stone an andelen kvavedioxid fungerar SCR-katalysatom relativt bra aven om den inte har en optimal kapacitet. Om andelen kvavedioxid är stone an andelen kvavemonoxid reduceras SCR-katalysatoms kapacitet att eliminera kvaveoxid markant samtidigt som den avger lustgas och ammoniak. Det är lampligt att en oxidationskatalysator dimensioneras sâ att den kan leverera kvaveoxid med en andel kvavedioxid som är Mom intervallet 40-50 % under de fiesta drifttillstand och att reducera oxidationskatalysatoms kapacitet med 4 ventilarrangemanget vid drifttillfallen da avgasema har en hog temperatur och ett lagt flode sâ att kvaveoxidens andel av kvavedioxid aldrig overstiger 50 %. According to a preferred embodiment of the invention, the valve arrangement is adapted to regulate the flow through the oxidation catalyst so that the capacity of the oxidation catalyst is reduced to a level so that the downstream SCR catalyst receives nitrogen oxide containing at most 50% nitrogen dioxide. An SCR catalyst capable of reducing nitrogen oxide is optimal as it contains 50% nitrogen monoxide and 50% nitrogen dioxide. If the proportion of nitrogen monoxide is the same as the proportion of nitrogen dioxide, the SCR catalyst works relatively well even if it does not have an optimal capacity. If the proportion of nitrogen dioxide is stone than the proportion of nitrogen monoxide, the capacity of the SCR catalyst to eliminate nitrogen oxide is significantly reduced while emitting nitrous oxide and ammonia. It is advisable that an oxidation catalyst be dimensioned so that it can supply nitrogen oxide with a proportion of nitrogen dioxide which is in the range of 40-50% during the most operating conditions and to reduce the oxidation catalyst capacity by 4 valve arrangement at operating times when the exhaust gases have a high temperature and a laid flow so that the nitrogen oxide's share of nitrogen dioxide never exceeds 50%.

Enligt en utforingsform av uppfinningen innefattar ventilarrangemanget en kanal for mottagning av avgaser i anslutning till oxidationskatalysatom och en ventil som reglerar avgasflodet genom kanalen och darmed avgaslodet genom den anslutande oxidationskatalysatom. Med hjalp av en sadan altemativ flodeskanal for avgasema kan avgasflodet genom oxidationskatalysatom andras pa ett sift sâ att den erhaller en reducerad kapacitet att oxidera kvavemonoxid till kvavedioxid. According to an embodiment of the invention, the valve arrangement comprises a duct for receiving exhaust gases in connection with the oxidation catalyst and a valve which regulates the exhaust gas flow through the duct and thus the exhaust solder through the connecting oxidation catalyst. By means of such an alternative flow channel for the exhaust gases, the exhaust gas flow through the oxidation catalyst can be changed on a sieve so that it obtains a reduced capacity to oxidize nitrogen monoxide to nitrogen dioxide.

Enligt en utforingsform av uppfinningen är namnda kanal en bypassledning med vilken avgaser kan ledas forbi oxidationskatalysatom. I detta fall leds saledes en del av avgasema forbi oxidationskatalysatom istallet for genom den. Eftersom endast en reducerad del av avgasema leds genom oxidationskatalysatom blir andelen kvavedioxid i avgasledningen i en position nedstrOms oxidationskatalysatom lagre. According to an embodiment of the invention, said duct is a bypass line with which exhaust gases can be passed past the oxidation catalyst. In this case, a part of the exhaust gases is thus passed past the oxidation catalyst instead of passing through it. Since only a reduced part of the exhaust gases is passed through the oxidation catalyst, the proportion of nitrogen dioxide in the exhaust line in a position downstream of the oxidation catalyst becomes lower.

Med fordel stracker sig namnda kanal genom oxidationskatalysatom. Namnda kanal kan formas genom en urborming av exempelvis ett centralt pan i av oxidationskatalysatom. Darmed blir inte kanalen platskravande. Namnda kanal kan aven utgoras av ett rör som stracker sig runt oxidationskatalysatom. Advantageously, said channel extends through the oxidation catalyst. Said channel can be formed by drilling out, for example, a central pan of the oxidation catalyst. This means that the channel does not require space. Said channel can also be constituted by a tube extending around the oxidation catalyst.

Enligt en annan utforingsform av uppfinningen är namnda kanal forbunden med oxidationskatalysatom sâ att avgasflodet genom kanalen resulterar i ett motsvarande avgasflode i ett omrade av oxidationskatalysatom. Da ventilen blockerar avgasflodet genom kanalen erhalls inte heller nagot avgasflode i namnda omrade av oxidationskatalysatom. Avgasema tvingas i detta fall att ledas genom ett begransat omrade av oxidationskatalysatom vilket resulterar i att oxidationskatalysatoms kapacitet att oxidera kviivemonoxid till kvavedioxid reduceras. Nananda kanal kan vara formad av vaggelement som är fasta vid en utloppssida hos oxidationskatalysatom. Foretradesvis anordnas eft flertal sadan kanaler pa oxidationskatalysatoms utloppsida sâ att de kan stoppa eller reducera flOdet genom ett relativt stort omrade av oxidationskatalysatom. According to another embodiment of the invention, said channel is connected to the oxidation catalyst so that the exhaust gas flow through the channel results in a corresponding exhaust flow in an area of the oxidation catalyst. Since the valve blocks the exhaust flow through the duct, no exhaust flow is obtained in said area of the oxidation catalyst either. The exhaust gases in this case are forced to pass through a limited area of the oxidation catalyst, which results in the capacity of the oxidation catalyst to oxidize nitrogen monoxide to nitrogen dioxide being reduced. The nananda channel may be formed of rocker elements fixed to an outlet side of the oxidation catalyst. Preferably, a plurality of such channels are provided on the outlet side of the oxidation catalyst so that they can stop or reduce the flow through a relatively large area of the oxidation catalyst.

Enligt en utforingsform av uppfinningen innefattar ventilen ett fjaderelement som är anpassat att reglera avgasflodet genom kanalen i beroende av det inkommande avgasflodets storlek. I detta fall kan fjaderelementet som paverkas av det inkommande avgasflodet och bimetallkomponenten som paverkas av avgasernas temperatur arrangeras sa att de vid en hog avgastemperatur och ett lagt avgasflode tillhandahaller ett avgasflode genom kanalen som resulterar i att oxidationskatalysatorn erhaller en reducerad kapacitet att oxidera kvavemonoxid till kvavedioxid. Enligt en utforingsform är fidderelementet namnda bimetallkomponent. I detta utnyttjas bade bimetallkomponentens formaga att andra form vid temperaturandringar och fiddrande egenskaper da den paverkas av de inkommande avgasema. Ventilens ingaende komponenter kan darmed reduceras. According to an embodiment of the invention, the valve comprises a spring element which is adapted to regulate the exhaust flow through the duct depending on the size of the incoming exhaust flow. In this case, the spring element affected by the incoming exhaust gas and the bimetallic component affected by the exhaust gas temperature can be arranged so that at a high exhaust temperature and a laid exhaust flow they provide an exhaust flow through the channel resulting in the oxidation catalyst obtaining a reduced capacity to oxidize nitrous oxide. According to one embodiment, the feeder element is said bimetallic component. In this, both the bimetallic component's shape is used to different shape at temperature changes and resilient properties as it is affected by the incoming exhaust gases. The valve's input components can thus be reduced.

Enligt en utfOringsform av uppfinningen innefattar ventilen en ventilkropp som är anpassad att reglera flodet genom kanalen genom att forskjutas mellan ett oppet lage och ett vasentligen stangt lage. Det vasentligen stangda laget medfor att ett minimalt avgasflOde leds genom kanalen sa att bimetallkomponenten har mOjlighet att vasentligen kontinuerligt avkanna de inkommande avgasernas temperatur. Bimetallkomponenten som avkanner avgasernas temperatur kan tillhandahalla en kraft som verkar pa ventilkroppen i en riktning och fidderelementet som paverkas av avgasflodet kan tillhandahalla en kraft som verkar pa ventilkroppen i en motsatt riktning. Alternativt kan ventilkroppen innefattas i namnda bimetallkomponent. I detta fall kan bimetallkomponenten inte bara paverka ventilen utan awn utgora den ventilkropp som blockerar kanalen i ett vasentligen stangt lage och frilagger den i ett oppet lage. According to an embodiment of the invention, the valve comprises a valve body which is adapted to regulate the flow through the channel by being displaced between an open bearing and a substantially closed bearing. The substantially closed layer means that a minimal exhaust gas flow is led through the duct, so that the bimetallic component has the possibility of substantially continuously sensing the temperature of the incoming exhaust gases. The bimetallic component that senses the exhaust gas temperature can provide a force acting on the valve body in one direction and the feeder element affected by the exhaust flow can provide a force acting on the valve body in an opposite direction. Alternatively, the valve body may be included in said bimetallic component. In this case, the bimetallic component can not only actuate the valve but also form the valve body which blocks the channel in a substantially closed bearing and exposes it in an open bearing.

Uppfinningen avser awn ett avgassystem som innefattar ett ventilarrangemang enligt nagon av ovan definierade utforingsformer. The invention relates to an exhaust system which comprises a valve arrangement according to any of the embodiments defined above.

KORT BESKRIVNING AV RITNINGARNA I det foljande beskrivs, sasom exempel, foredragna utforingsformer av uppfinningen med hanvisning till bifogade ritningar, pa vilka: Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. visar en del av en avgasledning som innefattar ett ventilarrangemang enligt en forsta utforingsform av foreliggande uppfinningen, visar en ventil hos ventilarrangemanget i Fig. 1 mer i detalj, visar en altemativ ventil hos ventilarrangemanget i Fig. 1, visar ett ventilarrangemang enligt en andra utforingsform av foreliggande uppfinningen, visar en ventil hos ventilarrangemanget i Fig. 4 mer i detalj och 6 Fig. 6visar en altemativ ventil for ventilarrangemang i Fig. 4. BRIEF DESCRIPTION OF THE DRAWINGS In the following, by way of example, preferred embodiments of the invention are described with reference to the accompanying drawings, in which: Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 4 shows a part of an exhaust line comprising a valve arrangement according to a first embodiment of the present invention shows a valve of the valve arrangement in Fig. 1 in more detail, shows an alternative valve of the valve arrangement in Fig. 1, shows a valve arrangement according to a second embodiment of the present invention, shows a valve of the valve arrangement in Figs. 4 in more detail and Fig. 6 shows an alternative valve for valve arrangement in Fig. 4.

DETALJERAD BESKRIVNING AV FOREDRAGNA UTFORINGSFORMER AV UPPFINNINGEN Fig. 1 visar en forbranningsmotor i form av en dies elmotor 1. Dieselmotom 1 kan vara avsedd som drivmotor for ett tyngre fordon. Dieselmotom 1 är forsedd med en avgasledning 2 som innehaller en behallare 3 for avgasbehandlande komponenter. De avgasbehandlande komponentema kan sjalvfallet vara anordnade i flera separata behAllare. Behallaren 3 kan vara en ljuddampare. Behallaren 3 innehaller i detta fall en forsta avgasbehandlande komponent i form av en oxidationskatalysator DOC 4 (Diesel Oxidation Catalyst). En oxidationskatalysator 4 innefattar langstrackta kanaler med ett invandigt skikt av ett katalysatormaterial i form av en adelmetall. Oxidationskatalysatom 4 har damned bl.a. formagan att oxidera kvavemonoxid NO till kvavedioxid NO2. Darmed kan andelen kvavedioxid NO2 i avgasema hOjas. Avgaser fran i synnerhet dieselmotorer innehaller en betydligt mindre andel kvavedioxid an kvavemonoxid. En oxidationskatalysators 4 formaga att oxidera kvavemonoxid NO till kvavedioxid NO2 är beroende av avgasemas temperatur och Wide. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION Fig. 1 shows an internal combustion engine in the form of a diesel electric motor 1. The diesel engine 1 may be intended as a drive motor for a heavier vehicle. The diesel engine 1 is provided with an exhaust line 2 which contains a container 3 for exhaust gas treatment components. The exhaust gas treatment components can of course be arranged in several separate containers. The container 3 can be a muffler. The container 3 in this case contains a first exhaust gas treatment component in the form of an oxidation catalyst DOC 4 (Diesel Oxidation Catalyst). An oxidation catalyst 4 comprises elongate channels with an inner layer of a catalyst material in the form of a noble metal. The oxidation catalyst 4 has damned i.a. capable of oxidizing nitric oxide NO to nitrogen dioxide NO2. Thus, the proportion of nitrogen dioxide NO2 in the exhaust gases can be increased. Exhaust gases from diesel engines in particular contain a much smaller proportion of nitrogen dioxide than nitrogen monoxide. An oxidation catalyst 4 capable of oxidizing nitrogen monoxide NO to nitrogen dioxide NO2 is dependent on the temperature and Wide of the exhaust gases.

Behallaren 3 innefattar nedstroms oxidationskatalysatom 4 en andra avgasrenande komponent i form av ett partikelfilter 5 som kan benamnas DPF (Diesel Particulate Filter). Ett partikelfilter 5 innefattar langstrackta parallella kanaler med stoppytor som är anordnade pa lampliga stallen. Stoppytoma tvingar avgasema att ledas in i angransande langstrackta kanaler i partikelfiltret 5. Kanalemas vaggar är tillverkade av ett porost material med fina porer som tillater passage av avgaser men inte av sotpartiklar. Sotpartiklarna fastnar darvid inuti partikelfiltret 5. Partikelfiltret 5 regenereras kontinuerligt utan aktiva atgarder genom att sotpartiklama oxideras med NO2 och/eller aktivt genom varmehojande &Order som paskyndar oxidationen med antingen NO2 eller syre. The container 3 comprises the downstream oxidation catalyst 4 a second exhaust gas purifying component in the form of a particulate filter 5 which may be called DPF (Diesel Particulate Filter). A particle filter 5 comprises elongate parallel channels with stop surfaces arranged on suitable stalls. The stop surfaces force the exhaust gases to be led into adjacent elongate channels in the particle filter 5. The cradles of the channels are made of a porous material with fine pores that allow the passage of exhaust gases but not of soot particles. The soot particles then get stuck inside the particle filter 5. The particle filter 5 is regenerated continuously without active action by oxidizing the soot particles with NO2 and / or actively by heat-raising & Orders which accelerate the oxidation with either NO2 or oxygen.

Behallaren 3 innefattar nedstroms partikelfiltret 5 en tredje avgasrenande komponent i form av en SCR-katalysator 6 for katalytisk avgasrening enligt den metod som benamns SCR (Selective Catalytic Reduction). Denna metod innebar att ett reduktionsmedel i form av en urealosning sprutas in i avgasema. I detta fall lagras urealosning i en tank 7 och leds, via en ledning 8, till ett insprutningsorgan 9 som sprutar in urealosningen i ett utrymme 3a i behallaren. En styrenhet 10 styr tillforseln 7 av urealosningen med information avseende specifika motorparametrar 11. En pump 12 transporterar urealosningen till insprutningsorganet 9. The container 3 comprises downstream of the particulate filter 5 a third exhaust gas purifying component in the form of an SCR catalyst 6 for catalytic exhaust gas purification according to the method called SCR (Selective Catalytic Reduction). This method involved injecting a reducing agent in the form of a urea solution into the exhaust gases. In this case, urea discharge is stored in a tank 7 and is led, via a line 8, to an injection means 9 which injects the urea discharge into a space 3a in the container. A control unit 10 controls the supply 7 of the urea discharge with information regarding specific motor parameters 11. A pump 12 transports the urea discharge to the injection means 9.

Behallaren 3 innefattar nedstroms SCR-katalysatom 6 en fjarde avgasrenande komponent i form av en ammoniakslipkatalysator 13 ASC (Ammonia Slip Catalyst). Ammoniakslipkatalysatoms 13 uppgift är att eliminera ett eventuellt overskott pa ammoniak som inte reducerats i SCR-katalysatom. En ammoniakslipkatalysator innefattar i regel en belaggning av en adelmetall sasom platina som oxiderar ammoniak till kvavgas, kvaveoxid och lustgas. The container 3 comprises downstream the SCR catalyst 6 a fourth exhaust gas purifying component in the form of an ammonia slip catalyst 13 ASC (Ammonia Slip Catalyst). The function of the ammonia abrasive catalyst 13 is to eliminate any excess ammonia that has not been reduced in the SCR catalyst. An ammonia abrasive catalyst usually comprises a coating of a noble metal such as platinum which oxidizes ammonia to nitrogen gas, nitrogen oxide and nitrous oxide.

Under drift av forbranningsmotom 1 beraknar styrenheten 10 med hjalp av information avseende motorparametrar 11 som belastning och varvtal den mangd av urealOsningen som behover tillsattas for att kvaveoxiden i avgasema ska reduceras pa ett optimalt sat. Styrenheten 10 aktiverar pumpen 12 som transporterar urealosningen i den beraknade mangden till insprutningsorganet 9 som sprutar in urealosningen i avgasema. Den tillforda urealosningen upphettas av avgaserna i behAllaren 3 sà att den forangas och omvandlas till ammoniak. Blandningen av ammoniak och avgasema leds till SCR-katalysatom 6. I SCR-katalysatom 6 reagerar kvavet hos kvaveoxiden i avgasema med kvavet i ammoniaken sâ att kvavgas bildas. Syret hos kvaveoxiden reagerar med vatet i ammoniaken sâ att vatten bildas. Kvaveoxiden i avgasema reduceras saledes i katalysatom 6 till kvavgas och vattenanga. During operation of the internal combustion engine 1, the control unit 10 calculates with the aid of information regarding engine parameters 11 such as load and speed the amount of the urea solution that needs to be added in order for the nitrogen oxide in the exhaust gases to be reduced in an optimal way. The control unit 10 activates the pump 12 which transports the urea solution in the calculated amount to the injection means 9 which injects the urea solution into the exhaust gases. The supplied urea solution is heated by the exhaust gases in the container 3 so that it evaporates and is converted into ammonia. The mixture of ammonia and the exhaust gases is led to the SCR catalyst 6. In the SCR catalyst 6, the nitrogen of the nitrogen oxide in the exhaust gases reacts with the nitrogen in the ammonia to form nitrogen gas. The oxygen of the nitrogen oxide reacts with the water in the ammonia to form water. The nitrogen oxide in the exhaust gases is thus reduced in the catalyst 6 to nitrogen gas and water vapor.

SCR- katalysatoms 6 formaga att reducera kvaveoxid är relaterad till avgasemas temperatur. En optimal temperatur kan vara inom intervallet 300-450°C. Vid hogre och lagre avgastemperaturer reduceras SCR-katalysatoms kapacitet att reducera kvaveoxid. Avgasflodet genom SCR-katalysatorn är alien en faktor som paverkar SCR-katalysatoms kapacitet. Ju snabbare avgasema passerar genom SCR-katalysatom ju mindre andel av avgasemas innehall av kvaveoxid hinner reduceras. Kvaveoxiden NOx i avgaser bestar av kvavemonoxid NO och kvavedioxid NO2. En SCR- katalysators 6 formaga att avlagsna kvaveoxid fran avgaser är Liven beroende av forhallandet mellan kvavemonoxid NO och kvavedioxid NO2. En SCR-katalysators formaga att reducera mangden kvaveoxid i avgaser är optimal da avgasema innehaller lika mycket kvavemonoxid NO och kvavedioxid NO2. Oxidationskatalysatoms 4 uppgift är att oxidera kvavemonoxid NO till kvavedioxid NO2i en mangd sa att SCR- katalysatom 6 mottar kvaveoxid NOx som idealt innehaller lika mycket kvavemonoxid NO och kvavedioxid NO2. 8 Oxidationskatalys atom 6 har forsetts med en genomgaende centralt anordnad kanal 14. En ventil 15 har anordnats i kanalen 14. Ventilen 15 är anpassad att reglera avgasflodet genom kanalen 14. Av de avgaser som nar oxidationskatalysatom 4 kommer en del att ledas igenom oxidationskatalysatorns 4 genomgaende passager i kontakt med de aktiva skikten av katalysatormaterial i oxidationskatalysatom 4 och erhalla en oxidation av kvavemonoxid NO till kvavedioxid NO2. En resterande del av avgasema leds genom kanalen 14 med hjalp av- ventilen 15 i oforandrad form. Da ventilen 15 är i ett stangt lage leds vasentligen hela avgasflodet genom oxidationskatalysatom 4. Med hjalp av ventilen 15 kan saledes en varierbar andel av avgasema ledas forbi oxidationskatalysatom 4. Ju storre andel av avgasflodet som leds genom kanalen 14 i oforandrad form desto mindre mangd kvavemonoxid oxideras till kvavedioxid i oxidationskatalysatom 4. The shape of the SCR catalyst 6 to reduce nitrogen oxide is related to the temperature of the exhaust gases. An optimal temperature can be in the range 300-450 ° C. At higher and lower exhaust temperatures, the capacity of the SCR catalyst to reduce nitrogen oxide is reduced. The exhaust flow through the SCR catalyst is an alien factor affecting the capacity of the SCR catalyst. The faster the exhaust gases pass through the SCR catalyst, the smaller the proportion of the exhaust gas content of nitrogen oxide has time to be reduced. The nitrogen oxide NOx in exhaust gases consists of nitrogen monoxide NO and nitrogen dioxide NO2. An SCR catalyst 6 capable of removing nitrogen oxide from exhaust gases is Liven dependent on the ratio between nitrogen monoxide NO and nitrogen dioxide NO2. The ability of an SCR catalyst to reduce the amount of nitrogen oxide in exhaust gases is optimal as the exhaust gases contain the same amount of nitrogen monoxide NO and nitrogen dioxide NO2. The task of the oxidation catalyst 4 is to oxidize nitrogen monoxide NO to nitrogen dioxide NO2 in a quantity said that the SCR catalyst 6 receives nitrogen oxide NOx which ideally contains the same amount of nitrogen monoxide NO and nitrogen dioxide NO2. The oxidation catalyst atom 6 has been continued with a through-centrally arranged channel 14. A valve 15 has been arranged in the channel 14. The valve 15 is adapted to regulate the exhaust flow through the channel 14. Some of the exhaust gases reaching the oxidation catalyst 4 will be passed through the oxidation catalyst 4 through passages in contact with the active layers of catalyst material in the oxidation catalyst 4 and obtain an oxidation of nitrogen monoxide NO to nitrogen dioxide NO2. A remaining part of the exhaust gases is led through the duct 14 with the aid of the exhaust valve 15 in unchanged form. Since the valve 15 is in a closed position, substantially the entire exhaust gas flow is led through the oxidation catalyst 4. Thus, with the aid of the valve 15, a variable proportion of the exhaust gases can be passed past the oxidation catalyst 4. The larger proportion of the exhaust gas flow through the duct 14 in unchanged form, the less nitrogen monoxide oxidized to nitrogen dioxide in the oxidation catalyst 4.

Fig. 2 visar ventilen 15 som är anordnad i kanalen 14 mer i detalj. Ventilen innefattar ett ventilhus 15a. Ventilhuset 15a innefattar en eller flera inloppsOppningar 15b for mottagning av avgaser. En bimetallkomponent 15c är anordnad invandigt om inloppsoppningarna 15b. Bimetallkomponenten 15c bestar av ett metallbleck som innefattar tva, sida vid sida, anordnade tunna metallplattor som är tillverkade av olika material med skilda varmeutvidgande egenskaper. Bimetallkomponenten 15c är infast i huset 15a i ett krokt tillstand. Bimetallkomponenten 15c är i en tvargaende riktning smalare an husets 15a invandiga bredd sâ att avgaser kan passera forbi bimetallkomponenten 15 inuti huset 15a. Altemativt kan bimetallkomponenten 15 innefatta genomgaende oppningar for passage av avgaser. Bimetallkomponenten 15 är infast mellan en vaggyta i anslutning till ventilhusets inloppsoppning 15b och en forsta sida hos en ventilkropp 15d. Ventilkroppen 15d är rorligt anordnad i forhallande till ett ventilsate 15e mellan ett stangt lage och ett mer eller mindre oppet lage. Ventilkroppen 15d är anordnad pa en ventilstang 15f som är rorligt infast i hal som stracker sig genom en vagg i anslutning till ventilhusets inloppsoppning 15b och en vagg i anslutning till ventilhusets utloppsoppning 15g. Ett fjaderorgan 15h är infast mellan en andra sida av ventilkroppen 15d och en inviindig vaggyta hos ventilhuset 15a i anslutning till utloppsoppningen 15g. Fig. 2 shows the valve 15 which is arranged in the channel 14 in more detail. The valve comprises a valve housing 15a. The valve housing 15a comprises one or more inlet openings 15b for receiving exhaust gases. A bimetallic component 15c is arranged internally about the inlet openings 15b. The bimetallic component 15c consists of a metal sheet comprising two, side by side, arranged thin metal plates which are made of different materials with different thermal expansion properties. The bimetallic component 15c is attached to the housing 15a in a hooked condition. The bimetallic component 15c is narrower in a transverse direction than the internal width of the housing 15a so that exhaust gases can pass past the bimetallic component 15 inside the housing 15a. Alternatively, the bimetallic component 15 may include through-holes for the passage of exhaust gases. The bimetallic component 15 is attached between a cradle surface adjacent to the valve housing inlet port 15b and a first side of a valve body 15d. The valve body 15d is movably arranged in relation to a valve set 15e between a closed bearing and a more or less open bearing. The valve body 15d is arranged on a valve rod 15f which is movably attached to a hall which extends through a cradle adjacent to the inlet opening 15b of the valve housing and a cradle adjacent to the outlet opening 15g of the valve housing. A spring member 15h is fixed between a second side of the valve body 15d and an inner cradle surface of the valve housing 15a adjacent to the outlet opening 15g.

Bimetallkomponenten 15c verkar med en fjaderkraft pa. ventilkroppen 15d som stravar efter att fora den mot ventilsatet 15e och saledes stanga ventilarrangemanget 15. De tva metallplattorna som ingar i bimetallkomponenten är anordnade i forhallande till varandra sâ att den fjaderkraft som bimetallkomponenten 15c verkar med pa 9 ventilkroppen 15d avtar med stigande avgastemperatur. Fjaderorganet 15h verkar med en fjaderkraft pa ventilkroppen 15d som stravar efter att fora den frail ventilsatet 15e och saledes oppna ventilarrangemanget 15. Denna fjaderkraft är vasentligen konstant under alla drifttillstand. Avgasflodet verkar med en kraft pa ventilkroppen 15d som stravar efter att fora ventilkroppen 15d mot ventilsket 15e och saledes stanga ventilarrangemanget 15. Den kraft som avgasflodet verkar med pa ventilkroppen är relaterat till avgasflodets storlek. Ventilkroppens 15c position i forhallande till ventilsatet 15e bestams saledes av avgasemas temperatur och flode dvs. samma parametrar som paverkar oxidationskatalysatoms kapacitet att oxidera kvavemonoxid NO till kvavedioxid NO2. The bimetallic component 15c operates with a spring force of. the valve body 15d which strives to guide it against the valve seat 15e and thus close the valve arrangement 15. The two metal plates forming in the bimetallic component are arranged in relation to each other so that the spring force with which the bimetallic component 15c acts on the valve body 15d decreases with rising exhaust temperature. The spring member 15h acts with a spring force on the valve body 15d which strives to guide the free valve seat 15e and thus open the valve arrangement 15. This spring force is substantially constant during all operating conditions. The exhaust flow acts with a force on the valve body 15d which strains to guide the valve body 15d towards the valve stem 15e and thus closes the valve arrangement 15. The force with which the exhaust flow acts on the valve body is related to the size of the exhaust flow. The position of the valve body 15c in relation to the valve seat 15e is thus determined by the temperature and flow of the exhaust gases, i.e. the same parameters that affect the oxidation catalyst's capacity to oxidize nitrogen monoxide NO to nitrogen dioxide NO2.

Oxidationskatalysatom 4 har till uppgift att oxidera kvavemonoxid NO till kvavedioxid NO2. Oxidationskatalysatorns 4 kapacitet att utfora denna uppgift är hogst da avgasema har en hog temperatur och ett lagt flode. Vid sa.dana driftstillfallen oxiderar en konventionell oxidationskatalysator kvavedioxid NO/ i en mangd sâ att halten av kvavedioxid riskerar att overstiga 50 % av den totala mangden kvaxeoxid NOx som lamnar oxidationskatalysatom 4 och leds till SCR-katalysatom 6. SCRkatalysatoms formaga att reducera kvaveoxider NOx i avgasema minskar dock radikalt om kvavedioxidhalten NO2 i avgasema overstiger 50 % av den totala mangden kvaveoxid NOx. Oxidationskatalysatom 4 bar av den anledningen leverera kvaveoxid NOx till SCR-katalysatom 6 som innehaller 50 % kvavedioxid NO2 men inte mer. Lampligen levererar den kvaveoxid med en andel kvavedioxid NO2 inom omthdet 50%. The oxidation catalyst 4 has the task of oxidizing nitrogen monoxide NO to nitrogen dioxide NO2. The capacity of the oxidation catalyst 4 to perform this task is highest as the exhaust gases have a high temperature and a laid flow. In such operating cases, a conventional oxidation catalyst oxidizes nitrogen dioxide NO / in an amount such that the content of nitrogen dioxide risks exceeding 50% of the total amount of nitric oxide NOx which leaves the oxidation catalyst 4 and is led to the SCR catalyst 6. The SCR catalyst's ability to reduce nitrogen oxides however, the exhaust gases decrease radically if the nitrogen dioxide content NO2 in the exhaust gases exceeds 50% of the total amount of nitrogen oxide NOx. For this reason, the oxidation catalyst 4 bar supplies nitric oxide NOx to the SCR catalyst 6 which contains 50% nitrogen dioxide NO2 but no more. Lamply, it delivers nitrogen oxide with a proportion of nitrogen dioxide NO2 within the range of 50%.

Bimetallkomponenten 15c och fjaderorganet 15h är dimensionerade sâ att bimetallkomponenten 15c tillsammans med det inkommande avgasflodet halter ventilarrangemanget 14 i ett stängt lage vid driftstillfallen dâ det rader laga avgastemperaturer och laga avgasfloden, hoga avgastemperaturer och hoga avgasfloden och lâga avgastemperaturer och hoga avgasfloden. Vid dessa driftstillfallen är oxidationskatalysatoms kapacitet att oxidera kviivemonoxid till kvavedioxid inte helt optimal och den levererar en kvavedioxidhalt NO2 som understiger 50 % av den totala mangden kvaveoxid NOx. Vid driftstillfallen da avgasema har en hog temperaturer och raga floden har oxidationskatalysatom 4 en optimal kapacitet. Den hoga avgastemperaturen paverkar bimetallkomponenten 15c sa. att den utovar en reducerad fjaderkraft pa ventilkroppen 15d samtidigt som avgasflodet tiff& en relativt liten kraft pa ventilkroppen 15d mot det stangda laget. Fjaderorganet 15h har nu kapacitet att forskjuta ventilorganet 15d mot ett oppet lage sâ att en del av avgaserna leds genom den oppna ventilen 15 och kanalen 14 utan att oxideras i oxidationskatalysatorn 4. I och med att en del av avgaserna passerar fOrbi oxidationskatalysatorn 4 kan halten av kvavedioxid NO2 i kvaveoxiden NOx som nar den nedstroms anordnade SCR-katalysatorn 6 reduceras. Ventilkroppen 15c fors av fjaderorganet 15h till ett Oppet lage som kan vara mer eller mindre oppet beroende av avgasernas temperatur och flode. Flodet genom ventilarrangemanget 15 kan armed varieras steglost inom ett visst omrade. Ventilarrangemangets 15 komponenter är dimensionerade sa att ventilkroppen 15d oppnar och leder fOrbi en del av avgaserna i kanalen 14 sâ att kvavedioxidhalten NO2 i avgaserna nedstroms oxidationskatalysatorn 4 blir hogst 50 % av den totala mangden kvaveoxid NOx. The bimetallic component 15c and the spring means 15h are dimensioned so that the bimetallic component 15c together with the incoming exhaust flow holds the valve arrangement 14 in a closed position at operating times when it rows low exhaust temperatures and low exhaust flow, high exhaust temperatures and high exhaust flow and low exhaust flow and low exhaust flow. In these operating cases, the oxidation catalyst's capacity to oxidize nitrogen monoxide to nitrogen dioxide is not entirely optimal and it delivers a nitrogen dioxide content of NO2 that is less than 50% of the total amount of nitrogen oxide NOx. In the case of operation when the exhaust gases have a high temperature and the raga river, the oxidation catalyst 4 has an optimal capacity. The high exhaust gas temperature affects the bimetallic component 15c sa. that it exerts a reduced spring force on the valve body 15d at the same time as the exhaust flow tiff & a relatively small force on the valve body 15d against the closed layer. The spring means 15h now has the capacity to displace the valve means 15d towards an open layer so that a part of the exhaust gases is passed through the open valve 15 and the duct 14 without being oxidized in the oxidation catalyst 4. As some of the exhaust gases pass the oxidation catalyst 4, the content of nitrogen dioxide NO2 in the nitrogen oxide NOx which when the downstream SCR catalyst 6 is reduced. The valve body 15c is driven by the spring means 15h to an open position which can be more or less open depending on the temperature and flow of the exhaust gases. The flow through the valve arrangement 15 can be varied varied steplessly within a certain range. The components of the valve arrangement 15 are dimensioned so that the valve body 15d opens and leads past some of the exhaust gases in the duct 14 so that the nitrogen dioxide content NO2 in the exhaust gases downstream of the oxidation catalyst 4 is at most 50% of the total amount of nitrogen oxide NOx.

Fig. 3 visar en alternativ utforingsform av en ventil 16 som kan arrangeras i en kanal 14 som stracker sig genom en oxidationskatalysator 4. Ventilarrangemanget 16 innefattar i detta fall endast en bimetallkomponent 16 i form av ett metallbleck. Fig. 3 shows an alternative embodiment of a valve 16 which can be arranged in a channel 14 which extends through an oxidation catalyst 4. The valve arrangement 16 in this case comprises only a bimetallic component 16 in the form of a metal sheet.

Metallblecket har en invandig kantyta 16a som är fast i kanalen 14 och en fri kantyta 16b som är belagen i en position uppstroms den fasta kantytan 16a med avseende pa avgasernas stromningsriktning i kanalen 14. Bimetallkomponenten 16 har har egenskapen att den kroks dvs. bojs neat mot ett successivt mer oppet lage vid stigande avgastemperaturer. Avgasflodet i kanalen 14 tillfor en emellertid en kraft som stravar efter att bOja bimetallkomponenten 16 uppat dvs. mot ett stangt lage. The metal sheet has an inner edge surface 16a which is fixed in the channel 14 and a free edge surface 16b which is coated in a position upstream of the fixed edge surface 16a with respect to the flow direction of the exhaust gases in the channel 14. The bimetallic component 16 has the property that it hooks i.e. bend neatly towards a gradually more open layer at rising exhaust temperatures. However, the exhaust flow in the duct 14 supplies a force which strains after bending the bimetallic component 16 upwards, i.e. against a barred team.

Bimetallkomponenten 16 är dimensionerad sâ att den halter kanalen 14 i ett stangt lage vid driftstillfallen da det rader laga avgastemperaturer och laga avgasfloden, hoga avgastemperaturer och hoga avgasfloden och laga avgastemperaturer och hoga avgasfloden. Vid dessa driftstillfallen är oxidationskatalysatorns kapacitet att oxidera kviivemonoxid till kviivedioxid inte helt optimal och den levererar en kviivedioxidhalt NO2 som understiger 50 % av den totala mangden kvaveoxid NOx. Vid driftstillfallen dâ avgasema har en hog temperaturer och lâga floden har oxidationskatalysatorn 4 en optimal kapacitet. Den hOga avgastemperaturen paverkar bimetallkomponenten 16 sa att den krokts och den fria andytan bojs neat. Det laga avgasflodet har inte kapacitet att tillfora en kraft som kan lyfta den fria andytan 16b uppat mot ett stangt lage i vilket den fria andytan anligger mot en ovre yta i kanalen 14. Det skapas darmed en oppning for avgaserna mellan den fria andytan 16b och kanalens 14 ovre yta. Denna oppning erhaller en storlek som varierar med avgasernas temperatur och flode. Oppningens storlek definierar hur stor del av avgaserna som leds fOrbi oxidationskatalysatorn 4, via 11 kanalen 14. Hur stor del av avgaserna som leds genom kanalen 14 är relaterad till reduceringen av oxidationskatalysatorns kapacitet. The bimetallic component 16 is dimensioned so that it holds the duct 14 in a closed position at operating times as it rows low exhaust temperatures and low exhaust flow, high exhaust temperatures and high exhaust flow and low exhaust temperatures and high exhaust flow. In these operating cases, the oxidation catalyst's capacity to oxidize nitrogen monoxide to nitrogen dioxide is not entirely optimal and it delivers a nitrogen dioxide content of NO2 that is less than 50% of the total amount of nitrogen oxide NOx. In the case of operation when the exhaust gases have a high temperature and the low river, the oxidation catalyst 4 has an optimal capacity. The high exhaust temperature affects the bimetallic component 16 so that it is curved and the free end surface is not bent. The low exhaust flow does not have the capacity to supply a force which can lift the free end face 16b upwards against a rod bearing in which the free end face abuts against an upper surface of the channel 14. This creates an opening for the exhaust gases between the free end face 16b and the channel. 14 upper surface. This opening receives a size that varies with the temperature and flow of the exhaust gases. The size of the opening defines how much of the exhaust gases is passed past the oxidation catalyst 4, via the duct 14. How much of the exhaust gases passed through the duct 14 is related to the reduction of the oxidation catalyst capacity.

Fig. 4 visar en annan princip for att forhindra att en oxidationskatalysator 4 oxiderar kvaveoxid i en mangd sâ att kvaveoxid NOx levereras till en nedstroms anordnad SCR-katalysator vilken innehaller hOgst 50 % kvavedioxid NO2. I detta fall har en del av oxidationskatalysatorns 4 utloppssida 4a forsetts med vaggelement 17 som definierar korta kanaler 18 for mottagning av avgaser som lamnar vissa omraden av oxidationskatalysatorn 4. Var och en av kanalerna 18 innefattar en ventil 19 med vilken det genomgaende flodet regleras. Da ventilema 19 är i ett stangt lage blockeras vasentligen avgasflodet genom de anslutande omeadena av oxidationskatalysatorn 4 och armed oxidationen av kvaveoxid NO till kvavedioxid NO2 i dessa omthden av oxidationskatalysatorn 4. Ventilerna 19 är anpassade att stangas vid driftstillfallen da andelen kvavedioxid riskerar att overstiga 50 % av den totala mangden kvaveoxider NOx som nar SCR-katalysatorn 6. Sadana drifttillfallen uppkommer da avgaserna har en hog temperatur och ett lagt flode. I detta fall är ventilen 19 anpassad att stanga och blockerar anslutande omraden av oxidationskatalysatorn 4. Darmed levererar oxidationskatalysatorn 4 kvaveoxid NOx till den nedstroms belagna SCR-katalysatorn 6 med en andel av kvavedioxid som hogst är 50 %. Fig. 4 shows another principle for preventing an oxidation catalyst 4 from oxidizing nitrogen oxide in an amount such that nitrogen oxide NOx is delivered to a downstream SCR catalyst which contains at most 50% nitrogen dioxide NO2. In this case, a part of the outlet side 4a of the oxidation catalyst 4 has been continued with rocking elements 17 defining short channels 18 for receiving exhaust gases leaving certain areas of the oxidation catalyst 4. Each of the channels 18 comprises a valve 19 with which the continuous flow is regulated. Since the valves 19 are in a closed position, the exhaust gas flow is substantially blocked by the connecting areas of the oxidation catalyst 4 and the armed oxidation of nitrogen oxide NO to nitrogen dioxide NO2 in these areas of the oxidation catalyst 4. The valves 19 are adapted to close during operation as the percentage of nitrogen dioxide exceeds 50%. of the total amount of nitrogen oxides NOx that reaches the SCR catalyst 6. Such operating cases occur when the exhaust gases have a high temperature and a laid flow. In this case, the valve 19 is adapted to shut off and block the connecting areas of the oxidation catalyst 4. Thus, the oxidation catalyst 4 delivers nitrogen oxide NOx to the downstream coated SCR catalyst 6 with a proportion of nitrogen dioxide which is at most 50%.

Fig. 5 visar tvâ sa.dana ventiler 19 mer i detalj. Ventilerna 19 innefattar i detta fall endast en bimetallkomponent 19 i form av ett metallbleck. Bimetallkomponent 19 har en invandig kantyta 19a som är fast i kanalen 18 och en fri kantyta 19b som är belagen i en position nedstroms den fasta kantytan 19a med avseende pa avgasernas stromningsriktning i kanalen 18. Bimetallkomponenten 19 har har egenskapen att den kroks dvs. bojs uppat mot ett stangt 'age vid stigande avgastemperaturer. Avgasflodet i kanalen 14 tiff& en kraft som stravar efter att bOja bimetallkomponenten 18 nedat dvs. mot ett appet lage. Bimetallkomponenten 19 är dimensionerade sâ att den hailer kanalen 18 i eft oppet lage vid driftstillfallen dâ det fader lâga avgastemperaturer och laga avgasfloden, hoga avgastemperaturer och hOga avgasflOden och laga avgastemperaturer och hoga avgasfloden. Vid dessa driftstillfallen är oxidationskatalysatorns kapacitet aft oxidera kvavemonoxid till kvavedioxid inte heft optimal och den levererar en kvavedioxidhalt NO2 som understiger 50 % av den totala mangden kvaveoxid NOx. Vid driftstillfallen da avgaserna har en hog temperaturer och raga Widen har oxidationskatalysatorn 4 en optimal kapacitet. Den hoga avgastemperaturen paverkar bimetallkomponenten 19 sâ aft den krokts och den fria 12 andytan bajs uppat. Det laga avgasflodet har inte kapacitet att tillfora en kraft som kan trycka ned den fria dndytan 19b fran det vdsentligen stangda ldget. Darmed blockeras vasentligen avgasflodet genom de omraden av oxidationskatalysatorn 4 som har utloppsoppningar i anslutning till namnda kanaler 18. Fig. 5 shows two such valves 19 in more detail. The valves 19 in this case comprise only a bimetallic component 19 in the form of a metal plate. The bimetallic component 19 has an inner edge surface 19a which is fixed in the duct 18 and a free edge surface 19b which is coated in a position downstream of the fixed edge surface 19a with respect to the flow direction of the exhaust gases in the duct 18. The bimetallic component 19 has the property that it hooks ie. bent upwards towards a rod 'age at rising exhaust temperatures. The exhaust flow in the duct 14 tiff & a force that strains after bending the bimetallic component 18 down, ie. against an appet make. The bimetallic component 19 is dimensioned so that it hails the duct 18 in the open at operating times when it fades low exhaust temperatures and low exhaust flow, high exhaust temperatures and high exhaust flow and low exhaust temperatures and high exhaust flow. In these operating cases, the oxidation catalyst's capacity to oxidize nitrogen monoxide to nitrogen dioxide is not very optimal and it delivers a nitrogen dioxide content of NO2 which is less than 50% of the total amount of nitrogen oxide NOx. At operating times when the exhaust gases have a high temperature and raga Widen, the oxidation catalyst 4 has an optimal capacity. The high exhaust temperature affects the bimetallic component 19 so that the crank and the free 12 end face are pooped upwards. The low exhaust gas flow does not have the capacity to apply a force that can depress the free end surface 19b from the substantially closed bed. Thereby, the exhaust gas flow is substantially blocked through the areas of the oxidation catalyst 4 which have outlet openings adjacent to said channels 18.

Fig. 6 visar en alternativ ventil 20 som kan anvandas fOr att reglera avgasflodet genom kanalerna 18. Ventilen 20 innefattar motsvarande komponenter som ventilen i Fig. 2 men de har anordnats sa att ventilen stanger i stallet for oppnar vid driftstillfallen da avgaserna har en hog temperatur och ett lagt flOde. Ventilarrangemanget 20 innefattar ett ventilhus 20a. Ventilhuset 20a innefattar en eller flera inloppsoppningar 20b for mottagning av avgaserna. En bimetallkomponent 20c är anordnad invandigt om inloppsoppningarna 20b. Bimetallkomponenten 20c är i en tvargaende riktning smalare an husets 20a invandiga bredd sa att avgaser kan passera forbi bimetallkomponenten 20c inuti huset 20a. Bimetallkomponenten 20c är infast mellan en vaggyta i anslutning till ventilhusets inloppsoppning 20b och en forsta sida hos en ventilkropp 20d. Fig. 6 shows an alternative valve 20 which can be used to regulate the exhaust gas flow through the channels 18. The valve 20 comprises corresponding components as the valve in Fig. 2 but they have been arranged so that the valve closes in the stable for opening at operating times when the exhaust gases have a high temperature and a laid flOde. The valve arrangement 20 comprises a valve housing 20a. The valve housing 20a includes one or more inlet openings 20b for receiving the exhaust gases. A bimetallic component 20c is provided internally about the inlet openings 20b. The bimetallic component 20c is in a transverse direction narrower than the internal width of the housing 20a so that exhaust gases can pass past the bimetallic component 20c inside the housing 20a. The bimetallic component 20c is fixed between a cradle surface adjacent to the valve housing inlet port 20b and a first side of a valve body 20d.

Ventilkroppen 20d är rorligt anordnad i forhallande till ett ventilsate 20e mellan ett vdsentligen stdngt lage och ett mer eller mindre oppna ldge. Ventilkroppen 20d är anordnad pa en ventilstang 20f som är rorligt infast i hal som stacker sig genom en vagg i anslutning till ventilhusets inloppsoppning 20b och en vagg i anslutning till ventilhusets utloppsoppning 20g. Ett fjaderorgan 20h är infast mellan en andra sida av ventilkroppen 20d och en invandig vaggyta hos ventilhuset 20a i anslutning till utloppsoppningen 20g. The valve body 20d is movably arranged in relation to a valve set 20e between a substantially closed bearing and a more or less open length. The valve body 20d is arranged on a valve rod 20f which is movably attached to a hole which projects through a cradle adjacent to the inlet opening 20b of the valve housing and a cradle adjacent to the outlet opening 20g of the valve housing. A spring member 20h is attached between a second side of the valve body 20d and an inner cradle surface of the valve housing 20a adjacent to the outlet opening 20g.

Bimetallkomponenten 20c verkar med en fjaderkraft pa ventilkroppen 20d som stravar efter att fora den fran ventilsatet 20e och saledes mot ett oppet lage. Den fjaderkraft som bimetallkomponenten 20 verkar med pa ventilkroppen 20d avtar med stigande avgastemperatur. Fjaderorganet 20h verkar med en fjaderkraft pa ventilkroppen 20d som strayar efter att fora den mot ventilsatet 20e och saledes stanga ventilarrangemanget 20. Denna fjaderkraft är vasentligen konstant under alla drifttillstand. Avgasflodet verkar med en kraft pa ventilkroppen 20d som stravar efter att fora ventilkroppen 20d mot ett oppet lage. Den kraft som avgasflodet verkar med pa ventilkroppen 20d är relaterat till avgasflodets storlek. Ventilkroppens 20d position i forhallande till yentilsatet 20e bestams saledes ay aygasernas temperatur och flode. The bimetallic component 20c acts with a spring force on the valve body 20d which tends to guide it from the valve seat 20e and thus towards an open bearing. The spring force with which the bimetallic component 20 acts on the valve body 20d decreases with increasing exhaust temperature. The spring member 20h acts with a spring force on the valve body 20d which springs to guide it against the valve seat 20e and thus closes the valve arrangement 20. This spring force is substantially constant during all operating conditions. The exhaust flow acts with a force on the valve body 20d which strains to move the valve body 20d towards an open bearing. The force with which the exhaust flow acts on the valve body 20d is related to the size of the exhaust flow. The position of the valve body 20d in relation to the valve insert 20e is thus determined by the temperature and flow of the ayga gases.

Oxidationskatalysatorn 4 har saledes hogst kapacitet da avgaserna har en hog temperatur och eft lagt flode. Bimetallkomponenten 20c och fjaderorganet 20h är 13 dimensionerade sâ att de hailer ventilarrangemanget 20 i ett oppet lage vid driftstillffillen dâ det fader laga avgastemperaturer och laga avgasfloden, hoga avgastemperaturer och hOga avgasflOden och laga avgastemperaturer och hOga avgasfloden. Vid dessa driftstillfállen är oxidationskatalysatorns kapacitet att oxidera kvavemonoxid till kvavedioxid inte helt optimal och den levererar en kvavedioxidhalt NO2 som understiger 50 % av den totala mangden kvaveoxid NOx. Vid driftstillfallen da avgaserna har en hog temperaturer och laga floden har oxidationskatalysatorn 4 en optimal kapacitet. Den hOga avgastemperaturen paverkar bimetallkomponenten 20c sâ att den utOvar en reducerad ftaderkraft pa ventilkroppen 20d samtidigt som avgasflodet tiff& en relativt liten kraft pa ventilkroppen 20d mot det oppna laget. Fjaderorganet 20h har nu kapacitet att forskjuta ventilorganet 20d mot det stangda laget sâ att flodet av avgaser genom ventilen 20 och kanalen 18 vasentligen blockeras. I och med det kan oxidationskatalysatorns 4 fulla kapacitet inte utnyttjas och den levererar damned en reducerad halt av kvavedioxid NO2 i kvaveoxiden NOx till den nedstroms anordnade SCR-katalysatorn 6 reduceras. Flodet genom ventilarrangemanget 20 kan varieras steglost fran ett helt oppet lage till ett successivt vasentligen stangt lage da ett minimalt flode av avgaser leds genom ventilarrangemanget 20. Ventilarrangemangets 20 komponenter är dimensionerade sa att ventilkroppen 20d stanger och blockerar flOdet i delar av oxidationskatalysatorn 4 sâ att kvavedioxidhalten NO2 i avgaserna nedstroms oxidationskatalysatorn 4 blir hogst 50 % av den totala mangden kvaveoxid NOx. The oxidation catalyst 4 thus has the highest capacity as the exhaust gases have a high temperature and after flow. The bimetallic component 20c and the spring means 20h are dimensioned so that they hail the valve arrangement 20 in an open position at the operating supply where the father low exhaust temperatures and low exhaust flow, high exhaust temperatures and high exhaust flow and low exhaust temperatures and high exhaust flow. In these operating conditions, the oxidation catalyst's capacity to oxidize nitrogen monoxide to nitrogen dioxide is not entirely optimal and it delivers a nitrogen dioxide content of NO2 which is less than 50% of the total amount of nitrogen oxide NOx. In the case of operation when the exhaust gases have a high temperature and cook the river, the oxidation catalyst 4 has an optimal capacity. The high exhaust temperature affects the bimetallic component 20c so that it exerts a reduced feed force on the valve body 20d while the exhaust flow tiff & a relatively small force on the valve body 20d towards the open layer. The spring means 20h now has the capacity to displace the valve means 20d towards the closed layer so that the flow of exhaust gases through the valve 20 and the duct 18 is substantially blocked. As a result, the full capacity of the oxidation catalyst 4 can not be utilized and it thus delivers a reduced content of nitrogen dioxide NO2 in the nitrogen oxide NOx to the SCR catalyst 6 arranged downstream. The flow through the valve arrangement 20 can be varied steplessly from a completely open layer to a successively substantially closed layer as a minimal flow of exhaust gases is passed through the valve arrangement 20. The components of the valve arrangement 20 are dimensioned so that the valve body 20d closes and blocks the flow in parts of the oxidation catalyst 4. NO2 in the exhaust gases downstream of the oxidation catalyst 4 is at most 50% of the total amount of nitric oxide NOx.

Uppfinningen är inte begransad till den ovan beskrivna utforingsformen utan den kan varieras fritt Mom patentkravens ramar. 14 The invention is not limited to the embodiment described above, but it can be varied freely within the scope of the patent claims. 14

Claims (13)

PatentkravPatent claims 1. Ventilarrangemang for att reglera flOdet av avgaser genom en oxidationskatalysator (4) i en avgasledning (2) som aven innefattar en SCR-katalysator (6) vilken är anordnad i en position nedstroms oxidationskatalysatom (4) med avseende pa avgasemas avsedda strOmningsriktning i avgasledningen (2), varvid oxidationskatalysatom (4) är anpassad att oxidera kvavemonoxid NO i avgasema till kvavedioxid NO2, kannetecknat av att ventilarrangemanget innefattar en bimetallkomponent (15c, 16, 19, 20c) som andrar form beroende av avgasemas temperatur, varvid ventilarrangemanget är anpassat att reglera avgasflode genom oxidationskatalysatorn (4) sâ att oxidationskatalysatoms kapacitet att oxidera kvavemonoxid (NO) till kvavedioxid (NO2) reduceras dâ bimetallkomponenten (15c, 16, 19, 20c) är i kontakt med avgaser som har en temperatur som overstiger ett forbestamt varde.Valve arrangement for regulating the flow of exhaust gases through an oxidation catalyst (4) in an exhaust line (2) which also comprises an SCR catalyst (6) which is arranged in a position downstream of the oxidation catalyst (4) with respect to the intended direction of flow of the exhaust gases in the exhaust line. (2), wherein the oxidation catalyst (4) is adapted to oxidize nitrogen monoxide NO in the exhaust gases to nitrogen dioxide NO2, characterized in that the valve arrangement comprises a bimetallic component (15c, 16, 19, 20c) which changes shape depending on the temperature of the exhaust gases, the valve arrangement being adapted to regulate exhaust flow through the oxidation catalyst (4) so that the oxidation catalyst's capacity to oxidize nitrogen monoxide (NO) to nitrogen dioxide (NO2) is reduced when the bimetallic component (15c, 16, 19, 20c) is in contact with exhaust gases having a temperature exceeding a predetermined value. 2. Ventilarrangemang krav 1, kannetecknat av att det är anpassad att reglera avgasflode genom oxidationskatalysatorn (4) sa att oxidationskatalysatoms kapacitet att oxidera kvavemonoxid (NO) till kvavedioxid (NO2) reduceras dâ avgasema har ett Wide som understiger ett forbestamt varde.Valve arrangement claim 1, characterized in that it is adapted to regulate exhaust flow through the oxidation catalyst (4) so that the oxidation catalyst's capacity to oxidize nitrogen monoxide (NO) to nitrogen dioxide (NO2) is reduced when the exhaust gases have a Wide below a predetermined value. 3. Ventilarrangemang enligt krav 1 eller 2, kannetecknat av att det är anpassat att reglera flodet genom oxidationskatalysatom (4) sà att oxidationskatalysatoms kapacitet reduceras till en nivâ vid vilken den nedstroms anordnade SCR-katalysatom (6) mottar kvaveoxid NOx som innehaller hogst 50 % kvavedioxid NO2Valve arrangement according to Claim 1 or 2, characterized in that it is adapted to regulate the flow through the oxidation catalyst (4) so that the capacity of the oxidation catalyst is reduced to a level at which the downstream SCR catalyst (6) receives nitrogen oxide NOx containing a maximum of 50%. nitrogen dioxide NO2 4. Ventilarrangemang enligt ftagot av foregaende krav, kannetecknat av att ventilarrangemanget innefattar en kanal (14, 18) fOr mottagning av avgaser i anslutning till oxidationskatalysatom och en ventil (15, 16, 19, 20) som reglerar avgasflodet genom kanalen (14, 18) och darmed genom den anslutande oxidationskatalysatom (4).Valve arrangement according to the preceding claim, characterized in that the valve arrangement comprises a channel (14, 18) for receiving exhaust gases in connection with the oxidation catalyst and a valve (15, 16, 19, 20) which regulates the exhaust flow through the channel (14, 18 ) and thus through the connecting oxidation catalyst (4). 5. Ventilarrangemang enligt krav 4, kannetecknat av aft namnda kanal (14) är en bypassledning med vilken avgaser kan ledas forbi oxidationskatalysatom (4).Valve arrangement according to claim 4, characterized by said channel (14) is a bypass line with which exhaust gases can be led past the oxidation catalyst (4). 6. Ventilarrangemang enligt krav 5, kannetecknat av aft namnda kanal (14) stracker sig genom oxidationskatalysatorn (4).Valve arrangement according to claim 5, characterized by said channel (14) extending through the oxidation catalyst (4). 7. Ventilarrangemang enligt krav 4, kannetecknat av att namnda kanal (18) är fOrbunden med oxidationskatalysatorn (4) A. att ett avgasflode genom kanalen (18) resulterar i ett motsvarande avgasflode genom namnda omrade av oxidationskatalysatorn (4).Valve arrangement according to claim 4, characterized in that said channel (18) is connected to the oxidation catalyst (4) A. that an exhaust flow through the channel (18) results in a corresponding exhaust flow through said area of the oxidation catalyst (4). 8. Ventilarrangemang enligt krav 7, kannetecknat av att namnda kanal (18) är formad av vaggelement (17) som är fasta vid en utloppssida (4a) hos oxidationskatalysatom (4).Valve arrangement according to claim 7, characterized in that said channel (18) is formed by cradle elements (17) which are fixed to an outlet side (4a) of the oxidation catalyst (4). 9. Ventilarrangemang enligt nagot av kraven 4-7, kannetecknat av att ventilen (15, 16, 19, 20) innefattar ett fjdderelement (15h, 16, 19, 201i) som är anpassat att reglera avgasflodet genom kanalen (14, 18) i beroende av det inkommande avgasflodets storlek.Valve arrangement according to any one of claims 4-7, characterized in that the valve (15, 16, 19, 20) comprises a spring element (15h, 16, 19, 201i) which is adapted to regulate the exhaust flow through the duct (14, 18) in depending on the size of the incoming exhaust flow. 10. Ventilarrangemang enligt krav 9, kannetecknat av att fjdderelementet innefattas av namnda bimetallkomponent (16, 19).Valve arrangement according to claim 9, characterized in that the spring element is comprised of said bimetallic component (16, 19). 11. Ventilarrangemang enligt nagot av foregdende krav, kannetecknat av att ventilen (15, 16, 19, 20) innefattar en ventilkropp (15d, 16, 19, 20d) som är anpassad att reglera flodet genom kanalen (14, 18) genom att forskjutas mellan ett oppet ldge och ett vdsentligen stangt ldge.Valve arrangement according to any one of the preceding claims, characterized in that the valve (15, 16, 19, 20) comprises a valve body (15d, 16, 19, 20d) which is adapted to regulate the flow through the channel (14, 18) by displacing between an open ldge and a substantially closed ldge. 12. Ventilarrangemang enligt krav 11, kannetecknat av aft ventilkroppen innefattas av namnda bimetallkomponent (16, 19).A valve arrangement according to claim 11, characterized in that the valve body is comprised of said bimetallic component (16, 19). 13. Avgas system far en forbranningsmotor, kannetecknat av att det innefattar ett ventilarrangemang (5) enligt nagot av kraven 1-12. 10Exhaust system has an internal combustion engine, characterized in that it comprises a valve arrangement (5) according to any one of claims 1-12. 10
SE1351282A 2013-10-29 2013-10-29 Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst SE538969C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351282A SE538969C2 (en) 2013-10-29 2013-10-29 Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst
DE112014004546.2T DE112014004546B4 (en) 2013-10-29 2014-10-17 Valve arrangement for adjusting the exhaust gas flow through an oxidation catalyst
PCT/SE2014/051226 WO2015065269A1 (en) 2013-10-29 2014-10-17 Valve arrangement for adjusting the exhaust flow through an oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351282A SE538969C2 (en) 2013-10-29 2013-10-29 Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst

Publications (2)

Publication Number Publication Date
SE1351282A1 true SE1351282A1 (en) 2015-04-30
SE538969C2 SE538969C2 (en) 2017-03-07

Family

ID=53004713

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351282A SE538969C2 (en) 2013-10-29 2013-10-29 Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst

Country Status (3)

Country Link
DE (1) DE112014004546B4 (en)
SE (1) SE538969C2 (en)
WO (1) WO2015065269A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180371973A1 (en) * 2015-12-18 2018-12-27 Continental Automotive Gmbh Exhaust gas after-treatment arrangement and method for operating such an arrangement
KR102215667B1 (en) * 2016-05-30 2021-02-16 주식회사 젬백스앤카엘 Composition for skin regeneration and anti-aging comprising peripheral blood-derived mononuclear cells and platelet-rich plasma, and skin regeneration method using the same
DE102023107632A1 (en) 2023-03-27 2024-10-02 Schaeffler Technologies AG & Co. KG bypass valve of an exhaust gas treatment system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1519343A (en) * 1974-09-03 1978-07-26 Matsushita Electric Ind Co Ltd Gas purifying devices
DE4113293A1 (en) * 1991-04-24 1992-04-23 Daimler Benz Ag TEMPERATURE-DEPENDENT BYPASS VALVE
JP2002188432A (en) * 2000-12-19 2002-07-05 Isuzu Motors Ltd Exhaust gas purifying device for diesel engine
KR101628131B1 (en) * 2010-06-21 2016-06-08 현대자동차 주식회사 Exhaust gas purification system of diesel vehicle
JP2012225283A (en) * 2011-04-21 2012-11-15 Isuzu Motors Ltd Exhaust gas purification apparatus and method for controlling the same
FR2976320A1 (en) * 2011-06-08 2012-12-14 Peugeot Citroen Automobiles Sa Exhaust line for internal combustion engine, has distribution valve that is placed in bypass branch, and movable between open and closed positions in which exhaust gases respectively pass through and do not pass through bypass branch
DE102011111088A1 (en) * 2011-08-18 2013-02-21 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) System for reducing exhaust gas back pressure in exhaust line of e.g. petrol combustion engine of motor vehicle, has exhaust gas bypass channel arranged within catalytic converter, where effluent stream is partly conveyed through channel

Also Published As

Publication number Publication date
WO2015065269A1 (en) 2015-05-07
DE112014004546T5 (en) 2016-06-16
DE112014004546B4 (en) 2017-10-05
SE538969C2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
US11920507B2 (en) Method for regulating exhaust emissions
US10273861B2 (en) Multi-leg exhaust aftertreatment system and method
US7799289B2 (en) Exhaust treatment system with NO2 control
US9976462B2 (en) Method for the operation of an exhaust gas aftertreatment system
US11815000B2 (en) Exhaust gas treatment system with improved low temperature performance
US8166751B2 (en) Particulate filter
US20090035194A1 (en) Exhaust treatment system with an oxidation device for NO2 control
US9512761B2 (en) Systems and methods for NOx reduction and aftertreatment control using passive NOx adsorption
US9512760B2 (en) Aftertreatment system implementing low-temperature SCR
US9863298B2 (en) Compression ignition engine system with improved regeneration via controlled ash deposits
SE1351282A1 (en) Valve arrangement for controlling the exhaust gas flow through an oxidation catalyst
EP3677758B1 (en) Exhaust gas treatment system and method with improved regeneration
US20190383186A1 (en) Exhaust gas treatment system and method having improved low temperature performance
US8420036B1 (en) Control of NO/NO2 ratio to improve SCR efficiency for treating engine exhaust using bypass oxidation catalyst
EP2570625B1 (en) Exhaust gas purification system for internal combustion engine
CN107208521B (en) The exhaust gas cleaning method of the exhaust gas cleaning system of internal combustion engine, internal combustion engine and internal combustion engine
JP2017040239A (en) Exhaust emission control device
SE1251092A1 (en) Arrangement and procedure for the treatment of exhaust gases from a single-combustion engine
US11187127B2 (en) Exhaust gas treatment system and method with four-way catalyzed filter element
JP6461585B2 (en) Exhaust purification device
US9080483B2 (en) System and method for particulate filter regeneration
JP6574707B2 (en) Addition control device
JP6593015B2 (en) Exhaust gas purification system for internal combustion engine and internal combustion engine
JP2013015087A (en) Exhaust emission control device
US9884293B2 (en) Exhaust gas purification apparatus for internal combustion engine

Legal Events

Date Code Title Description
NUG Patent has lapsed