[go: up one dir, main page]

SE1351255A1 - Estimation of parameters for calculating at least one force acting on a vehicle - Google Patents

Estimation of parameters for calculating at least one force acting on a vehicle Download PDF

Info

Publication number
SE1351255A1
SE1351255A1 SE1351255A SE1351255A SE1351255A1 SE 1351255 A1 SE1351255 A1 SE 1351255A1 SE 1351255 A SE1351255 A SE 1351255A SE 1351255 A SE1351255 A SE 1351255A SE 1351255 A1 SE1351255 A1 SE 1351255A1
Authority
SE
Sweden
Prior art keywords
vehicle
estimation
driving force
mass
parameter
Prior art date
Application number
SE1351255A
Other languages
Swedish (sv)
Other versions
SE538101C2 (en
Inventor
Fredrik Roos
Mikael Ögren
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1351255A priority Critical patent/SE538101C2/en
Priority to PCT/SE2014/051235 priority patent/WO2015060771A2/en
Priority to DE112014004383.4T priority patent/DE112014004383T5/en
Publication of SE1351255A1 publication Critical patent/SE1351255A1/en
Publication of SE538101C2 publication Critical patent/SE538101C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/086Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles wherein the vehicle mass is dynamically estimated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Sammandrag Foreliggande uppfinning hanfor sig till ett forfarande for estimering av atminstone en forsta respektive en andra parameter vid ett fordon, varvid namnda fordon innefattar en motor for overforing av en drivkraft (Fraction) till atminstone ett drivhjul, varvid namnda forsta respektive andra parameter utgor parametrar vid berakning av atminstone en kraft verkande pa namnda fordon, varvid namnda forsta parameter utgOrs av en massa (m0 for namnda fordon. Forfarandet innefattar att: - estimera namnda forsta parameter (m0 nar namnda drivkraft ( FT.tion) for namnda fordon uppfyller ett fOrsta villkor, och - estimera namnda andra parameter (Fmodel Err; CRcl1Res; CAirRes) nar namnda drivkraft (FTruction) for namnda fordon uppfyller ett andra, fran namnda forsta villkor skiljt, villkor. The present invention relates to a method for estimating at least one first and a second parameter, respectively, in a vehicle, said vehicle comprising a motor for transmitting a driving force (Fraction) to at least one drive wheel, said first and second parameters constituting parameters in calculating at least one force acting on said vehicle, said first parameter being a mass (m0 for said vehicle. The procedure comprises: - estimating said first parameter (m0 when said driving force (FT.tion) for said vehicle satisfies a first condition , and - estimating said second parameter (Fmodel Err; CRcl1Res; CAirRes) when said driving force (FTruction) for said vehicle satisfies a second, separate from said first condition, condition.

Description

1 ESTIMERING AV PARAMETRAR FOR BERAKNING AV ATMINSTONE EN KRAFT VERKANDE PA ETT FORDON Uppfinningens omnide Foreliggande uppfinning hanfor sip till ett forfarande for estimering en forsta respektive en andra parameter vid ett fordon, varvid namnda forsta respektive andra parameter utgor parametrar vid berakning av atminstone en kraft verkande pa namnda fordon enligt ingressen till patentkrav 1. 1Jppfinningen hanfor sip Oven till ett system for estimering av parametrar enligt ovan liksom ett fordon innefattande ett dylikt system. The present invention relates to a method for estimating a first and a second parameter at a vehicle, respectively, said first and second parameters constituting parameters for calculating at least one force. on said vehicle according to the preamble of claim 1. The invention relates to a system for estimating parameters as above as well as a vehicle comprising such a system.

Uppfinningen hanfor sip Oven till ett datorprogram for utforande av forfarandet. The invention relates to a computer program for carrying out the process.

Uppfinningens bakgrund Vid framfarande av fordon är det vid manga situationer viktigt med god kannedom am de krafter som paverkar fordonet, i synnerhet nar fordonet är i rorelse. Background of the Invention When driving a vehicle, it is important in many situations to have a good knowledge of the forces affecting the vehicle, especially when the vehicle is in motion.

I synnerhet galler att det far god funktion has diverse vid fordon forekommande funktioner ofta Or onskvart att ha god kannedom am storleken av de krafter som paverkar fordonet. In particular, the fact that it performs well has various functions that occur in vehicles, often it is necessary to have a good knowledge of the magnitude of the forces that affect the vehicle.

Detta galler kanske i synnerhet tunga fordon, men Oven vid lattare fordon är det manga ganger onskvart med god kannedom am de krafter som paverkar fordonet. This may apply especially to heavy vehicles, but even with lighter vehicles, it is often unquestionable with good knowledge of the forces that affect the vehicle.

T.ex. kan kannedom am de krafter som paverkar fordonet anvOndas vid vaxling for att faststalla ett forvantat beteende far fordonet vid t.ex. Oppning/stOngning, och/eller vridmomentaviastning, av fordonets driviina. For example. knowledge of the forces affecting the vehicle can be used when shifting to determine a expected behavior of the vehicle at e.g. Opening / closing, and / or torque adjustment, of the vehicle's driviina.

Vidare blir farthallare med s.k. framatseende (Look Ahead) - funktion allt vanligare. Dylika farthallare simulerar hur fordonet kommer att bete sip nar det fardas langs ett kommande vagavsnitt. Denna framatseende funktionalitet Or dock, for god funktion, beroende av att fordonets predikterade upptradande 2 ocksa uppvisar god Overensstdmmelse med det verkliga utfallet. FOr att dylik simulering skall kunna utfOras pa ett bra satt är det viktigt med god kdnnedom om de krafter som paverkar fordonet, sasom motormoment, drivlineforluster, rullmotstand, luftmotstand och fordonsmassa. Furthermore, speedometers with so-called Look Ahead - function increasingly common. Such cruise control simulates how the vehicle will behave when traveling along a future section of road. This forward-looking functionality, however, for good function, depends on the fact that the predicted behavior of the vehicle 2 also shows good agreement with the actual outcome. In order for such simulation to be carried out in a good way, it is important to have a good knowledge of the forces that affect the vehicle, such as engine torque, driveline losses, rolling resistance, air resistance and vehicle mass.

En viktig parameter vid bestdmning av de krafter som paverkar fordonet utgbrs av fordonets massa. Fordonets massa paverkar fordonets beteende, i synnerhet ndr fordonet är i rOrelse, i mycket stor utstrackning i manga situationer, varfOr det ocksa är mycket viktigt att korrekt kunna estimera denna massa. An important parameter in determining the forces affecting the vehicle is the mass of the vehicle. The mass of the vehicle affects the behavior of the vehicle, especially when the vehicle is in motion, to a very large extent in many situations, which is why it is also very important to be able to correctly estimate this mass.

Fordonets massa kan dessutom, i synnerhet vid tunga fordon, variera i mycket stor utstrdckning. Exempelvis kan viktskillnaden mellan ett olastat fordon och ett fullt lastat fordon kan vara mycket stor, och vikten for ett fullt lastat fordon kan vara flera ganger hogre On vikten for det olastade fordonet. The mass of the vehicle can also vary, especially in the case of heavy vehicles, to a very large extent. For example, the weight difference between an unladen vehicle and a fully loaded vehicle can be very large, and the weight of a fully loaded vehicle can be several times higher than the weight of the unladen vehicle.

En sadan viktskillnad medfor av naturliga skdl att ett olastat fordon kommer bete sig mycket annorlunda jamfort med ett fullt lastat fordon vid t.ex. oppning av en drivlina pa grund av att fordonets massa har stor paverkan pa fordonets kormotstand, dvs. resultanten av de krafter som paverkar fordonet under drift. Such a difference in weight means for natural reasons that an unladen vehicle will behave very differently compared to a fully loaded vehicle at e.g. opening of a driveline due to the fact that the mass of the vehicle has a great impact on the vehicle's choke resistance, ie. the resultant of the forces affecting the vehicle during operation.

Fordonets massa ingar ocksa typiskt i berdkningsmodeller for t.ex. berdkning av de krafter som verkar pa fordonet, dar massans inverkan kan vara mycket stor, i synnerhet ndr fordonet Or i rorelse. The vehicle's masses are also typically present in cover models for e.g. calculation of the forces acting on the vehicle, where the impact of the mass can be very large, in particular when the vehicle is in motion.

T.ex. har fordonets massa en stor inverkan pa det satt pa vilket topografin for den vdg langs vilken fordonet fdrdas kommer att paverka fordonet, eftersom fordonets massa har en stor inverkan pa hur mycket fordonet accelereras respektive retarderas av en nedfors- respektive uppforslutning. Detta 3 medfor sAledes att Overensstammelsen mellan farvantat beteende respektive verkligt utfall vid t.ex. framatseende farthallare ocksA i hog grad beror pa noggrannheten has estimeringen av massan. For example. the mass of the vehicle has a great influence on the way in which the topography of the road along which the vehicle is driven will affect the vehicle, since the mass of the vehicle has a great influence on how much the vehicle is accelerated or decelerated by a downhill or uphill slope. This 3 means that the correspondence between customary behavior and actual outcome in e.g. forward-looking cruise control also largely depends on the accuracy of the mass estimation.

Av denna anledning innefattar i synnerhet tunga fordon ofta funktioner for att utfora en estimering av fordonets massa. Forutom fordonets massa finns det aven behov av kannedom am andra parametrar vid berakning av de krafter som paverkar fordonet, i synnerhet nar detta Or i rorelse. For this reason, heavy vehicles in particular often include functions for performing an estimation of the mass of the vehicle. In addition to the mass of the vehicle, there is also a need for knowledge of other parameters when calculating the forces affecting the vehicle, especially when this is in motion.

Sammanfattning av uppfinningen Det är ett syfte med foreliggande uppfinning att tillhandahalla ett f6rfarande far estimering av parametrar for anvandning vid berakning av krafter verkande pa ett fordon, varvid en god estimering av de pa fordonet verkande krafterna ocksa kan erhallas. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for estimating parameters for use in calculating forces acting on a vehicle, whereby a good estimation of the forces acting on the vehicle can also be obtained.

Detta syfte uppnds medelst ett fOrfarande for estimering av atminstone en forsta respektive en andra parameter vid ett fordon enligt den kannetecknande delen av patentkrav 1. This object is achieved by means of a method for estimating at least one first and a second parameter, respectively, of a vehicle according to the characterizing part of claim 1.

Enligt foreliggande uppfinning tillhandahalls ett forfarande fer estimering av Atminstone en forsta respektive en andra parameter vid ett fordon, varvid namnda fordon innefattar en motor fer everfering av en drivkraft till Atminstone ett drivhjul, varvid namnda forsta respektive andra parameter utgor parametrar vid berakning av Atminstone en kraft verkande pa namnda fordon, varvid namnda forsta parameter utgors av en massa fer namnda fordon. Forfarandet innefattar att: - estimera namnda forsta parameter nar namnda drivkraft for namnda fordon uppfyller ett forsta villkor, och 4 - estimera namnda andra parameter nar namnda drivkraft for namnda fordon uppfyller ett andra, Iran namnda forsta villkor skiljt, villkor. According to the present invention, there is provided a method for estimating at least one first and a second parameter, respectively, of a vehicle, said vehicle comprising a motor for transmitting a driving force to at least one drive wheel, said first and second parameters being parameters for calculating at least one force. acting on said vehicle, said first parameter being a mass of said vehicle. The method comprises: - estimating said first parameter when said driving force for said vehicle meets a first condition, and 4 - estimating said second parameter when said driving force for said vehicle meets a second, Iran named first condition separate, condition.

SAsom har namnts ovan finns det minga situationer dar god kannedom om de krafter som pAverkar ett fordon, i synnerhet nar fordonet Or i rorelse, Or onskvard. Enligt foreliggande uppfinning kan noggrannheten forbattras vid estimering av parametrar med vilka krafter verkandes pi namnda fordon kan beraknas, varvid fordonets upptradande vid olika situationer battre kan forutsagas. As mentioned above, there are many situations where there is good knowledge of the forces that affect a vehicle, especially when the vehicle is in motion, or onskvard. According to the present invention, the accuracy can be improved when estimating parameters with which forces acting on said vehicle can be calculated, whereby the behavior of the vehicle in different situations can be better predicted.

Detta Astadkoms enligt uppfinningen genom att estimera en forsta respektive en andra parameter nar olika forhallanden rider vid framforandet av fordonet. I synnerhet utfors estimering for respektive parameter vid tillfallen dar inflytandet frAn de kali= till fel som pAverkar estimeringen av respektive parameter Or reducerat. This is achieved according to the invention by estimating a first and a second parameter, respectively, when different conditions ride in the driving of the vehicle. In particular, estimation for each parameter is performed in cases where the influence from the kali = to errors that affect the estimation of the respective parameter Or is reduced.

En forsta av de parametrar som estimeras utgors av fordonets massa, mv, och enligt uppfinningen estimeras fordonets massa my vid en situation nar drivkraften for namnda fordon uppfyller ett forsta villkor, cidr namnda forsta villkor är sadant att inverkan frAn parametrar som piverkar estimering av massan reduceras. A first of the parameters that are estimated is the mass of the vehicle, etc., and according to the invention the mass of the vehicle is estimated in a situation when the driving force for said vehicle meets a first condition, cidr said first condition is such that the effect of parameters that estimate mass is reduced .

Detta kan Astadkommas genom att utfOra estimeringen av fordonets massa vid tillfallen dar drivkraften Or star i forhillande till de Ovriga krafter som pAverkar fordonet, sasom t.ex. nar drivkraften Overstiger den sammanlagda kraften av ovriga pi fordonet verkande krafter, eller en tillamplig multipel av ovriga pa fordonet verkande krafter. Dylika ovriga pi fordonet verkande krafter kan t.ex. utgoras av luftmotstandskraft och rullmotstandskraft. Drivkraften Or vanligtvis val kand di denna sisom Or kant rattframt kan berdknas genom utnyttjande av det av forbrdnningsmotorn avgivna vridmomentet, vilket vanligtvis finns angivet i fordonets styrsystem, varvid det avgivna vridmomentet pa }cant satt kan omrdknas till en drivkraft pa fordonets drivhjul genom utnyttjande av utvdxling och hjuldiameter. This can be achieved by performing the estimation of the mass of the vehicle in the event that the driving force is at odds with the other forces affecting the vehicle, such as e.g. when the driving force Exceeds the total force of other forces acting on the vehicle, or an applicable multiple of the other forces acting on the vehicle. Such other forces acting on the vehicle can e.g. consists of air resistance and rolling resistance. The driving force Or usually selected in this sisom Or the steering wheel front can be calculated by utilizing the torque delivered by the internal combustion engine, which is usually specified in the vehicle's steering system, whereby the delivered torque can be converted to a driving force on the vehicle's drive wheel. and wheel diameter.

Eftersom drivkraften beraknas genom utnyttjande av det av forbranningsmotorn avgivna vridmomentet, vilket ofta finns angivet med god noggrannhet, kan ocksa en mycket god estimering av fordonets massa erhdllas nar inverkan frdn ovriga krafter är liten och estimeringen ddrmed baseras i huvudsak pa drivkraften. Since the driving force is calculated by using the torque emitted by the internal combustion engine, which is often stated with good accuracy, a very good estimation of the vehicle mass can also be obtained when the impact from other forces is small and the estimation is thus mainly based on the driving force.

Namnda forsta villkor for namnda drivkraft kan t.ex. utgoras av att drivkraften overstiger en forsta kraft, sasom en kraft motsvarande nagon tillamplig andel av det av forbranningsmotorn maximalt avgivbara vridmomentet. T.ex. kan namnda forsta villkor utgoras av att drivkraften overstiger en drivkraft motsvarande 50% av det av fOrbranningsmotorn avgivbara vridmomentet. Alternativt kan villkoret t.ex. utgoras av att drivkraften motsvarar nagon tilldmpligt avgivet vridmoment i nagot av intervallen: 50-100% av det av forbranningsmotorn avgivbara vridmomentet, 70-100% av det av forbranningsmotorn avgivbara vridmomentet, 85-100% av det av forbranningsmotorn avgivbara vridmomentet. The said first condition for the said driving force can e.g. consists of the driving force exceeding a first force, such as a force corresponding to any applicable proportion of the maximum torque emitted by the internal combustion engine. For example. said first condition may be that the driving force exceeds a driving force corresponding to 50% of the torque emitted by the internal combustion engine. Alternatively, the condition can e.g. is determined by the fact that the driving force corresponds to any torque emitted in any of the intervals: 50-100% of the torque emitted by the internal combustion engine, 70-100% of the torque emitted by the internal combustion engine, 85-100% of the torque emitted by the internal combustion engine.

Vidare estimeras enligt foreliggande uppfinning atminstone en andra parameter. Detta utfors nar namnda drivkraft for namnda fordon uppfyller ett andra, fran ndmnda forsta villkor skiljt, villkor. Namnda andra villkor for namnda drivkraft är foretradesvis sadant att namnda drivkraft är lika med eller understiger en andra, jamfort med namnda forsta kraft maximalt lika star, kraft. Detta betyder saledes att namnda forsta respektive andra parameter kommer att estimeras vid olika 6 tillfallen, eftersom drivkraftvillkoret är sadant att inget overlapp finns. Dvs. namnda forsta respektive andra parameter kommer inte att estimeras samtidigt. Furthermore, according to the present invention, at least a second parameter is estimated. This is carried out when the said driving force for the said vehicle fulfills a second, separate from the first condition mentioned above. Said second conditions for said driving force are preferably such that said driving force is equal to or less than a second, compared with said first force at most equal to rigid force. This means that the first and second parameters, respectively, will be estimated in different cases, since the driving force condition is such that there is no overlap. Ie. said first and second parameters will not be estimated simultaneously.

Foretradesvis estimeras namnda andra parameter nar namnda drivkraft for namnda fordon understiger en forutbestamd andel av en maximal drivkraft, dvs. nar det av forbranningsmotorn avgivna vridmomentet understiger en fOrutbestamd andel av ett maximalt moment. T.ex. kan namnda forutbestamda andel utgora 40% av namnda drivkraft (namnda maximalt avgivbara vridmoment). Preferably, said second parameter is estimated when said driving force for said vehicle is less than a predetermined proportion of a maximum driving force, i.e. when the torque delivered by the internal combustion engine is less than a predetermined proportion of a maximum torque. For example. said predetermined proportion may constitute 40% of said driving force (said maximum releasable torque).

Saledes kan estimering av namnda forsta respektive andra parameter utforas vid situationer dar god noggrannnet for var och en av parametrarna kan sakerstallas, dar saledes olika kriterier for god noggrannhet racier. Kriterierna kan aven vara anordnade att andras under fard med fordonet, varvid kriterierna t.ex. kan skarpas allteftersom estimeringar utfors, dvs. kraven for att estimering ska utforas kan sattas alit hardare, med foljd att estimering kommer att ske alltmer sallan. Thus, estimation of the said first and second parameters can be performed in situations where good accuracy for each of the parameters can be stated, whereby different criteria for good accuracy racier. The criteria can also be arranged to others while driving the vehicle, whereby the criteria e.g. can be sharpened as estimates are performed, ie. the requirements for estimation to be performed can be set alit harder, with the result that estimation will take place more and more.

De krafter som verkar pa namnda fordon kan allmant beskrivas med en berakningsmodell representerande kormotstandskrafter verkande pa namnda fordon, och namnda fOrsta respektive andra parametervarde utgor med fordel parametrar i namnda berakningsmodell. Vidare kan namnda fOrsta respektive andra parametervarde estimeras genom utnyttjande av namnda berakningsmodell. Namnda andra parametervarde kan t.ex. representera en eller flera krafter i namnda berakningsmodell eller en parameter ingaende vid berakning av en kraft. Enligt en utforingsform representerar namnda andra parameter ett modellfel far en eller flera eller samtliga krafter i berakningsmodellen. 7 Fareliggande uppfinning har saledes fordelen att estimering av parametrar for berakning av krafter verkande pa namnda fordon kan utfaras ndr det dr sannolikt att estimeringarna kommer att halla hog kvalitet/noggrannhet, vilket ocksa medfor att antalet erfordrade estimeringar som erfordras for att erhalla onskad noggrannhet kan hallas litet. The forces acting on said vehicle can generally be described with a calculation model representing core resistance forces acting on said vehicle, and said first and second parameters respectively advantageously constitute parameters in said calculation model. Furthermore, the first and second parameters, respectively, can be estimated by using the said calculation model. The said other parameter values can e.g. represent one or more forces in said calculation model or a parameter input when calculating a force. According to one embodiment, said second parameter represents a model error due to one or more or all of the forces in the calculation model. The present invention thus has the advantage that estimation of parameters for calculating forces acting on said vehicle can be carried out where it is probable that the estimates will be of high quality / accuracy, which also means that the number of required estimates required to obtain desired accuracy can be maintained. small.

Vidare är brdnsleforbrukningen i ett fordon beroende av rullmotstandet. Om rullmotstandet är hogre an normalt kommer dven brdnsleforbrukningen bli hogre an normalt. Ett forhojt rullmotstand kan t.ex. bero pa att en broms ligger an eller att fordonet har felaktiga hjulinstdllningar. Det forhojda motstandet kan dven bero pa forhojda forluster i drivlinan. Dylika fordndringar i rullmotstand är normalt svara att detektera, men mojliggors enligt foreliggande uppfinning. Furthermore, the fuel consumption of a vehicle depends on the rolling resistance. If the rolling resistance is higher than normal, fuel consumption will also be higher than normal. An increased rolling resistance can e.g. due to a brake being applied or the vehicle having incorrect wheel settings. The increased resistance may also be due to increased losses in the driveline. Such demands in rolling resistance are normally difficult to detect, but are possible according to the present invention.

Ytterligare kannetecken for foreliggande uppfinning och fordelar ddrav kommer att framga ur fOljande detaljerade beskrivning av exempelutforingsformer och de bifogade ritningarna. Additional features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments and the accompanying drawings.

Kort beskrivning av ritningar Fig. 1A visar schematiskt ett fordon vid vilket fOreliggande uppfinning kan anvdndas. Brief Description of the Drawings Fig. 1A schematically shows a vehicle in which the present invention can be used.

Fig. 1B visar en styrenhet i styrsystemet for det i fig. 1A visade fordonet. Fig. 1B shows a control unit in the control system of the vehicle shown in Fig. 1A.

Fig. 2A-B visar ett exempelforfarande enligt foreliggande uppfinning. Figs. 2A-B show an exemplary method according to the present invention.

Fig. 3visar ett annat exempelfOrfarande enligt foreliggande uppfinning. Fig. 3 shows another exemplary method according to the present invention.

Detaljerad beskrivning av utforingsformer Fig. lA visar schematiskt en drivlina i ett fordon 100 enligt en utforingsform av foreliggande uppfinning. Det i fig. 1A 8 schematiskt visade fordonet 100 innefattar en drivlina med en forbranningsmotor 101, vilken pa ett sedvanligt satt, via en pa fOrbranningsmotorn 101 utgaende axel, vanligtvis via ett svanghjul 102, är forbunden med en vaxellada 103 via en koppling 106. Detailed Description of Embodiments Fig. 1A schematically shows a driveline in a vehicle 100 according to an embodiment of the present invention. The vehicle 100 schematically shown in Fig. 1A 8 comprises a driveline with an internal combustion engine 101, which in a conventional manner, via a shaft extending on the internal combustion engine 101, usually via a flywheel 102, is connected to a gearbox 103 via a clutch 106.

Forbranningsmotorn 101 styrs av fordonets 100 styrsystem via en styrenhet 115. Likasa styrs kopplingen 106, vilken t.ex. kan utgoras av en automatiskt styrd koppling, och vaxelladan 103 av fordonets 100 styrsystem med hjalp av en styrenhet 116. The internal combustion engine 101 is controlled by the control system of the vehicle 100 via a control unit 115. Likewise, the clutch 106, which e.g. can be constituted by an automatically controlled clutch, and the gearbox 103 of the control system of the vehicle 100 by means of a control unit 116.

En fran vaxelladan 103 utgaende axel 107 driver drivhjul 113, 114 via en slutvaxel 108, sasom t.ex. en sedvanlig differential, samt drivaxlar 104, 105 forbundna med namnda slutvaxel 108. Fig. 1A visar saledes ett vaxlingssystem av en typ med automatiskt vaxlade manuella vaxellador, men uppfinningen är lika tillamplig vid alla typer av drivlinor, sasom manuellt vaxlade vaxellador, dubbelkopplingslador, konventionella automatlador etc. Likasa är uppfinningen tillamplig vid samtliga typer av fordon dar en drivkraft anbringas atminstone ett drivhjul, sasom t.ex. atminstone delvis fran en elmotor vid elhybridfordon eller elfordon, eller fran annan kraftkalla vid andra typer av fordon. A shaft 107 emanating from the gearbox 103 drives drive wheels 113, 114 via an end shaft 108, such as e.g. a conventional differential, and drive shafts 104, 105 connected to said end shaft 108. Fig. 1A thus shows a shifting system of a type with automatically shifted manual gearboxes, but the invention is equally applicable to all types of drivelines, such as manually shifted gearboxes, double clutch shafts, conventional automatic charging, etc. Likewise, the invention is applicable to all types of vehicles where a driving force is applied to at least one driving wheel, such as e.g. at least in part from an electric motor in electric hybrid vehicles or electric vehicles, or from another power source in other types of vehicles.

Allmant paverkas fordon av ett flertal krafter nar det är i rorelse. Enligt ovan utgors en av dessa krafter av en drivkraft, FTractiGn vilken driver fordonet framat, eller bakat nar fordonet backas. Drivkraften utgers av den kraft som pafors fordonets drivhjul fran fordonets en eller flera motorer, i foreliggande icke-begransande exempel forbranningsmotorn 101, dar det av forbranningsmotorn 101 avgivna vridmomentet sedvanligt omraknas till en kraft verkande pa fordonets 100 hjul. Drivkraften FTrJctjofl kan vara anordnad att innefatta forbranningsmotorns interna forluster, 9 varvid drivkraften saledes kan vara negativ nar inget eller endast ett litet arbete utrattas av forbranningsmotorn. Vehicles are generally affected by a number of forces when they are in motion. According to the above, one of these forces is a driving force, FTractiGn, which propels the vehicle forward or backward when the vehicle is reversing. The driving force is emitted by the force acting on the vehicle's drive wheel from the vehicle's one or more engines, in the present non-limiting example the internal combustion engine 101, where the torque delivered by the internal combustion engine 101 is usually converted to a force acting on the vehicle 100 wheels. The driving force FTrJctjofl can be arranged to include the internal losses of the internal combustion engine, 9 the driving force can thus be negative when no or only a small work is done by the internal combustion engine.

Andra krafter som verkar pa fordonet innefattar en eller flera av rullmotstandskraft FRO11ReSI luftmotstandskraft FA R„ och gravitationskraft FGrav• Vidare har vaglutningen a en stor inverkan p fordonets kermotstand genom dess inverkan pa flera av namnda krafter enligt nedan. Other forces acting on the vehicle include one or more of the rolling resistance force FRO11ReSI air resistance force FA R „and gravity force FGrav • Furthermore, the gradient has a large effect on the vehicle's core resistance through its effect on several of the mentioned forces as below.

Allmant kan en berakningsmodell for beskrivning av de pa fordonet verkande krafterna uttryckas enligt: 10inva F Traction F Air Re s F Roll Re s F Gray F Brake(1) dar alltsa krafterna utgors av krafterna enligt ovan samt Tarake, vilken representerar den bromskraft som anbringas nar ett eller flera av fordonets bromssystem, sasom fardbromssystem eller tillsatsbromssystem, är aktiverade. in, utgor fordonets massa (kg) och a (m/s^2) utgor fordonets acceleration. ma utfor resultanten Frot av de pa fordonet verkande krafterna. In general, a calculation model for describing the forces acting on the vehicle can be expressed according to: 10inva F Traction F Air Re s F Roll Re s F Gray F Brake (1) where all the forces consist of the forces as above and Tarake, which represents the braking force applied when one or more of the vehicle's braking systems, such as the service braking system or the auxiliary braking system, are activated. in, constitutes the mass of the vehicle (kg) and a (m / s ^ 2) constitutes the acceleration of the vehicle. must perform the resultant Frot of the forces acting on the vehicle.

Betraffande estimering av dessa krafter utgors alltsa drivkraften Frraction av avgivet vridmoment fran motorn omraknat till kraft pa fordonets drivhjul. De andra i berakningsmodellen ingaende krafterna kan t.ex. estimeras enligt fOljande: F Air Re sA' Re s V F Roll ResRoll Re s g COSOC FGrav Mvg sin a dar: v utgor fordonets hastighet (m/s), a nuvarande lutning for det underlag pa vilket fordonet fardas (rad), g utgor gravitationskonstanten (ca 9.82 m/s^2), utgor en konstant som beror pa luftens densitet, fordonets area i fardriktningen, och fordonets luftmotstandskoefficient, vilken beror pa utformningen av de ytor pa fordonet som moter vinden, och dar i princip alla yttre detaljer pa fordonet har en inverkan. Concerning the estimation of these forces, therefore, the driving force is the fraction of the torque delivered from the engine converted into force on the vehicle's drive wheel. The other forces involved in the calculation model can e.g. estimated according to the following: F Air Re sA 'Re s VF Roll ResRoll Re sg COSOC FGrav Mvg sin a dar: v is the speed of the vehicle (m / s), a current slope for the surface on which the vehicle is traveling (row), g is the gravitational constant (approx. 9.82 m / s ^ 2), constitutes a constant which depends on the density of the air, the area of the vehicle in the direction of travel, and the coefficient of air resistance of the vehicle, which depends on the design of the surfaces of the vehicle facing the wind, and in principle all external details of the vehicle has an impact.

Luftmotstandskoefficienten kan darfor vara svar att rakna ut, med foljd att risk for att luftmotstandskraften estimeras pa ett felaktigt satt. Luftmotstandskraften är dessutom starkt hastighetsberoende, med fOljd att felaktig estimering far Okad inverkan med hogre fordonshastigheter. The air resistance coefficient can therefore be an answer to be calculated, with the consequence that there is a risk that the air resistance force is estimated incorrectly. The air resistance is also strongly speed-dependent, with the result that incorrect estimation has an increased effect with higher vehicle speeds.

C Roll Re s utgOr en rullmotstandskoefficient, vilken framfOrallt beror pa fordonets dack/hjul. Rullmotstandskraften är aven beroende av normalkraften, dvs. mvgcosa, och clamed fordonets massa. Aven rullmotstandskoefficienten kan vara svar att bestamma exakt. C Roll Re s constitutes a rolling resistance coefficient, which mainly depends on the vehicle's tires / wheels. The rolling resistance force is also dependent on the normal force, ie. mvgcosa, and clamed the mass of the vehicle. The coefficient of rolling resistance can also be the answer to determine exactly.

Fordonets kermotstand beror aven pd fOrluster i fordonets drivlina, dar dessa kan vara svara att sarskilja, och darfor helt eller delvis kan inbegripas i t.ex. rullmotstandskraft eller drivkraft vid estimeringen. Sammantaget medfor detta att det foreligger star risk for att de pa fordonet verkande krafterna estimeras pd ett satt som medfor oonskat star avvikelse fran faktiska varden. The vehicle's core resistance also depends on losses in the vehicle's driveline, where these may be difficult to distinguish, and therefore may be wholly or partly included in e.g. rolling resistance or driving force during estimation. All in all, this means that there is a risk that the forces acting on the vehicle will be estimated in a way that entails an undesirable deviation from the actual value.

Enligt foreliggande uppfinning tillhandahalls ett forfarande som reducerar risken fOr felaktig estimering av de pa fordonet verkande krafterna. Detta astadkoms enligt foreliggande 11 uppfinning genom att olika parametrar estimeras vid olika forhdllanden for fordonet nOr detta Or i rorelse. According to the present invention, there is provided a method which reduces the risk of incorrect estimation of the forces acting on the vehicle. This is achieved according to the present invention by estimating different parameters at different conditions for the vehicle when it is in motion.

Sisom har namnts ovan utgors en av de parametrar som enligt foreliggande uppfinning estimeras av fordonets massa in, och enligt uppfinningen estimeras fordonets massa 1n nOr fordonets drivkraft är star eftersom ekv. (1) vid dylika situationer uppvisar star kanslighet just mot fordonets massa mtv, varvid ocksa en god estimering av fordonets massa mc kan erhallas eftersom drivkraften vanligtvis kan bestOmmas med god noggrannhet enligt ovan. I fig. 2A-2B iskidliggors ett exempelforfarande enligt foreliggande uppfinning, dar fig. 2A visar en forsta del 200 av forfarandet. As mentioned above, one of the parameters which according to the present invention is estimated by the mass of the vehicle is in, and according to the invention the mass of the vehicle is estimated 1n when the driving force of the vehicle is rigid because eq. (1) in such situations shows great probability precisely against the vehicle's mass mtv, whereby also a good estimation of the vehicle's mass mc can be obtained since the driving force can usually be determined with good accuracy as above. Figs. 2A-2B illustrate an exemplary method according to the present invention, in which Fig. 2A shows a first part 200 of the method.

FOrfarandet enligt fireliggande uppfinning är anordnat att utforas av nigon tillamplig i fordonets styrsystem fOrekommande styrenhet, sasom t.ex. motorstyrenheten 1 (visad i fig. 1A) eller annan tillamplig vid fordonet befintlig styrenhet, sisom t.ex. styrenheten 116 for styrning av koppling/vaxellida. Styrenheten kan siledes utgoras av nigon befintlig styrenhet i fordonets styrsystem, och funktionen for att estimera fordonsmassa kan Oven finnas implementerad i fler an en styrenhet. Likasa kan estimeringen av fordonsmassan vara anordnad att utforas av flera styrenheter samtidigt och individuellt. Uppfinningen kan Oven implementeras i en fir foreliggande uppfinning dedikerad styrenhet. The method according to the present invention is arranged to be performed by any applicable control unit in the control system of the vehicle, such as e.g. the engine control unit 1 (shown in Fig. 1A) or other control unit existing at the vehicle, such as e.g. the control unit 116 for controlling the clutch / gear shaft. The control unit can thus consist of any existing control unit in the vehicle's control system, and the function for estimating vehicle mass can also be implemented in more than one control unit. Likewise, the estimation of the vehicle mass can be arranged to be performed by several control units simultaneously and individually. The invention can also be implemented in a control unit dedicated to the present invention.

Allmant bestir styrsystem i dagens fordon av ett kommunikationsbussystem bestaende av en eller flera kommunikationsbussar fir att sammankoppla ett antal elektroniska styrenheter (ECU:er) sisom styrenheterna, eller controllers, 115, 116, och olika pi fordonet 100 anordnade 12 komponenter. Ett dylikt styrsystem kan innefatta ett start antal styrenheter, och ansvaret for en specifik funktion kan vara uppdelat pa fler an en styrenhet. For enkelhetens skull visas i fig. 1A endast ett mycket begransat antal styrenheter. In general, control systems in today's vehicles consist of a communication bus system consisting of one or more communication buses for interconnecting a number of electronic control units (ECUs) as well as controllers, 115, 116, and various 12 components arranged in the vehicle 100. Such a control system may comprise a starting number of control units, and the responsibility for a specific function may be divided into more than one control unit. For the sake of simplicity, Fig. 1A shows only a very limited number of control units.

Styrenhetens 115 (eller den/de styrenheter vid vilken/vilka foreliggande uppfinning Or implementerad) funktion enligt foreliggande uppfinning kan t.ex. komma att bero av signaler fran styrenheten 116 som styr vaxellada/koppling, t.ex. for att fa kannedom am nar drivlinan har Oppnats. Styrenheten 1 mottar Oven ovriga erfordrade signaler for berakning av parametrar enligt det ovanstaende respektive det nedanstaende. Allmant galler att styrenheter av den visade typen normalt Or anordnade att ta emot sensorsignaler fran olika delar av fordonet 100, liksom fran olika pa fordonet 100 anordnade styrenheter. The function of the control unit 115 (or the control unit (s) to which the present invention is implemented) according to the present invention can e.g. may be due to signals from the control unit 116 which control the gearbox / clutch, e.g. to get acquainted with when the driveline has been opened. The control unit 1 also receives the other required signals for calculating parameters according to the above and the following, respectively. In general, control units of the type shown are normally arranged to receive sensor signals from different parts of the vehicle 100, as well as from different control units arranged on the vehicle 100.

Styrningen styrs ofta av programmerade instruktioner. Dessa programmerade instruktioner utgors typiskt av ett datorprogram, vilket nar det exekveras i en dator eller styrenhet astadkommer att datorn/styrenheten utfor onskad styrning, sasom forfarandesteg enligt foreliggande uppfinning. The control is often controlled by programmed instructions. These programmed instructions typically consist of a computer program, which when executed in a computer or controller causes the computer / controller to perform the desired control, such as the process steps of the present invention.

Datorprogrammet utgor vanligtvis del av en datorprogramprodukt, dar datorprogramprodukten innefattar ett tillampligt lagringsmedium 121 (se fig. 1B) med datorprogrammet lagrat pa namnda lagringsmedium 121. Namnda digitala lagringsmedium 121 kan t.ex. utgoras av nagon ur gruppen: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash-minne, EEPROM (Electrically Erasable PROM), en harddiskenhet, etc., och vara anordnat i eller i fOrbindelse med styrenheten, varvid datorprogrammet exekveras av styrenheten. Genom att andra 13 datorprogrammets instruktioner kan saledes fordonets upptradande i en specifik situation anpassas. The computer program usually forms part of a computer program product, where the computer program product comprises an applicable storage medium 121 (see Fig. 1B) with the computer program stored on said storage medium 121. Said digital storage medium 121 may e.g. consists of someone from the group: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), a hard disk drive, etc., and be arranged in or in connection with the control unit, the computer program being executed by the control unit. By following the instructions of the other computer program, the behavior of the vehicle in a specific situation can thus be adapted.

En exempelstyrenhet (styrenheten 115) visas schematiskt i fig. 1B, varvid styrenheten i sin tur kan innefatta en berakningsenhet 120, vilken kan utgOras av t.ex. nagon lamplig typ av processor eller mikrodator, t.ex. en krets for digital signalbehandling (Digital Signal Processor, DSP), eller en krets med en forutbestamd specifik funktion (Application Specific Integrated Circuit, ASIC). Berakningsenheten 120 är forbunden med en minnesenhet 121, vilken tillhandahaller berakningsenheten 120 t.ex. den lagrade programkoden och/eller den lagrade data berakningsenheten 120 behover for att kunna utfora berakningar. Berakningsenheten 120 är aven anordnad att lagra del- eller slutresultat av berakningar i minnesenheten 121. An exemplary control unit (control unit 115) is shown schematically in Fig. 1B, wherein the control unit in turn may comprise a calculating unit 120, which may be constituted by e.g. any suitable type of processor or microcomputer, e.g. a Digital Signal Processor (DSP), or an Application Specific Integrated Circuit (ASIC). The calculating unit 120 is connected to a memory unit 121, which provides the calculating unit 120 e.g. the stored program code and / or the stored data calculation unit 120 need to be able to perform calculations. The calculation unit 120 is also arranged to store partial or final results of calculations in the memory unit 121.

Vidare är styrenheten forsedd med anordningar 122, 123, 124, 125 for mottagande respektive sandande av in- respektive utsignaler. Dessa in- respektive utsignaler kan innehalla vagformer, pulser, eller andra attribut, vilka av anordningarna 122, 125 for mottagande av insignaler kan detekteras som information for behandling av berakningsenheten 120. Anordningarna 123, 124 for sandande av utsignaler är anordnade att omvandla berakningsresultat fran berakningsenheten 120 till utsignaler for overforing till andra delar av fordonets styrsystem och/eller den/de komponenter for vilka signalerna är avsedda. Var och en av anslutningarna till anordningarna for mottagande respektive sandande av in- respektive utsignaler kan utgoras av en eller flera av en kabel; en databuss, sasom en CAN-bus (Controller Area Network bus), en MOST-bus (Media Oriented Systems Transport), eller nagon annan busskonfiguration; eller av en tradlos anslutning. 14 Ater till fig. 2A visas suedes en farsta del av ett exempelforfarande 200 enligt foreliggande uppfinning. I steg 201 i fig. 2A fastst011s huruvida fordonets drivkraft FTraction overstiger en farsta drivkraftGransvOrdetutgars foretradesvis av en forh011andevis star drivkraft, sasom en drivkraft motsvarande ett av fordonets motor 101 avgivet vridmoment utgorande atminstone 50% av det maximalt avgivbara vridmomentet. Furthermore, the control unit is provided with devices 122, 123, 124, 125 for receiving and transmitting input and output signals, respectively. These inputs and outputs may contain waveforms, pulses, or other attributes, which of the input signals 122, 125 for receiving input signals may be detected as information for processing the calculation unit 120. The devices 123, 124 for transmitting output signals are arranged to convert calculation results from the calculation unit. 120 to output signals for transmission to other parts of the vehicle control system and / or the component (s) for which the signals are intended. Each of the connections to the devices for receiving and transmitting input and output signals, respectively, may be one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Oriented Systems Transport), or any other bus configuration; or by a wireless connection. Back to Fig. 2A, a first part of an exemplary method 200 according to the present invention is shown suedes. In step 201 of Fig. 2A, it is determined whether the driving force FTraction of the vehicle exceeds a first driving force. The value is preferably exerted by a relatively strong driving force, such as a driving force corresponding to a torque delivered by the vehicle's engine 101 constituting at least 50% of the maximum torque.

Alternativt kan grOnsvOrdett.ex. sattas till ndgon tillamplig andel av en drivkraft motsvarande ett av fordonets motor 101 avgivet vridmoment enligt nagot av de ovan exemplifierade intervallen. Alternatively, grOnsvOrdett.ex. is set to any applicable proportion of a driving force corresponding to a torque delivered by the engine 101 of the vehicle according to any of the intervals exemplified above.

Om det i steg 201 fastst011s att drivkraften FTraction overstiger gransvardetfortsatter fOrfarandet till steg 202 for estimering av fordonets massa my. Massan my estimeras med hjalp av ekv. (1) ovan, alternativt ekv. (5) nedan, (Jar alltsa drivkraften F,„„„ Or forhallandevis star nar estimering utfors. If it is determined in step 201 that the driving force FTraction exceeds the threshold value, the procedure proceeds to step 202 for estimating the mass my of the vehicle. The mass my is estimated with the help of eq. (1) above, alternatively eq. (5) below, (Thus, the driving force F, „„ „Or relative star when estimation is performed.

De ovriga i ekv. (1) ingdende krafterna kan estimeras genom utnyttjande av parametrar lagrade i fordonets styrsystem. The others in eq. (1) the driving forces can be estimated by using parameters stored in the vehicle's control system.

Massan kan Oven estimeras genom utnyttjande av den nedan beskrivna integreringen av ekv. (1) alt. (5). The mass can also be estimated by using the integration of eq. Described below. (1) alt. (5).

FOrfarandet fortsatter sedan till steg 203, dar det faststalls huruvida estimeringen Or slutford och sa lange som sa inte är fallet atergar forfarandet till steg 202. Om det i steg 203 faststalls att estimeringen Or slutford fortsatter forfarandet till steg 204, (Jar det estimerade vOrdet for fordonets massa lagras my. Nar en estimering av fordonsmassan m har utfors lagras, enligt en utfOringsform av uppfinningen, denna skattade fordonsmassa my i ett minne. Nar fler On en estimering av fordonsmassan m har utfOrts kan dessa fler On en estimeringar medelvardesbildas for att erhalla en The procedure then proceeds to step 203, where it is determined whether the estimation Or slutford and as long as that is not the case, the procedure returns to step 202. If in step 203 it is determined that the estimation Or slutford proceeds the procedure to step 204, (Jar the estimated value for When an estimate of the vehicle mass m has been performed, according to an embodiment of the invention, this estimated vehicle mass my is stored in a memory.When more On an estimation of the vehicle mass m has been performed, these more On one estimates can be averaged to obtain a

Claims (27)

medelvardesbildad fordonsmassa. De fler an en estimeringarna av fordonsmassan m, kan t.ex. aven filtreras for att jamna ut avvikelser. Den senaste estimeringen kan aven viktas med ett eller flera aldre varden pa tillampligt satt. Enligt en utforingsform antas det senast estimerade vardet utgora det mest korrekta vardet. Forfarandet fortsatter sedan till steg 205, dar det faststalls huruvida ytterligare estimering av fordonets massa m skall utforas. T.ex. kan fordonets massa m, vara anordnad att estimeras till dess att en avvikelse mellan pa varandra foljande estimeringar bedoms vara tillampligt liten. Alternativt kan ett visst antal estimeringar vara anordnade att utforas. Estimeringarna kan aven vara anordnade att utforas kontinuerligt under hela fordonets fard. Estimering kan aven vara anordnad att utforas med allt strangare villkor for att estimering ska utforas, varvid villkoren for estimering uppfylls mer sallan. Saledes kan estimering vara anordnad att ske oftare vid t.ex. borjan av en fard fer att sedan endast utforas vid allt gynnsammare forhallanden for god estimering. Sasom har namnts utfors estimering av massan m, nar drivkraften Fl.action är star i ferhallande till ovriga krafter, eftersom kunskapen am och noggrannheten for drivkraften FTraction Or stOrre an for ovriga krafter. Kravet pa drivkraftens storlek kan t.ex. vara anordnat att Oka i takt med att estimeringar utfors, varvid estimeringar saledes kommer att utforas allt mer sallan. Istallet fer att drivkraften uppgar till en viss andel av maximal drivkraft kan estimeringen vara anordnad att utforas dl FTractionXFAirResFRollRes ' Storleken pd x kommer att paverka hur manga estimeringar som kommer att utforas under 16 tidsperioden/strackan och bestammer Aven kvaliteten pa estimeringarna som utfors. Start varde for x ger bra kvalitet pa estimeringarna, men fa estimeringar. Storleken pa x kan vara anordnat att okas i takt med att estimeringar utfors. Om ytterligare estimering skall utforas atergar forfarandet till steg 201 annars avslutas forfarandet i steg 206. Det i fig. 2A visade forfarandet kan vidare ha en overordnad funktion far att avbryta estimering i steg 202/203 am det faststalls att drivkraften under estimeringen understiger namnda gransvarde Flimi far att sakerstalla att estimering inte utfors vid mindre lampliga situationer. Estimeringen av fordonets massa my kan t.ex. vara anordnad att utforas under en viss tid, sasom ett visst antal sekunder eller under en viss tillryggalagd stracka sasom ett visst antal meter. Detta beskrivs narmare nedan. Foreliggande uppfinning avser dock inte enbart estimering av fordonets massa m, utan Oven estimering av atminstone en ytterligare parameter. Det uppfinningsenliga forfarandet innefattar darfor en aven funktion 210 liknande den i fig. 2A och som utfors parallellt med den i fig. 2A men for estimering av en andra parameter. Detta askadliggors i fig. 23. Denna andra parameter kan utgoras av nagon tillamplig parameter i den berakningsmodell som anvands for att beskriva kraftpaverkan pa fordonet, sasom t.ex. ekv. (1). Detta innefattar Oven flagon av de parametrar som anvands for berakning av t.ex. krafterna enligt ekv. (2)-(4). Suedes kan t.ex. CAirves eller coulles losas ut ur berakningsmodellen och estimeras enligt foreliggande uppfinning. Berakningsmodellen kan alltsa t.ex. anta formen enligt ekv. (1). Allmant galler att denna berakningsmodell kan se olika ut, dar alika krafter kan delas upp i storre eller mindre 17 komponenter. T.ex. kan drivkraften FT,,,ction i ekv. (1) vara anordnad att innefatta de forluster som sker i drivlinan vid overforing av den av motorn genererade kraften till fordonets hjul. Likasa visas i ekv. (1) luftmotstandskraften respektive rullmotstandskraft som separata krafter, men dessa kan alternativt vara anordnade att representeras av en enda kraft da de ofta kan vara svara att sarskilja fran varandra. Sasom inses utgor den i ekv. (1) visade berakningsmodellen just en modell, (Jar felaktigheter i modellen eller det satt pa vilket de i modellen ingaende krafterna beraknas per upphov till ett modellfel. Enligt en utforingsform av foreliggande uppfinning estimeras darfor detta modellfel, F ModelError vilket saledes utgar ett sammanlagt fel for estimerade krafter. Ekv. (1) kan dOrfor omskrivas enligt: "Iva traction FA. Re s F Roll Re s F Gray F ModelError() F ModelError representerar suedes ett sammanlagt fel for estimerade krafter, och utgors teoretiskt av noll Newton am modellen stammer perfekt med verkligheten, vilket dock ofta inte Or fallet. Enligt ekv. (5) har suedes en ytterligare kraft, F:„,0„7„, inforts. Enligt denna utforingsform representerar alltsa kraften F ModelError ett gemensamt modellfel for de i modellen ingaende krafterna, varvid saledes estimeringar av t.ex. ruilmotstandskraft och iuftmotstandskraft och gravitationskraft, och Oven drivkraften FTraction gemensamt kan korrigeras med en gemensam korrigeringsfaktor F _ModelError med foljd att t.ex. ny estimering av fordonets massa kan utforas 18 efter en estimering av F ModelError , genom utnyttjande av ekv. (5) med resultatet att en an battre estimering av fordonsmassan erhalls. Innan nagon estimering av Fuodeffrror har utforts kan denna vara satt till nagot tillampligt varde, sasom t.ex. ett estimat vid en tidigare fard, eller sattas till nail, varvid saledes fordonets massa med fordel estimeras genom utnyttjande av ekv. (5) aven am nagot aktuellt estimat av F ModelError annu inte finns. Sasom inses kan den forsta estimeringen enligt uppfinningen utgoras av antingen fordonets massa eller F ModelError beroende pa vilket kriterium for estimering som uppfylls forst. Likasa kan en fornyad, sannolikt mer korrekt estimering av fordonsmassan my t.ex. sedan anvandas far att erhalla en ytterligare forbattrad estimering av F ModelError eller tvart am, eller annan i berakningsmodellen ingaende parameter. Betraffande estimering av F ModelError liksom fOr Ovrigt andra parametrar i modellen Over krafter verkande pa fordonet, gdller alltsa andra kriterier jamfort med vid estimering av fordonets massa for att en sa god estimering som mojligt skall erhallas. I steg 211 i fig. 2B faststalls darfor, istallet for att sasom i steg 201 faststalla huruvida drivkraften FT,,„„tion overskrider ett gransvarde, nu huruvida fordonets drivkraft FTraction understiger eller Or lika med ett andra gransvarde Betraffande estimering av F ModelError är det ferdelaktigt am drivkraften Ffrac,,o, Or sa liten som mojligt, da denna i vissa fall kan vara mycket star i forhallande till ovriga pa fordonet verkande krafter, och clamed ha en mycket dominerande inverkan pa berakningarna. Genom att istallet utfora estimeringen av modellfelet F mode/Error, eller annan parameter 19 sasom t.ex. C7,4irRes eller C7,01,aes, ndr drivkraften F,,,,„„, är liten kan en god estimering av modellfelet erhallas. Enligt en utforingsform utfors estimering av modellfelet F ModelError °M drivkraften FTraction understiger en kraft motsvarande t.ex. 30% av det av fordonets motor avgivbara vridmomentet. Enligt en utforingsform kan gransvardet anta ett hogre varde, och enligt en utfOringsform kan gransvdrdetvara lika med Fir",„ men dar villkoren i step 201 respektive 211 fortfarande är sadana att samtidig estimering aldrig utfors. Enligt en utfOringsform kan gransvardet anta ett lagre varde an 30%, sasom ett godtyckligt vdrde i intervallet 0-30%. Nar saledes villkoret i step 211 är uppfyllt fortsdtter fOrfarandet till step 212 for estimering av modellfelet F ModelError • Detta utfors pa morsvarande satt som for fordonets massa m, dvs. genom att losa ut F ModelError ur ekv. (5). Om fordonets massa my tidigare har estimerats nyttjas radande estimat for fordonets massa vid estimering av modellfelet. I step 213 faststdlls sedan huruvida estimeringen Or slutfOrd, och sa ldnge som sa inte är fallet atergar forfarandet till step 212. Liksom ovan kan forfarandet vara anordnat att avbrytas sa snart villkoret i step 211 inte langre är uppfyllt. Ndr estimeringen Or slutfOrd fortsdtter forfarandet till step 214, ddr modellfelet F„ode/Error lagras/uppdateras pa motsvarande satt som har angivits for fordonsmassan ovan. I step 215 faststdlls sedan huruvida ytterligare uppdatering av modellfelet erfordras, och am sa inte är fallet avslutas ferfarandet i step 216. Kriterierna fOr evergang fran step 211 till 212 kan, precis som for fordonets massa my ovan, vara anordnat att sdttas alit striktare allteftersom alit fler estimeringar av modellfelet har utfOrts. Detta betyder saledes att maximalt tillaten drivkraft vid estimeringen kan sdttas alit lagre efter hand. Genom att enligt det visade forfarandet kompensera fel i estimeringar av t.ex. fordonets massa m respektive luftmotstand/rullmotstand med ett modellfel F ModelError medfOr att sammantaget en mycket god estimering av den sammanlagda kraftpaverkan fordonet utsatts for kan erhallas, med foljd att t.ex. simuleringar i samband med framdtseende farthallare kommer att overensstdmma val med faktiska utfallet. Likasa kan god reglering vid t.ex. vdxling erhallas. Vidare har uppfinningen fordelen att varje nytt estimat av t.ex. fordonets massa respektive modellfelet F ModelError kommer att ta tidigare estimat av den respektive andra parametern med i berdkningen, med foljd att massa m, och modellfel (eller annan parameter som estimeras) konvergerar med mycket god noggrannhet som foljd. I ekv. (1) visas aven bromskraften FR,„k„ och aven am inte denna är med i ekv. (5) kan sasom inses aven bromskraften TBrake estimeras genom utnyttjande av ekv. (5) och/eller ekv. (1). I detta fall kan med fOrdel andra parametrar, sasom massa my och modellfelet F ModelError vara anordnade att forst estimeras, eftersom dessa är av en mer konstant art jdmfOrt med bromskraften som kan variera mycket start fran ett tillfalle till ett annat, varvid sedan bromskraften estimeras vid behov, dar estimeringen avser det specifika tillfdlle bromskraften anbringas. I det i fig. 2A-3 visade forfarandet initieras estimering enbart pa grund av storleken for radande drivkraft. Bade betrdffande fordonets massa m respektive modellfelet F ModelError kan ytterligare kriterier tilldmpas fOr att estimering skall initieras. T.ex. kan med avseende pa fordonets massa m ett 21 ytterligare krav vara att fordonets hastighet overstiger flagon tillamplig hastighet, sasom ett tillampligt antal kilometer i timmen. Vidare, eftersom massan är intimt forknippad med accelerationen i berdkningsmodellen kan ett ytterligare krav vara att fordonets acceleration a Atminstone uppgar till flagon tillamplig acceleration. T.ex. kan enligt en utforingsform kriteriet fir accelerationen vara att den overstiger 1 m/s2 eller 0,5 m/s2. Betrdffande modellfelet F ModelError liksom aven andra parametrar, kan det aven i detta fall vara fordelaktigt att tilldmpa ytterligare kriterier fir att estimering skall utforas. T.ex. kan det aven har vara fordelaktigt att fordonets hastighet overstiger ndgon tilldmplig hastighet. Vidare kan ett kriterium utgoras av att fordonets acceleration a är liten, foretrddesvis sa ndra coil m/s2 som mojligt, eftersom en acceleration pa coil m/s2 innebar att termen till vanster om likhetstecknet i ekv. (5) elimineras ur berdkningarna eller atminstone gor mycket liten. T.ex. kan enligt en utforingsform kriteriet fir accelerationen vara att den maximalt uppgdr till +0,1 m/s2 eller ±0,05 m/s2 eller tillamplig acceleration i intervallet 0-±0,1 m/s2, ddr negativ acceleration innebdr att fordonet retarderas. Vidare, eftersom bade rullmotstand och gravitationskraft ar beroende av radande lutning fir det underlag pd vilket fordonet fardas ar det fordelaktigt om denna lutning ar Si ndra noll grader (radianer) som mojligt, t.ex. fir att i detta fall aven gravitationskraften kan elimineras alternativt goras mycket liten vid berakningarna. T.ex. kan lutningen vara begransad till att maximalt uppga till en godtycklig lutning i intervallet ±(0-0.1) radianer, eller ±(0-0.05) radianer. Fareliggande uppfinning medger saledes att en mycket god estimering av den kraftpaverkan ett fordon utsdtts fir under 22 fard kan estimeras. De krafter som paverkar fordonet varierar dock vanligtvis med varierande forhallanden. T.ex. är luftmotstandet starkt beroende av fordonets hastighet. Detta innebar att fel i den luftmotstandskonstant som anvands vid berakning av luftmotstandskraften kommer att fa alit stOrre genomslag med okande hastighet. Enligt en utforingsform av uppfinningen utfors darfOr estimeringar av modellfelet F ModelError vid ett flertal olika fordonshastigheter, varvid olika modellfel FiliodelError kan tillampas vid olika hastigheter vid t.ex. estimering av fordonsmassan for att ta hansyn till modellfelets F MocklError hastighetsberoende. Enligt en utforingsform av uppfinningen kan orsaken till modellfelet F ModelError bestammas. Modellfelet kan vara sadant att det paverkas i stor utstrackning av fel i luftmotstands- och rullmotstandsmodeller. Dessutom kan modellfelet paverkas av av fel i estimerad drivkraft samt fel i estimerad massa. Om modellfelet FmodelError faststalls for olika hastigheter enligt ovan kan alltsa en del av modellfelet som är harrorlig till luftmotstandet faststallas, dvs. den hastighetsberoende delen. Enligt en utforingsform kan det aven faststallas hur stor del av modellfelet FwdelErrar som hanfor sig till luftmotstand/rullmotstand respektive fordonets drivkraft/forluster uppstroms t.ex. en koppling eller vaxellada. Ett dylikt forfarande 300 askadliggors i fig. 3, vilket precis som ovan innefattar en icke-visad del for estimering av fordonets massa enligt ovan. I steg 311 faststalls, precis som i steg 211 i fig. 2B, huruvida fordonets drivkraft understiger nagon tillamplig drivkraft sasom t.ex. gransvardet F lim 2 • Ytterligare kriterier enligt vad som har beskrivits ovan kan ocksa tillampas. Nar sa Or fallet fortsatter forfarandet till steg 312, dar det faststalls 23 huruvida fordonets drivlina är Oppen. Om sá inte är fallet utfors stegen 317-319, motsvarande stegen 212-214 i fig. 2B, dvs. modellfelet for sluten drivlina, F ModelErrorClosedestimeras precis som ovan. Om drivlinan daremot är oppen fortsatter forfarandet till steg 313, dar modellfelet ocksa estimeras. I detta fall, dvs. nar drivlinan är oppen, är drivkraften per definition lika med noll, vilket betyder att denna elimineras ur berakningsmodellen. Det i steg 313 estimerade modellfelet ModelErrorOpen utgors saledes av ett modellfel TmodelErroropen dar fel i estimerad drivkraft respektive forluster uppstroms den punkt dar drivlinan brutits inte är med i resultatet. Saledes, nar det i steg 314 har faststallts att estimeringen av modellfelet FModelErrorOpen vid oppen drivlina är klar fortsatter forfarandet till steg 315, dar modellfelet FModeErrorOpen vid oppen drivlina l lagras/uppdateras pa motsvarande satt som har angivits ovan, varvid forfarandet sedan fortsatter till steg 316 cid'. drivkraftfelet F mellan modellfelet vid oppen drivlina F ModelErrorOpen respektive modellfelet vid stangd drivlina F ModelErrorClosed • Motsvarande uppdatering utfors i steg 320 efter estimering av F ModelErrorClosed • Uppdateringen i steg 316 respektive 320 kan vara anordnad att endast utforas under villkoret att estimeringar av bade ModelErrorOpen och FModelErrorClosed har utforts. I steg 321 respektive 322 faststalls huruvida ytterligare estimeringar ska utforas enligt ovan. Saledes är det enligt denna utforingsform av foreliggande uppfinning mojligt att identifiera fel som är harrorliga till den del av drivlinan som befinner sig ovanfor den punkt dar drivlinan oppnats. Detta fel kan t.ex. vara anordnat att lagras over tiden vid olika tidpunkter for att mojliggora identifiering av forandringar i modellfelet med tiden, t.ex. TractionError faststalls/uppdateras som skillnaden 24 pa grund av slitage eller andra orsaker. Om felet är start och en star bromsande kraft är harrorlig till drivkraften kan detta indikera att nagot ar fel i t.ex. fordonets motor. Ett start modellfel avseende drivkraften kan aven t.ex. bero pa att det finns farbrukare som t.ex. inkopplats via kraftuttag, dar styrsystemets kannedom am denna fOrbrukare är dalig. Fereliggande uppfinning medger saledes kompensering aven for sadana faktorer. Enligt ekv. (1) respektive (5) ovan innefattar estimeringen en term a representerande fordonets acceleration. Aven cm t.ex. accelerometrar kan anvandas bestams accelerationen a ofta genom derivering av fordonet hastighet. Signalen for fordonshastigheten kan dock i sip vara relativt brusig, t.ex. pa grund av att denna kan erhallas fran en tachometer, varvid hastighetssignalen saledes redan Or deriverad en gang. Detta medfOr att derivatan av hastighetssignalen, dvs. accelerationen, kan bli mycket brusig, med reducerad noggrannhet vid estimering av parametrar enigt ovan som feljd. Enligt en utforingsform estimeras darfOr fordonsmassan my respektive modellfelet eller den parameter som estimeras under en tidsperiod to-t„d, eller en stracka xo-xe dar drivkraften uppfyller respektive kriterier enligt ovan. Ett dylikt farfarande beskrivs i den internationella ansakan W02012/134377 (Al) for estimering av fordonets massa, varvid saledes estimering av fordonets massa enligt foreliggande uppfinning kan utforas helt enligt nagot av de dari visade ferfarandena. Allmant galler att fordelar visade i denna ansokan Or tillampliga vid estimering enligt fOreliggande uppfinning, men dar de visade forfarandena for estimering av fordonets massa anpassas for estimering av den andra parametern enligt foreliggande uppfinning, t.ex. genom att tillampa ekv. (5) istallet for ekv. (1) och lOsa ut F ModelError eller den parameter som ska estimeras ur ekvationen varvid estimering enligt W02012/134377 (Al) kan utforas. Betraffande fordonets massa kan denna losas ut ur ekv. (5), med tillampning av Ekv. (2)-(4), och cidr accelerationen integreras och som fOljd resulterar i en hastighetsskillnad, SOM: (FTraction F Air Re s FliodelError)Ch ekv. (6) —vto)+ g+ sin a)dt t, Enligt ekv. (6) estimeras saledes fordonets massa under en viss tidsperiod to-tend, och darmed baserat ph den verkan pa fordonet i modellen ingaende krafterna har pa fordonet under namnda tidsperiod to-tend • Denna tidsperiod to-tend kan vara anordnad att ha en langd mom ett tillatet tidsintervall, det viii saga att tidsperioden to-tend Or lOngre On en minsta tillaten tid och kortare an en langsta tillaten tid, sasom ett tillampligt antal sekunder. Eftersom estimeringen har beror av en fOrandring i hastighet och inte acceleration, det vill saga av en skillnad mellan en starthastighet vto och en sluthastighet v,, racker det att bestamma ett startvarde vto och ett slutvarde vt, for hastigheten, varfor en derivering av hastigheten v for att erhalla accelerationen a inte erfordras, varvid estimering baserad ph en brusig och felgenererande accelerationssignal kan undvikas. Den ovan namnda tidsperioden tc-tend, under vilken krafternas paverkan pa fordonet bestams, kan Oven motsvara en stracka xoxe vilken tillryggalaggs under namnda tidsperiod to-tend. Detta 26 beskrivs i W02012/134377 (Al) och är saledes tillOmpbart har. Denna stracka xo-xe har da en langd mom ett tillatet avstandsintervall, sa att strackan xo-xc Or langre an en minsta tillaten 1Ongd for strOckan och kortare On en langsta tillaten langd for strackan. T.ex. kan, far att en estimering ska anses som tilliOrlitlig, tidsperioden, enligt en utforingsform, vara langre an en minsta tillaten tid (eller langre är en minsta tillaten stracka). Dessutom ska den vara kortare On en maximalt tillaten tid (eller kortare an en maximalt tillaten stracka), vilket minskar antalet berOkningar am villkoret Or uppfyllt under ling tid/stracka. Enligt en utforingsform Or den minsta tillatna tiden 1 sekund och den maximalt tillatna tiden en tillamplig tid i intervallet 1-60 sekunder, sasom t.ex. 30 sekunder, dOr estimeringen kan vara anordnad att paga sa lOnge som mojligt under den tillatna tiden sa lange som villkoren for estimeringen är uppfyllda, men dOr estimeringen kan slutforas innan den maximala tiden har uppnatts sa fort nagot villkor far estimeringen inte langre är uppfyllt. Estimeringarna kan saledes ha olika langd. Aven topografisk information kan tas i beaktande, vilket ocksa beskrivs i namnda ansokan. Betraffande den andra parametern som estimeras utfors detta pa motsvarande satt, och for exemplet Fmodeff,„ erhalls: FModelError td — to) ± (FTraction F.4irRes FRollRes — FGrav)dt to (7) @ end t dOr alltsa motsvarande fordelar erhalls. 27 Sasom inses kan de i W02012/134377 (Al) visade satten att utfora estimering tillampas fullt ut for bade den forsta respektive andra parametern enligt fareliggande uppfinning. En fordel med att basera estimeringarna pa integraler av krafterna är att berakningen av estimeringen i sig fungerar som ett filter for storningar. Eftersom estimeringarna har integrerar over en relativt lang tidsperiod to-teller Over en relativt lang stracka xo-xe, paverkar temporara fel, till exempel pa grund av brus has vaglutningen a, hastigheten, eller nagon annan storhet, estimeringen i mycket liten utstrackning. Estimeringen blir saledes relativt storningsokanslig. Foreliggande uppfinning är inte begransad till de ovan beskrivna utforingsformerna av uppfinningen utan avser och innefattar alla utforingsformer mom de bifogade sjalvstandiga kravens skyddsomfang. 28 Patentkravaverage vehicle mass. The more than one the estimates of the vehicle mass m, can e.g. also filtered to even out deviations. The most recent estimate can also be weighted by one or more age values in an appropriate way. According to one embodiment, the most recently estimated value is assumed to be the most correct value. The process then proceeds to step 205, where it is determined whether further estimation of the vehicle mass m should be performed. For example. For example, the mass of the vehicle may be arranged to be estimated until a deviation between successive estimates is judged to be appropriately small. Alternatively, a certain number of estimates may be arranged to be performed. The estimates can also be arranged to be performed continuously during the entire journey of the vehicle. Estimation can also be arranged to be performed with increasingly stricter conditions for estimation to be performed, whereby the conditions for estimation are met more frequently. Thus, estimation can be arranged to take place more often at e.g. the beginning of a voyage is then only carried out in increasingly favorable conditions for good estimation. As has been called, estimation of the mass m is performed when the driving force Fl.action is strong in relation to other forces, since the knowledge am and the accuracy of the driving force FTraction Or greater than for other forces. The requirement for the size of the driving force can e.g. be arranged to Oka as estimates are performed, whereby estimates will thus be performed more and more. Instead of the driving force amounting to a certain proportion of maximum driving force, the estimation can be arranged to be performed dl FTractionXFAirResFRollRes' The size of x will affect how many estimates will be performed during the 16 time period / distance and also determines the quality of the estimates performed. Start value for x gives good quality of the estimates, but few estimates. The magnitude of x can be arranged to increase as estimates are performed. If further estimation is to be performed, the procedure returns to step 201, otherwise the procedure in step 206 is terminated. The procedure shown in Fig. 2A may further have an overriding function of interrupting estimation in step 202/203, it is determined that the driving force during estimation is less father to ensure that estimation is not performed in less appropriate situations. The estimation of the vehicle mass my can be e.g. be arranged to be performed for a certain time, such as a certain number of seconds or for a certain distance traveled, such as a certain number of meters. This is described in more detail below. The present invention, however, relates not only to the estimation of the mass m of the vehicle, but also to the estimation of at least one further parameter. The method according to the invention therefore comprises a function 210 similar to that in Fig. 2A and which is performed in parallel with that in Fig. 2A but for estimating a second parameter. This is illustrated in Fig. 23. This second parameter can be constituted by any applicable parameter in the calculation model used to describe the force effect on the vehicle, such as e.g. eq. (1). This includes the above flag of the parameters used for calculating e.g. the forces according to eq. (2) - (4). Suedes can e.g. CAirves or coulles are released from the calculation model and estimated according to the present invention. The calculation model can thus e.g. assume the shape according to eq. (1). In general, this calculation model can look different, where different forces can be divided into larger or smaller 17 components. For example. can the driving force FT ,,, ction in eq. (1) be arranged to include the losses that occur in the driveline when transmitting the force generated by the engine to the wheels of the vehicle. Likasa is shown in eq. (1) the air resistance force and the rolling resistance force, respectively, as separate forces, but these may alternatively be arranged to be represented by a single force as they can often be responsible for distinguishing from each other. As can be seen, it amounts to eq. (1) the calculation model showed just one model, (Are inaccuracies in the model or the way in which the forces involved in the model are calculated per origin of a model error. According to an embodiment of the present invention, this model error is therefore estimated, F ModelError which thus constitutes a total error For estimated forces. Equ. (1) can therefore be described as: "Iva traction FA. Re s F Roll Re s F Gray F ModelError () F ModelError represents suedes a total error for estimated forces, and theoretically consists of zero Newton am model stems perfectly with reality, which, however, is often not the case. According to Equ. (5), suedes has an additional force, F: „, 0„ 7 „, inforts. According to this embodiment, the force F ModelError thus represents a common model error for those in the model. the forces, such as estimates of, for example, exchange resistance and air resistance and gravity, and above the driving force FTraction can be jointly corrected with a common correlation. rigging factor F _ModelError with consequence that e.g. new estimation of the vehicle mass can be performed 18 after an estimation of F ModelError, by using eq. (5) with the result that a better estimation of the vehicle mass is obtained. Before any estimation of Fuodeffrror has been performed, this can be set to something applicable value, such as e.g. an estimate at a previous voyage, or set to nail, whereby the mass of the vehicle is thus advantageously estimated by using eq. (5) although there is no current estimate of F ModelError yet. As will be appreciated, the first estimation according to the invention may consist of either the mass of the vehicle or the F ModelError depending on which criterion of estimation is first met. Likewise, a renewed, probably more accurate estimation of the vehicle mass can e.g. then the father is used to obtain a further improved estimation of F ModelError or quart am, or another parameter not included in the calculation model. Regarding estimation of F ModelError as well as Other parameters in the model Over forces acting on the vehicle, other criteria apply in comparison with the estimation of the vehicle's mass in order to obtain as good an estimate as possible. Therefore, in step 211 of Fig. 2B, instead of determining, as in step 201, determining whether the driving force FT ,, „„ tion exceeds a spruce value, now whether the vehicle's driving force FTraction is less than or equal to a second spruce value. advantageous in the driving force Ffrac ,, o, Or as small as possible, as this in some cases can be very star in relation to other forces acting on the vehicle, and clamed have a very dominant effect on the calculations. By instead performing the estimation of the model error F mode / Error, or another parameter 19 such as e.g. C7,4irRes or C7,01, aes, if the driving force F ,,,, „„, is small, a good estimation of the model error can be obtained. According to one embodiment, estimation of the model error F ModelError ° M is performed. The driving force FTraction is less than a force corresponding to e.g. 30% of the torque emitted by the vehicle's engine. According to one embodiment, the review value may assume a higher value, and according to one embodiment, the review value may be equal to Fir "," but where the conditions in steps 201 and 211 are still such that simultaneous estimation is never performed. According to one embodiment, the review value may assume a lower value of 30 %, such as an arbitrary value in the range 0-30% Thus, when the condition in step 211 is met, the procedure continues to step 212 for estimating the model error F ModelError • This is performed in the same way as for the mass of the vehicle, ie by triggering F ModelError from equ. (5) If the mass of the vehicle my has previously been estimated, an erroneous estimate of the mass of the vehicle is used when estimating the model error. As above, the procedure may be arranged to be terminated as soon as the condition in step 211 is no longer met. to step 214, where the model error Feed / Error is stored / updated in the corresponding way as specified for the vehicle mass above. In step 215 it is then determined whether further updating of the model fault is required, and if not the procedure is terminated in step 216. The criteria for ever transition from step 211 to 212 may, just as for the mass of the vehicle my above, be arranged to be set more strictly as alit more estimates of the model error have been made. This thus means that the maximum permitted driving force during the estimation can be set alit stock gradually. By compensating for errors in estimates of e.g. the vehicle's mass m or air resistance / rolling resistance with a model error F ModelError means that overall a very good estimate of the total force impact the vehicle has been subjected to can be obtained, with the result that e.g. Simulations associated with forward-looking cruise control will match choices with the actual outcome. Likewise, good regulation at e.g. vdxling erhallas. Furthermore, the invention has the advantage that each new estimate of e.g. vehicle mass and model error F ModelError will include previous estimates of the respective other parameters in the calculation, with the result that mass m, and model errors (or other parameter that is estimated) converge with very good accuracy as a result. I eq. (1) also shows the braking force FR, „k„ and also if this is not included in eq. (5) as can also be seen, the braking force TBrake can be estimated by using eq. (5) and / or eq. (1). In this case, with advantage other parameters, such as mass my and the model error F ModelError can be arranged to be first estimated, since these are of a more constant nature compared with the braking force which can vary greatly starting from one incident to another, whereby then the braking force is estimated at need, where the estimation refers to the specific occasion the braking force is applied. In the method shown in Figs. 2A-3, estimation is initiated solely because of the magnitude of radiating driving force. Both with regard to the mass of the vehicle and the model error F ModelError, additional criteria can be applied for estimation to be initiated. For example. With regard to the mass of the vehicle, a further requirement may be that the speed of the vehicle exceeds the applicable speed, such as an applicable number of kilometers per hour. Furthermore, since the mass is intimately associated with the acceleration in the barking model, an additional requirement may be that the vehicle's acceleration a At least amounts to the flag applicable acceleration. For example. according to one embodiment, the criterion for acceleration may be that it exceeds 1 m / s2 or 0.5 m / s2. Regarding the model error F ModelError as well as other parameters, it may also in this case be advantageous to apply additional criteria for estimation to be performed. For example. it may also be advantageous for the speed of the vehicle to exceed any permissible speed. Furthermore, a criterion can be made that the vehicle's acceleration a is small, preferably as different coil m / s2 as possible, since an acceleration on coil m / s2 meant that the term to the left of the equals sign in eq. (5) is eliminated from the coverages or at least makes very small. For example. according to one embodiment, the criterion for acceleration may be that it amounts to a maximum of +0.1 m / s2 or ± 0.05 m / s2 or applicable acceleration in the range 0- ± 0.1 m / s2, where negative acceleration means that the vehicle is decelerated . Furthermore, since both rolling resistance and gravitational force depend on radiating inclination of the surface on which the vehicle is traveling, it is advantageous if this inclination is to change zero degrees (radians) as possible, e.g. so that in this case the gravitational force can also be eliminated or made very small in the calculations. For example. the slope can be limited to a maximum of an arbitrary slope in the range ± (0-0.1) radians, or ± (0-0.05) radians. The present invention thus allows a very good estimation of the power impact of a vehicle subjected to below 22 speed to be estimated. However, the forces that affect the vehicle usually vary with varying conditions. For example. the air resistance is strongly dependent on the speed of the vehicle. This meant that errors in the air resistance constant used in calculating the air resistance force will have a larger impact with increasing speed. According to an embodiment of the invention, therefore, estimates of the model error F ModelError are performed at a plurality of different vehicle speeds, whereby different model errors FiliodelError can be applied at different speeds at e.g. estimation of the vehicle mass to take into account the model error's F MocklError speed dependence. According to an embodiment of the invention, the cause of the model error F ModelError can be determined. The model error can be such that it is greatly affected by errors in air resistance and rolling resistance models. In addition, the model error can be affected by errors in estimated driving force and errors in estimated mass. If the model error FmodelError is determined for different speeds as above, then a part of the model error that is harror to the air resistance can be determined, ie. the speed-dependent part. According to one embodiment, it can also be determined how large a part of the model error FwdelErrar which relates to air resistance / rolling resistance and the vehicle's driving force / losses upstream, e.g. a clutch or gearbox. Such a method 300 is damaged in Fig. 3, which just as above comprises a part (not shown) for estimating the mass of the vehicle as above. In step 311 it is determined, just as in step 211 in Fig. 2B, whether the driving force of the vehicle is less than any applicable driving force such as e.g. spruce value F glue 2 • Additional criteria as described above can also be applied. In this case, the procedure proceeds to step 312, where it is determined whether the vehicle's driveline is open. If this is not the case, steps 317-319 are performed, corresponding to steps 212-214 in Fig. 2B, i.e. model fault for closed driveline, F ModelErrorClosedestimated just as above. However, if the driveline is open, the procedure proceeds to step 313, where the model error is also estimated. In this case, ie. when the driveline is open, the driving force is by definition equal to zero, which means that this is eliminated from the calculation model. The model error ModelErrorOpen estimated in step 313 thus consists of a model error TmodelErroropen where errors in estimated driving force and losses upstream of the point where the driveline has been broken are not included in the result. Thus, when in step 314 it has been determined that the estimation of the model error FModelErrorOpen at open driveline is complete, the procedure proceeds to step 315, where the model error FModeErrorOpen at open driveline l is stored / updated in the same manner as above, the procedure then proceeding to step 316 cid '. the driving force error F between the model fault at the open driveline F ModelErrorOpen and the model fault at the closed driveline F ModelErrorClosed • The corresponding update is performed in step 320 after estimating F ModelErrorClosed • The update in steps 316 and 320 can be arranged only under the condition that estimates has been exported. In steps 321 and 322, respectively, it is determined whether further estimates are to be performed as above. Thus, according to this embodiment of the present invention, it is possible to identify faults which are horrible to the part of the driveline which is above the point where the driveline is reached. This error can e.g. be arranged to be stored over time at different times to enable identification of changes in the model error with time, e.g. TractionError is fixed / updated as difference 24 due to wear or other causes. If the fault is start and a star braking force is harrowing to the driving force, this may indicate that something is wrong in e.g. the engine of the vehicle. A starting model error regarding the driving force can also e.g. due to the fact that there are users such as connected via power take-offs, where the control system's knowledge of this Consumer is poor. The present invention thus allows compensation also for such factors. According to eq. (1) and (5) above, respectively, the estimation comprises a term a representing the acceleration of the vehicle. Aven cm e.g. Accelerometers can be used to determine the acceleration a often by deriving the vehicle speed. The signal for the vehicle speed can, however, in sip be relatively noisy, e.g. due to the fact that this can be obtained from a tachometer, whereby the speed signal is thus already Derived once. This means that the derivative of the speed signal, i.e. acceleration, can become very noisy, with reduced accuracy when estimating parameters agreed above as error. According to one embodiment, the vehicle mass my or the model error or the parameter estimated during a time period to-t „d is estimated, or a distance xo-xe where the driving force meets the respective criteria as above. Such a procedure is described in the international application WO2012 / 134377 (A1) for estimating the mass of the vehicle, whereby thus estimating the mass of the vehicle according to the present invention can be carried out completely according to any of the procedures shown therein. In general, advantages shown in this application are applicable to estimation according to the present invention, but where the methods shown for estimating the mass of the vehicle are adapted for estimating the second parameter according to the present invention, e.g. by applying eq. (5) instead of eq. (1) and release F ModelError or the parameter to be estimated from the equation whereby estimation according to WO2012 / 134377 (Al) can be performed. Regarding the mass of the vehicle, this can be released from eq. (5), with application of Eq. (2) - (4), and cidr acceleration is integrated and as a result results in a speed difference, AS: (FTraction F Air Re s FliodelError) Ch eq. (6) —vto) + g + sin a) dt t, According to eq. (6) the mass of the vehicle is thus estimated for a certain period of time to-tend, and thus based on the effect on the vehicle in the model the forces have on the vehicle during the said time-period to-tend • This time-period to-tend can be arranged to have a long mom a permissible time interval, it viii say that the time period to- tend Or lOngre On a minimum permitted time and shorter than a maximum permitted time, such as an applicable number of seconds. Since the estimation has due to a change in velocity and not acceleration, that is to say a difference between a starting velocity vto and a final velocity v ,, it is sufficient to determine a starting value vto and an end value vt, for the velocity, for which a derivation of the velocity v to obtain the acceleration a is not required, whereby estimation based ph a noisy and error-generating acceleration signal can be avoided. The above-mentioned time period tc-tendency, during which the effect of the forces on the vehicle is determined, may also correspond to a straight xxe which is traveled during the said time period to-tend. This 26 is described in WO2012 / 134377 (A1) and is thus to Impossible has. This distance xo-xe then has a long mom a permissible distance interval, so that the distance xo-xc Or longer than a minimum permitted 1Ongd for the distance and shorter On a maximum permitted length for the distance. For example. may, if an estimate is to be considered reliable, the time period, according to an embodiment, be longer than a minimum permitted time (or longer is a minimum permitted distance). In addition, it must be shorter than a maximum permitted time (or shorter than a maximum permitted distance), which reduces the number of calculations in the condition Or fulfilled during the long time / distance. According to one embodiment, the minimum allowable time is 1 second and the maximum allowable time is an applicable time in the range of 1-60 seconds, such as e.g. 30 seconds, where the estimation can be arranged to last as long as possible during the permitted time as long as the conditions for the estimation are met, but where the estimation can be completed before the maximum time has been reached as soon as any condition is no longer met. The estimates can thus have different lengths. Topographical information can also be taken into account, which is also described in the said application. Regarding the second parameter that is estimated, this is performed in a corresponding way, and for the example Fmodeff, „erhalls: FModelError td - to) ± (FTraction F.4irRes FRollRes - FGrav) dt to (7) @ end t dOr all corresponding benefits are obtained. As will be appreciated, the method shown in WO2012 / 134377 (A1) to perform estimation can be fully applied to both the first and second parameters, respectively, according to the present invention. An advantage of basing the estimates on integrals of the forces is that the calculation of the estimation itself acts as a filter for disturbances. Since the estimates have integrates over a relatively long period of time to-teller Over a relatively long distance xo-xe, temporary errors, for example due to noise, have the vagal slope a, speed, or some other quantity, affect the estimation to a very small extent. The estimation thus becomes relatively unobtrusive. The present invention is not limited to the above-described embodiments of the invention but relates to and includes all embodiments within the scope of the appended independent claims. 28 Patent claims 1. Forfarande for estimering av atminstone en forsta respektive en andra parameter vid ett fordon, varvid namnda fordon innefattar en motor for overforing av en drivkraft FTraction) till Atminstone ett drivhjul, varvid namnda fersta respektive andra parameter utgor parametrar vid berakning av atminstone en kraft verkande pa namnda fordon, varvid namnda forsta parameter utgOrs av en massa (m0 for namnda fordon, kannetecknat av att fOrfarandet innefattar att: - estimera namnda forsta parameter (m0 nar namnda drivkraft ( FTraction) for namnda fordon uppfyller ett forsta villkor, och - estimera namnda andra parameter (Fmodel Err; CRcellReo; CAirRes) nar namnda drivkraft (FTrucon) for namnda fordon uppfyller ett andra, fran namnda forsta villkor skiljt, villkor.A method for estimating at least one first and a second parameter, respectively, in a vehicle, said vehicle comprising a motor for transmitting a driving force (FTraction) to at least one drive wheel, said first and second parameters respectively constituting parameters in calculating at least one force acting. on said vehicle, said first parameter being a mass (m0 for said vehicle, characterized in that the method comprises: - estimating said first parameter (if said driving force (FTraction) for said vehicle satisfies a first condition, and - estimating said second parameter (Fmodel Err; CRcellReo; CAirRes) when said driving force (FTrucon) for said vehicle satisfies a second, separate from said first condition, condition. 2. Forfarande enligt krav 1, varvid namnda fOrsta villkor for namnda drivkraft (FTraction) utgors av att namnda drivkraft (FTractic,n) Overstiger en forsta kraft, och varvid namnda andra villkor for namnda drivkraft (FTracgon) utgOrs av att namnda drivkraft (F,,,,tion) är lika med eller understiger en andra, jamfort med namnda fOrsta kraft maximalt lika stor, kraft.A method according to claim 1, wherein said first condition for said driving force (FTraction) is that said driving force (FTractic, n) exceeds a first force, and wherein said second condition for said driving force (FTracgon) is constituted by said driving force (FTracgon). ,,,, tion) is equal to or less than a second, compared with the said first force maximum equal, force. 3. Ferfarande enligt krav 1 eller 2, vidare innefattande att estimera namnda andra parameter (Fm ode' Err; CRollRes; CAirRes) när lutningen (a) for det underlag pa vilket namnda fordon fardas understiger en forsta lutning, sasom en lutning relativt ett horisontalplan maximalt uppgaende till en godtycklig lutning i intervallet ±(0-0.1) radianer, eller ±(00.05) radianer.A method according to claim 1 or 2, further comprising estimating said second parameter (Fm ode 'Err; CRollRes; CAirRes) when the slope (a) of the ground on which said vehicle travels is less than a first slope, such as a slope relative to a horizontal plane maximum amount to an arbitrary slope in the range ± (0-0.1) radians, or ± (00.05) radians. 4. Forfarande enligt krav 1 eller 2, vidare innefattande att estimera namnda forsta parameter (my) och/eller namnda 29 andra parameter (Fploci,/ Err; CRoilRes; CylirRes) nar hastigheten for namnda fordon overstiger en forsta hastighet.The method of claim 1 or 2, further comprising estimating said first parameter (my) and / or said 29 second parameter (Fploci, / Err; CRoilRes; CylirRes) when the speed of said vehicle exceeds a first speed. 5. Forfarande enligt nagot av kraven 1-4, vidare innefattande att estimera namnda andra parameter (FAT odei Err; CRoilRes; CAirRes) nar accelerationen for namnda fordon maximalt uppgar till en forsta acceleration, sasom en acceleration maximalt uppgaende till ±0,1 m/s2 eller ±0,05 m/s2, eller en tillamplig acceleration i intervallet 0-+0,1 m/s2.A method according to any one of claims 1-4, further comprising estimating said second parameter (FAT odei Err; CRoilRes; CAirRes) when the acceleration of said vehicle reaches a maximum of a first acceleration, such as an acceleration of a maximum of ± 0.1 m / s2 or ± 0.05 m / s2, or an applicable acceleration in the range 0- + 0.1 m / s2. 6. Forfarande enligt nagot av kraven 1-5, varvid namnda estimering av namnda forsta respektive andra parametervarde utgor parametrar i en berakningsmodell representerande kormotstandskrafter verkande pa namnda fordon.A method according to any one of claims 1-5, wherein said estimating said first and second parameter values constitute parameters in a calculation model representing chore resistance forces acting on said vehicle. 7. Forfarande enligt krav 6, vidare innefattande att estimera namnda fOrsta respektive andra parametervarde genom utnyttjande av namnda berakningsmodell.The method of claim 6, further comprising estimating said first and second parameter values, respectively, using said calculation model. 8. FOrfarande enligt krav 6 eller 7, vidare innefattande att estimera namnda andra parametervarde vid ett flertal hastigheter for namnda fordon, och tillampa olika varden fOr namnda andra parametervarde vid olika hastigheter vid berakning enligt namnda berakningsmodell.The method of claim 6 or 7, further comprising estimating said second parameter value at a plurality of speeds for said vehicle, and applying different values for said second parameter value at different speeds when calculating according to said calculating model. 9. Forfarande enligt krav 8, varvid namnda andra parametervarde utger ett parametervarde representerande en sammanlagd avvikelse for atminstone tva estimerade krafter och motsvarande verkliga krafter verkande pa namnda fordon, vidare innefattande att: - baserat pa namnda estimeringar vid namnda flertal hastigheter, faststalla en fordelning for namnda avvikelse mellan namnda atminstone tva estimerade krafter.The method of claim 8, wherein said second parameter value is a parameter value representing a total deviation of at least two estimated forces and corresponding actual forces acting on said vehicle, further comprising: - based on said estimates at said plurality of speeds, determining a distribution for said deviation between said at least two estimated forces. 10. FOrfarande enligt nagot av kraven 6-9, varvid ndmnda berdkningsmodell innefattar ndmnda drivkraft (FTraction) och atminstone en ytterligare kraft.A method according to any one of claims 6-9, wherein said bending model comprises said driving force (FTraction) and at least one additional force. 11. Forfarande enligt krav 10, varvid ndmnda Atminstone en ytterligare kraft utgOrs av en eller flera av, eller en representation av den sammanlagda kraften av en eller flera av: rullmotstandskraft, luftmotstandskraft, gravitationskraft.The method of claim 10, wherein said At least one additional force is one or more of, or a representation of, the total force of one or more of: rolling resistance, air resistance, gravity. 12. Forfarande enligt krav 10 eller 11, varvid estimering av ndmnda fOrsta parametervdrde utfOrs ndr ndmnda drivkraft FTraction är storre an ndmnda Atminstone en ytterligare kraft.A method according to claim 10 or 11, wherein estimating said first parameter value performed at said said driving force FTraction is greater than said at least one additional force. 13. Forfarande enligt nagot av foregaende krav, vidare innefattande att, ndr ndmnda forsta eller andra parameter har estimerats, nyttja denna estimering vid estimering av den andra av ndmnda parametrar.A method according to any one of the preceding claims, further comprising, if said first or second parameter has been estimated, using this estimation when estimating the second of said parameters. 14. Forfarande enligt ndgot av foregdende krav, vidare innefattande att, ndr en tidigare estimering av ndmnda forsta eller andra parametervdrde har utforts, och vid en pafoljande estimering av ndmnda forsta eller andra parametervdrde, vikta ndmnda estimering med atminstone en respektive tidigare utford estimering av ndmnda parametervdrde.A method according to any one of the preceding claims, further comprising, if a previous estimation of said first or second parameter value has been performed, and in a subsequent estimation of said first or second parameter value, weighted said estimation with at least one respective previous challenge estimation of said parameter value. 15. FOrfarande enligt ndgot av fOregdende krav, varvid ndmnda andra parametervdrde utgor ett parametervdrde representerande en estimering av en avvikelse mellan en estimerad kraft och en motsvarande verklig kraft verkande pd ndmnda fordon. 16. Forfarande enligt krav 15, varvid ndmnda avvikelse representerar en sammanlagd avvikelse for ett flertal verkliga krafter verkande IDA ndmnda fordon. 31A method according to any one of the preceding claims, wherein said second parameter value constitutes a parameter value representing an estimation of a deviation between an estimated force and a corresponding actual force acting on said vehicle. The method of claim 15, wherein said deviation represents a total deviation for a plurality of real forces acting IDA of said vehicle. 31 16. FOrfarande enligt krav 15 eller 16, vidare innefattande att: 1. med namnda motor fOrbunden med namnda drivhjul, utfara en forsta estimering av namnda andra parametervarde, - med namnda motor frikopplad fran namnda drivhjul, utfOra en andra estimering av namnda andra parametervarde, och 2. gen= utnyttjande av namnda fersta respektive andra estimering av namnda andra parametervarde, faststalla en avvikelse for en uppstrems namnda frikoppling hanforlig kraft.A method according to claim 15 or 16, further comprising: 1. with said motor connected to said drive wheel, performing an initial estimation of said second parameter value, - with said motor disengaged from said drive wheel, performing a second estimation of said second parameter value, and 2. gene = utilization of said first and second estimation of said second parameter value, respectively, determine a deviation for an upstream said decoupling hanforlig force. 17. Forfarande enligt nagot av foregaende krav, varvid namnda andra parameter utgors av en pa namnda fordon verkande kraft eller en parameter genom utnyttjande av vilken en pa namnda fordon verkande kraft kan beraknas.A method according to any one of the preceding claims, wherein said second parameter is constituted by a force acting on said vehicle or a parameter by utilizing which a force acting on said vehicle can be calculated. 18. Forfarande enligt nagot av foregaende krav, vidare innefattande att estimera namnda andra parameter (Fmodei Err; CR011R,8; CAirRes) nar namnda drivkraft (FTractio,) for namnda fordon understiger en kraft motsvarande en fOrutbestamd andel av ett maximalt avgivbart vridmoment for namnda motor.A method according to any preceding claim, further comprising estimating said second parameter (Fmodei Err; CR011R, 8; CAirRes) when said driving force (FTractio,) for said vehicle is less than a force corresponding to a predetermined proportion of a maximum releasable torque for said vehicle. engine. 19. Ferfarande enligt krav 18, varvid namnda forutbestamda andel motsvarar maximalt 40% av namnda maximalt avgivbara vridmoment.The method of claim 18, wherein said predetermined proportion corresponds to a maximum of 40% of said maximum releasable torque. 20. Forfarande enligt nagot av foregaende krav, vidare innefattande att anpassa Atminstone ett av namnda fOrsta respektive andra villkor under fard med namnda fordon, varvid namnda forsta respektive andra villkor andras sA att villkoren for estimering uppfylls mer sallan.A method according to any one of the preceding claims, further comprising adapting at least one of said first and second conditions, respectively, while traveling with said vehicle, said first and second conditions being different, so that the conditions for estimation are more met. 21. Forfarande enligt nagot av foregaende krav, varvid namnda estimering av atminstone en av namnda forsta respektive andra parameter utfors baserat pa en verkan av atminstone tva krafter pa namnda fordon under en tidsperiod 32A method according to any one of the preceding claims, wherein said estimating at least one of said first and second parameters, respectively, is performed based on an effect of at least two forces on said vehicle over a period of time 32 22. FOrfarande enligt krav 21, varvid namnda estimering utfors baserat aven pa atminstone en av: - en hastighetsforandring for namnda fordon under namnda tidsperiod to-tend; och - en hajdfarandring fOr namnda fordon under namnda tidsperiod tend.The method of claim 21, wherein said estimating is performed based also on at least one of: - a speed change for said vehicle during said time period to-tend; and - a hike change for said vehicle during said time period tend. 23. Forfarande enligt krav 21 eller 22, varvid namnda tidsperiod to-t,d motsvaras av en stracka xo-xe, vilken — tillryggalaggs under namnda tidsperiod f fend•A method according to claim 21 or 22, wherein said time period to-t, d corresponds to a distance xo-xe, which - is traveled during said time period fend • 24. Datorprogram innefattande programkod, vilket nar namnda programkod exekveras i en dator astadkommer att namnda dator utfor forfarandet enligt nagot av patentkrav 1-23.A computer program comprising program code, which when said program code is executed in a computer, causes said computer to perform the method according to any of claims 1-23. 25. Datorprogramprodukt innefattande ett datorlasbart medium och ett datorprogram enligt patentkrav 24, varvid namnda datorprogram Or innefattat i namnda datorldsbara medium.A computer program product comprising a computer readable medium and a computer program according to claim 24, wherein said computer program Or is included in said computer readable medium. 26. System for estimering av atminstone en forsta respektive en andra parameter vid ett fordon, varvid namnda fordon innefattar en motor for overforing av en drivkraft ( FTraction) till atminstone ett drivhjul, varvid namnda forsta respektive andra parameter utgor parametrar vid berakning av atminstone en kraft verkande pa namnda fordon, varvid namnda farsta parameter utgors av en massa (my) for namnda fordon, kannetecknat av att systemet innefattar organ for att: - estimera namnda farsta parameter (my) nar namnda drivkraft ( FTraction) for namnda fordon uppfyller ett fOrsta villkor, och - estimera namnda andra parameter (Fmodel Err; CRcl1Res; CAirRes) nar namnda drivkraft (FT„c,„J for namnda fordon uppfyller ett andra, fran namnda forsta villkor skiljt, villkor. 33A system for estimating at least one first and a second parameter, respectively, of a vehicle, said vehicle comprising a motor for transmitting a driving force (FTraction) to at least one drive wheel, said first and second parameters respectively constituting parameters for calculating at least one force. acting on said vehicle, said first parameter being a mass (my) for said vehicle, characterized in that the system comprises means for: - estimating said first parameter (my) when said driving force (FTraction) for said vehicle satisfies a first condition , and - estimating said second parameter (Fmodel Err; CRcl1Res; CAirRes) when said driving force (FT „c,„ J for said vehicle satisfies a second, different from said first condition, condition. 33. 27. Fordon, kannetecknat av att det innefattar ett system enligt krav 26. FIG. 'IA 13 1 .---104 103 ? ,----108 106\ 101 101 ) 107 .---- 2/Vehicle, characterized in that it comprises a system according to claim 26. FIG. 'IA 13 1 .--- 104 103? , ---- 108 106 \ 101 101) 107 .---- 2 /
SE1351255A 2013-10-23 2013-10-23 Estimation of parameters for calculating at least one force acting on a vehicle SE538101C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1351255A SE538101C2 (en) 2013-10-23 2013-10-23 Estimation of parameters for calculating at least one force acting on a vehicle
PCT/SE2014/051235 WO2015060771A2 (en) 2013-10-23 2014-10-21 Estimating a parameter for computing at least one force acting on a vehicle
DE112014004383.4T DE112014004383T5 (en) 2013-10-23 2014-10-21 Estimating a parameter for calculating at least one force acting on a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1351255A SE538101C2 (en) 2013-10-23 2013-10-23 Estimation of parameters for calculating at least one force acting on a vehicle

Publications (2)

Publication Number Publication Date
SE1351255A1 true SE1351255A1 (en) 2015-04-24
SE538101C2 SE538101C2 (en) 2016-03-01

Family

ID=52993727

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1351255A SE538101C2 (en) 2013-10-23 2013-10-23 Estimation of parameters for calculating at least one force acting on a vehicle

Country Status (3)

Country Link
DE (1) DE112014004383T5 (en)
SE (1) SE538101C2 (en)
WO (1) WO2015060771A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139929B (en) * 2017-05-15 2019-04-02 北理慧动(常熟)车辆科技有限公司 A kind of estimation of heavy type fluid drive vehicle broad sense resistance coefficient and modification method
DE102020203815A1 (en) 2020-03-24 2021-09-30 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining the mass of a moving vehicle
CN112498357B (en) * 2020-11-20 2022-06-21 奇瑞新能源汽车股份有限公司 Vehicle total mass calculation device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446358C1 (en) * 1994-12-23 1995-12-07 Knorr Bremse Systeme rake force distribution regulation system for tractor/trailer vehicle
LU90706B1 (en) * 2000-12-18 2002-06-19 Delphi Tech Inc Method for estimating a road load force encountered by a vehicle
SE536124C2 (en) * 2011-04-01 2013-05-14 Scania Cv Ab Estimation of weight for a vehicle
SE537431C2 (en) * 2013-02-14 2015-04-28 Scania Cv Ab Management of changes in driving resistance parameters

Also Published As

Publication number Publication date
SE538101C2 (en) 2016-03-01
WO2015060771A3 (en) 2015-08-13
DE112014004383T5 (en) 2016-06-30
WO2015060771A2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
CN106274906B (en) Method and device for determining or evaluating a target trajectory of a motor vehicle
KR101898353B1 (en) Driving force control device and driving force control method
CN110550017B (en) Driving torque command generating apparatus and method for environment-friendly vehicle
SE1150529A1 (en) Vehicle procedure and systems II
US9783061B2 (en) Method for operating an electric drive module
US9014936B2 (en) Method for the approximate determination of the torque which is actually transmitted by a clutch of a drive train of a vehicle
SE1350351A1 (en) Controlling an actual speed v_act for a vehicle
KR20140020354A (en) Method and system for a vehicle
US20140114553A1 (en) Method and system for a vehicle
SE1450870A1 (en) Control of an internal combustion engine in a vehicle
SE1200389A1 (en) transmission Control
US8560186B2 (en) Method for identifying a driving resistance of a motor vehicle
CN110182190A (en) Method, apparatus and control unit for parking braking release
SE539477C2 (en) Control of an internal combustion engine in connection with freewheeling
SE1351255A1 (en) Estimation of parameters for calculating at least one force acting on a vehicle
WO2016135317A1 (en) Vehicle mass estimation
SE1251432A1 (en) Procedure and system for controlling driver behavior when driving a vehicle
SE1450652A1 (en) Control of a torque requested by an engine
KR101993434B1 (en) Control of preparatory measures in a vehicle
US9982609B2 (en) Method for controlling an internal combustion engine
DE102010021718A1 (en) Motor vehicle, has starter clutch operated with slow speed using crawling device by regulation of torque transmitted over clutch, where regulation of torque is taken place based on distance that decreases during approach to obstacle
CN109094424A (en) A kind of NEW ADAPTIVE gear clearance compensation method
SE1350453A1 (en) Shift with speed forecast
EP2508739A1 (en) A method for the assistance of a motor vehicle driver during a drive off maneuver
SE1450705A1 (en) Procedure and system for controlling one or more inserts which affect a long-term braking effect for a vehicle