SE1350560A1 - Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae - Google Patents
Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae Download PDFInfo
- Publication number
- SE1350560A1 SE1350560A1 SE1350560A SE1350560A SE1350560A1 SE 1350560 A1 SE1350560 A1 SE 1350560A1 SE 1350560 A SE1350560 A SE 1350560A SE 1350560 A SE1350560 A SE 1350560A SE 1350560 A1 SE1350560 A1 SE 1350560A1
- Authority
- SE
- Sweden
- Prior art keywords
- insect
- larvae
- pest
- microorganism
- pathogen
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/40—Viruses, e.g. bacteriophages
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Environmental Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Mycology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Tekniskt omrade och uppfinningens bakgrund Samrore mellan jast och insektsvaxtatare är vanligt fOrkommande, och dessa interspecifika interaktioner har avgorande betydelse for evolutionen 5 bade av jast och insekter (Janson et al. 2008, Klepzig et al. 2009, Guzman et al. 2013). Mikrobiell insektsekologi är ett valetablerat forskningsomrade, men hittills har fokus legat pa vissa grupper sasom barkborrar, fruktflugor och sociala insekter (Starmer and Fogleman 1986, Farrell et al. 2001, Mueller et al. 2005, Schoenian et al. 2011). Emellertid har dessa kunskaper inte kommit till praktisk nytta. TECHNICAL FIELD AND BACKGROUND OF THE INVENTION Joints between yeast and insect growers are common, and these interspecific interactions are crucial to the evolution of both yeast and insects (Janson et al. 2008; Klepzig et al. 2009; Guzman et al. 2013). Microbial insect ecology is an established research area, but so far the focus has been on certain groups such as bark beetles, fruit flies and social insects (Starmer and Fogleman 1986, Farrell et al. 2001, Mueller et al. 2005, Schoenian et al. 2011). However, this knowledge has not come in handy.
Parallellt nned den hastigt expanderande forskningen kring det manskliga mikrobiomet, har aven insekt-vaxt-mikrob-interaktioner rant storre uppnnarksamhet. Vi har bidragit genonn var forskning som visar att bananflugan, Drosophila melanogaster, lockas till jast och inte frukt (Becher et al. 15 2012) samt att applevecklaren Cydia pomonella, en typisk vaxtatare, lever i mutualism med jast (Witzgall et al. 2012). In parallel with the rapidly expanding research on the human microbiome, insect-growth-microbial interactions have also received greater attention. We have contributed through our research that shows that the banana fly, Drosophila melanogaster, is attracted to yeast and not fruit (Becher et al. 15 2012) and that the apple developer Cydia pomonella, a typical plant eater, lives in mutualism with yeast (Witzgall et al. 2012) .
Biologisk insektsbekampning omfattar tre sektorer: nyttoinsekter, patogener och "semiokemikalier". Omrade (1): nyttoinsekter, eller naturliga fiender som slapps ut for att bekampa skadeinsekter framforallt i vaxthus- 20 miljoer. Omrade (2): insektpatogena virus, bakterier eller svampar anvands vid sprutbehandling av faltgrodor och fruktodlingar for att doda insektslarver. Omrade (3): sk "semiokemikalier" (feromoner eller kairomoner, kemiska amnen som paverkar inskternas beteenden) anvands mot fullvuxna insekter fOr att fOrhinda parning eller kir att fanga insekter i fallor (Witzgall et al. 2008, 25 2010). 2 Forsok att konnbinera patogener med semiokemikalier har hittills inte varit sa framgangsrika som forvantat. Det finns tva anledningar till detta: fullvuxna insekter, som kan bekampas med semiokemikalier, är inte tillrackligt mottagliga for insektspatogener for att mojliggora effektiv kontroll. Insekts- 5 larver daremot är mer kansliga for insektspatogener, men kan inte bekampas med semiokemikalier pa ett enkelt satt nar de redan befinner sig pa sin vardvaxt. Biological insect control covers three sectors: beneficial insects, pathogens and "semiochemicals". Area (1): beneficial insects, or natural enemies that are released to fight insect pests, especially in greenhouse environments. Area (2): insect pathogenic viruses, bacteria or fungi are used in the spraying treatment of field frogs and orchards to kill insect larvae. Area (3): so-called "semiochemicals" (pheromones or kairomones, chemical substances that affect the behavior of insects) are used against adult insects to prevent mating or to catch insects in traps (Witzgall et al. 2008, 25 2010). Attempts to combine pathogens with semi-chemicals have so far not been as successful as expected. There are two reasons for this: adult insects, which can be controlled with semi-chemicals, are not sufficiently susceptible to insect pathogens to enable effective control. Insect larvae, on the other hand, are more susceptible to insect pathogens, but cannot be controlled with semi-chemicals in a simple way when they are already in their infancy.
Kemosensoriska stimuli styr larvemas beteen den Hos bananflugan D. melanogaster (Fishilevich et al. 2005, Kreher et al. 2005) och formodligen ocksa hos andra insekter, uttrycks en viss del av de olfaktoriska receptorgenerna i larvernas olfaktoriska sensoriska neuroner. Larver och vuxna fjarilar av applevecklaren C. pomonella lockas till vaxtdofter (Sutherland 1972, Knight and Light 2001) och det är troligt att bade larver och 15 agglaggande honor dessutom reagerar pa dofter som avges av associerade mikroorganismer. Kemosensorisk attraktion hos S. frugiperda larver har inte studerats, men det är troligt att de ocksa attraheras av doftsignaler. Chemosensory stimuli control the behavior of the larvae In the banana fly D. melanogaster (Fishilevich et al. 2005, Kreher et al. 2005) and probably also in other insects, a certain part of the olfactory receptor genes is expressed in the olfactory sensory neurons of the larvae. Larvae and adult butterflies by the apple developer C. pomonella are attracted to plant odors (Sutherland 1972, Knight and Light 2001) and it is likely that both larvae and 15 agglomerating females also react to odors emitted by associated microorganisms. Chemosensory attraction in S. frugiperda larvae has not been studied, but it is likely that they are also attracted by odor signals.
Applevecklarens granulovirus Cydia pomonella granulovirus (CpGV) har erhallit avsevard uppmark- samhet som mikrobiell insekticid pa grund av den specificitet for applevecklaren och dess sakerhet mot icke-nnalorganismer. CpGV har registrerats i manga lander och anvands arligen pa mer an 150.000 ha (Cross et al. 1999, Lacey and Shapiro 2008, Lacey et al. 2008, Chandler et al. 2011) Applevecklarhonor lagger agg direkt pa, eller i narheten av frukt men de nyklackta larverna !Dollar inte aktivt att ata forran de forst gnagt sig igenom fruktskalet. Nar larven val kommit in i frukten är fysiskt isolerad Than efterfoljande bekampningsmetoder. The apple developer's granulovirus Cydia pomonella granulovirus (CpGV) has received considerable attention as a microbial insecticide due to its specificity for the apple developer and its safety against non-nal organisms. CpGV has been registered in many countries and is used annually on more than 150,000 hectares (Cross et al. 1999, Lacey and Shapiro 2008, Lacey et al. 2008, Chandler et al. 2011) Apple picker females lay eggs directly on, or near fruit but the newly hatched larvae! Dollars not actively eating until they first gnawed their way through the fruit peel. Once the larval selection has entered the fruit is physically isolated than subsequent control methods.
Detta beteende hos applevecklarlarverna Or dem mycket svara att 30 bekampa med CpGV, som maste tas in med fodan for att ha effekt (Jacques et al. 1987). Efter besprutning är viruset bara aktivt under nagra fa dagar i odlingen. Darr& har forsok gjorts f6r att Oka effekten av CpGV genom att Oka 3 virusintag genonn stinnulering av atbeteende och larvattraherande kerniska substanser (Lacey et al. 2008, Ballard et al. 2000a,b). This behavior of the apple caterpillar larvae is very responsive to control with CpGV, which must be ingested with the food to have an effect (Jacques et al. 1987). After spraying, the virus is only active for a few days in the culture. Attempts have been made to increase the effect of CpGV by increasing virus intake through stinulation of behavior and larval-attracting nuclear substances (Lacey et al. 2008; Ballard et al. 2000a, b).
Exempel pa substanser som attraherar applevecklarlarver är (E,E)-a- farnesen och paronester, ethyl (E,Z)-2,4-decadienoat (Sutherland 1972, 5 Knight and Light 2001). Tillsats av a-farnesen Okade effekten av CpGV (Ballard et al. 2000a) och paronester reducerades angrepp pa valnotter (Light and Knight 2011), men inte pa apple och paron (Arthurs et al. 2007, Schmidt et al. 2008). Amnen som stimulerar larvernas atbeteende, sasom sirap eller socker, visar en effekt, men orsakar aven sekundara svampinfektioner 10 (Ballard et al. 2000a). Dessa studier visar att det är mojligt att oka effekten av CpGV genom inkorporering av attraherande substanser och/eller atstimulerande medel, men den Overgripande effekten var begransad. Examples of substances that attract apple larvae are (E, E) -a- farnesen and paronesters, ethyl (E, Z) -2,4-decadienoate (Sutherland 1972, 5 Knight and Light 2001). Addition of the a-farnesen Increased effect of CpGV (Ballard et al. 2000a) and paronesters reduced attacks on walnuts (Light and Knight 2011), but not on apple and paron (Arthurs et al. 2007, Schmidt et al. 2008). The substances that stimulate the behavior of the larvae, such as syrup or sugar, show an effect, but also cause secondary fungal infections (Ballard et al. 2000a). These studies show that it is possible to increase the effect of CpGV by incorporating attractive substances and / or stimulants, but the overall effect was limited.
Spodoptera frugiperda nucleopolyhedro virus Baculovirus forkommer hos manga fjarilsarter och anvands kommer- siellt for bekampning av nattflyn Noctuidae, t ex mot Anticarsia gemmatalis pa sojab6nor i Brasilien (Moscardi 1999, Cory and Myers 2003). En mikroinkapslingsmetod f6r storskalig, industriell produktion av Spodoptera frugiperda nucleopolyhedrovirus finns redan etablerad (Villamizar et al. 2010). Spodoptera frugiperda nucleopolyhedro virus Baculovirus is found in many butterfly species and is used commercially to control the night fly Noctuidae, for example against Anticarsia gemmatalis on soybeans in Brazil (Moscardi 1999, Cory and Myers 2003). A microencapsulation method for large-scale, industrial production of Spodoptera frugiperda nucleopolyhedroviruses has already been established (Villamizar et al. 2010).
Sammanfattning av uppfinningen Vaxtatande insekter är associerade med mutualistiska mikroorganismer Vi har nyligen visat att en typisk vaxtatare, applevecklaren C. pomonella, är associerad med jast och svampar, i synnerhet med Metschnikowia spec. (Ascomycota, Saccharomycetes), Aureobasidium spec. (Ascomycota, Sordariomycetes) och Cryptococcus spec. (Basidiomycota, Tremellomycetes) (Witzgall et al. 2012). Summary of the Invention Growth-eating insects are associated with mutualistic microorganisms We have recently shown that a typical plant-eater, the apple pus celery, is associated with yeast and fungi, in particular with Metschnikowia spec. (Ascomycota, Saccharomycetes), Aureobasidium spec. (Ascomycota, Sordariomycetes) and Cryptococcus spec. (Basidiomycota, Tremellomycetes) (Witzgall et al. 2012).
Vi visar nu att nattflyet, Spodoptera frugiperda är associerat med jastoch svamparter, i synnerhet med Metschnikowia spec. (Ascomycota, 30 Saccharomycetes) och Cryptococcus spec. (Basidiomycota, Tremellomycetes) (opubl. res.) 4 Kombinerad anvandning av mutualistiska mikroorganismer och insektspatogener Vi upptackte nu att dessa mutualistiska mikroorganismer som 5 forekommer tillsammans i nara anslutning till insektslarver, okar intaget av insektspatogena virus hos nyklackta larver (opubl. res.) Man ipulering av larvernas beteenden mot en okad exponering for patogener blir nu mojlig genom att kombinera patogener med mutualistiska mikroorganismer som forekomnner tillsammans i nara association med 10 insektslarver. We now show that the nocturnal aircraft, Spodoptera frugiperda, is associated with jastoch fungi, in particular with the Metschnikowia spec. (Ascomycota, Saccharomycetes) and Cryptococcus spec. (Basidiomycota, Tremellomycetes) (unpublished res.) 4 Combined use of mutualistic microorganisms and insect pathogens We now discovered that these mutualistic microorganisms, which occur together in close connection with insect larvae, increase the intake of insect pathogenic viruses in newly hatched larvae. Manipulation of the larvae's behaviors against an increased exposure to pathogens is now possible by combining pathogens with mutualistic microorganisms that occur together in close association with 10 insect larvae.
Denna upptackt oppnar ett nytt perspektiv for biologisk insektsbekampning och ger mOjlighet att utveckla en ny vaxtskyddsmetod. Vi fOrvantar oss att metoden vasentligt kommer att bidra till insektsbekampning i framtiden. Saledes avser uppfinningen en fly insektsbekampningsmetod. Metoden 15 bygger pa mutualistiska mikroorganismer som forekommer tillsammans med insektslarver, som attraherar dessa insektslarver for intag av foda, i kombination med insektspatogener, i synnerhet patogena virus, svampar eller bakterier. This discovery opens up a new perspective for biological insect control and provides an opportunity to develop a new plant protection method. We expect that the method will significantly contribute to insect control in the future. Thus, the invention relates to a fly insect control method. The method is based on mutualistic microorganisms which occur together with insect larvae, which attract these insect larvae for food intake, in combination with insect pathogens, in particular pathogenic viruses, fungi or bacteria.
Utan attraherande mikroorganismer sasom jast eller svampar, traffar 20 larverna bara slumpvis pa insektspatogener. Att formulera attraherande mikroorganismer, sasom jast eller svampar, tillsammans med insektspatogenet akar kraftigt det avdodande patogenets effekt, eftersonn nnikroorganismerna som är associerade med insekter attraherar larver och aven stimulerar intaget av foda. Without attractive microorganisms such as yeast or fungi, the 20 larvae only occasionally encounter insect pathogens. Formulating attractive microorganisms, such as yeast or fungi, together with the insect pathogen greatly increases the killing effect of the pathogen, since the microorganisms associated with insects attract larvae and also stimulate food intake.
Uppfinningen kan anvandas pa vaxtatande insektslarver for vilka associerade mikroorganismer, sasom jast och jastliknande svampar, kan kombineras med insektspatogener, sasom patogena insektsvirus, svampar eller bakterier. The invention can be applied to plant-growing insect larvae for which associated microorganisms, such as yeast and yeast-like fungi, can be combined with insect pathogens, such as pathogenic insect viruses, fungi or bacteria.
Uppfinningen avser narmare bestamt en komposition for kontroll av en 30 skadeinsekt, innefattande en insektspatogen och atminstone en mikroorga- nism som forekommer naturligt tillsammans med skadeinsektens larver. Foreliggande uppfinning avser aven ett f6rfarande for bekampning av skadeinsekter, innefattande exponering av skadeinsekten for en insektspato- gen och atnninstone en mikroorganisnn som forekomnner naturligt med skadeinsektens larver. More particularly, the invention relates to a composition for controlling a pest, comprising an insect pathogen and at least one microorganism which occurs naturally together with the larvae of the pest. The present invention also relates to a method for controlling pests, comprising exposing the pest to an insect pathogen and at least a microorganism which occurs naturally with the larvae of the pest.
Kort beskrivning av ritningen Fig. 1 visar resultaten av experiment dar mikroorganismerna Cryptococcus tephrensis, Aureobasidium pullulans eller Metschnikowia pulcherrima kombinerades med applevecklarens granulovirus (CpGV). Mortaliteten av nyklackta applevecklarlarver pa applen som behandlades med en blandning av CpGV (3.8 x 7 occlusion bodies/L) och 1.2 eller 3.6 g/L 10 mikroorganismer, med eller utan tillsats av socker, var signifikant hogre an pa apple som behandlades enbart med CpGV. Tre f6rs6k genomf6rdes: virus och socker; virus och mikroorganismer; virus, socker och mikroorganismer, jamfort med enbart virus (ljus skuggning, bred stapel) och vatten (torn, bred stepel). Staplar med olika bokstaver är signifikant skilda at med P < 0.05. Brief Description of the Drawing Fig. 1 shows the results of experiments in which the microorganisms Cryptococcus tephrensis, Aureobasidium pullulans or Metschnikowia pulcherrima were combined with the apple developer granulovirus (CpGV). The mortality of freshly picked apple worm larvae on the apple treated with a mixture of CpGV (3.8 x 7 occlusion bodies / L) and 1.2 or 3.6 g / L microorganisms, with or without the addition of sugar, was significantly higher than in apple treated with CpGV alone . Three experiments were performed: virus and sugar; viruses and microorganisms; viruses, sugars and microorganisms, compared with viruses only (light shading, wide bar) and water (tower, wide bar). Stacks with different letters are significantly different at P <0.05.
Detaljerad beskrivning av uppfinningen En mutualistisk mikroorganism, sasom jast eller svamp, som attraherar fodosokande insektslarver, i kombination med en insektspatogen, sasom virus, svamp eller bakterie, beskrivs som en ny insektsbekampningsmetod. 20 Den mutualistiska mikroorganismen stimulerar larvattraktion och fodointag och framkallar intag av insektspatogenen. Detailed Description of the Invention A mutualistic microorganism, such as yeast or fungus, which attracts photosynthetic insect larvae, in combination with an insect pathogen, such as a virus, fungus or bacterium, is described as a new insect control method. The mutualistic microorganism stimulates larval attraction and food intake and induces ingestion of the insect pathogen.
Begreppet "skadeinsekt" som anyands i den aktuella beskrivningen hanfor sig till insekter som skadar eller dodar, jordbruksgrodor, tradgardsvaxter eller naturliga vaxter in situ. Larverna av skadeinsekten som kan 25 bekampas med kompositionen eller forfarandet enligt uppfinningen, livnar sig av vaxterna. The term "insect pest" as anyands in the present description refers to insects that damage or kill, agricultural frogs, garden plants or natural plants in situ. The larvae of the pest which can be controlled by the composition or method of the invention feed on the plants.
I nagra utforingsformer är skadeinsekten vald fran ordningen Lepidoptera. In some embodiments, the pest is selected from the order Lepidoptera.
I nagra utforingsformer är skadeinsekten applevecklaren Cydia pomonella L. (Lepidoptera, Tortricidae) I nagra utforingsformer ar skadeinsekten nattflyet Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). 6 I nagra utforingsformer är skadeinsekten nattflyet Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae). In some embodiments, the insect is the apple developer Cydia pomonella L. (Lepidoptera, Tortricidae). In some embodiments, the insect is the night owl Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). 6 In some embodiments, the insect is the moth Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten bomullsflyet Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). In some embodiments, the insect pest is the cotton fly Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten nattflyet Spodoptera exempta (Walker, 1857) (Lepidoptera: Noctuidae). In some embodiments, the insect is the nocturnal aircraft Spodoptera exempta (Walker, 1857) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten smalvingat lovfly Spodoptera exigua (Hubner, 1808) (Lepidoptera: Noctuidae). In some embodiments, the insect is narrow-winged praise fly Spodoptera exigua (Hubner, 1808) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten nattflyety Spodoptera eridania 10 (Stoll, 1782) (Lepidoptera: Noctuidae). In some embodiments, the insect pest is the nocturnal fly Spodoptera eridania 10 (Stoll, 1782) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten nattflyet Anticarsia gemmatalis (Hubner, 1818) (Lepidoptera: Noctuidae). In some embodiments, the insect is the moth Anticarsia gemmatalis (Hubner, 1818) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten nattflyet Heliothis virescens (Fabricius, 1777) (Lepidoptera: Noctuidae). In some embodiments, the insect is the moth Heliothis virescens (Fabricius, 1777) (Lepidoptera: Noctuidae).
I nagra utfOringsformer är skadeinsekten brunaktigt knolfly Helicoverpa armigera (HObner, 1805) (Lepidoptera: Noctuidae). In some embodiments, the pest is brownish tuberous Helicoverpa armigera (HObner, 1805) (Lepidoptera: Noctuidae).
I nagra utf6ringsformer är skadeinsekten nattflyet Helicoverpa zea (Boddie, 1850) (Lepidoptera: Noctuidae). In some embodiments, the pest is the moth Helicoverpa zea (Boddie, 1850) (Lepidoptera: Noctuidae).
I nagra utforingsformer är skadeinsekten fruktskalvecklaren Adoxophyes orana (Fischer von Roslerstamm, 1834) (Lepidoptera: Noctuidae). In some embodiments, the pest is the fruit-shell developer Adoxophyes orana (Fischer von Roslerstamm, 1834) (Lepidoptera: Noctuidae).
Det är av sarskilt intresse i enlighet nned foreliggande uppfinning att anvanda kompositionen och forfarandet for bekampning av insekter som angriper frukt och jordbruksgrodor. It is of particular interest in accordance with the present invention to use the composition and method for controlling insects attacking fruit and agricultural frogs.
Exempel pa frukt eller jordbruksgrodor som angrips av skadeinsekter som kan bekampas enligt uppfinningen är apple (Ma/us domestica Borkh.), paron (Pyrus communis L.), och/eller valnot (Juglans regia L). Examples of fruit or agricultural frogs that are attacked by pests that can be controlled according to the invention are apple (Ma / us domestica Borkh.), Paron (Pyrus communis L.), and / or walnut (Juglans regia L).
Exempel pa jordbruksgrodor som angrips av skadeinsekter som kan bekampas enligt uppfinningen är alfalfa (Medicago sativa L.), bomull (Gossypium spec.), ogonbona (Vigna unguiculata (L.) Walp.), limabonan (Phaseolus lunatus L.), majs (Zea mays L.), ris (Oryza sativa L.), soja (Glycine max (L.) Merr.), och/eller tomat (Solanum lycopersicum L.). 7 Beg reppet "insektspatogen" som anvands i foreliggande beskrivning hanfor sig till alla kanda insektspatogener som infekterar eller dodar skadeinsekterna som bekampningen riktar sig emot. Examples of agricultural frogs that are attacked by pests that can be controlled according to the invention are alfalfa (Medicago sativa L.), cotton (Gossypium spec.), Ogonbona (Vigna unguiculata (L.) Walp.), Limabonan (Phaseolus lunatus L.), maize ( Zea mays L.), rice (Oryza sativa L.), soy (Glycine max (L.) Merr.), And / or tomato (Solanum lycopersicum L.). The term "insect pathogen" as used in the present description refers to all known insect pathogens which infect or kill the pests against which the control is directed.
Skadeinsekten kan infekteras eller dodas i sitt outvecklade stadie, som 5 en larv, eller som fullvuxen insekt. The pest insect can be infected or killed in its undeveloped stage, as a larva, or as an adult insect.
I nagra utforingsformer dodar insektspatogenen skadeinsekten. In some embodiments, the insect pathogen kills the pest.
For det fall insektspatogenen, som anvands enligt uppfinningen, inte dodar insekten, är det onskvart att den resulterar i forebyggande av fodointag eller fortplantning hos insekten. In case the insect pathogen used according to the invention does not kill the insect, it is undesirable that it results in the prevention of food ingestion or reproduction of the insect.
I nagra utforingsformer är insektspatogenen eft virus. In some embodiments, the insect pathogen is virus.
I nagra utforingsformer är insektspatogenen en svamp. In some embodiments, the insect pathogen is a fungus.
I nagra utfOringsformer är insektspatogenen en bakterie. In some embodiments, the insect pathogen is a bacterium.
I nagra utforingsformer är insektspatogenen Cydia pomonella granulovirus (CpGV). In some embodiments, the insect pathogen is Cydia pomonella granulovirus (CpGV).
I nagra utfOringsformer är insektspatogenen Spodoptera frugiperda nucleopolyhedrovirus (SfNPV). In some embodiments, the insect pathogen is Spodoptera frugiperda nucleopolyhedrovirus (SfNPV).
Uttrycket "mikroorganism som är naturligt associerad med skadeinsektslarven" innefattar alla mikroorganismer som naturligt forekommer med larver av den insekt som ska bekampas. Mikroorganismen som är naturligt 20 associerad med skadeinsektslarven kan ha en naturligt forekommande relation, som kan vara en mutualistisk interaktion med skadeinsektslarven. I vissa delar av denna ansokan anvands beg reppet "insektsassocierad mikroorganism" vilket betyder det samma som "mikroorganism som är naturligt associerad med skadeinsektslarven". Denna mikroorganism attraherar och 25 stimulerar larven att ata. I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en jast. I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en svamp. Svam pen kan vara en jast-liknande svamp. I nagra utf6ringsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en 30 bakterie. Det är mojligt att anvanda till exempel en enstaka jast eller en enstaka svamp, men det är aven mojligt att anvanda en kombination av flera mikroorganismer som är naturligt associerade med skadeinsektslarven, 8 sasonn tva eller flera jaster, atnninstone tva svampar, eller atnninstone en jast och atminstone en svamp. The term "microorganism naturally associated with the insect larval pest" includes all microorganisms naturally occurring with the larvae of the insect to be controlled. The microorganism naturally associated with the insect larva may have a naturally occurring relationship, which may be a mutualistic interaction with the insect larva. In some parts of this application, the term "insect-associated microorganism" is used, which means the same as "microorganism naturally associated with the pest insect larva". This microorganism attracts and stimulates the larva to eat. In some embodiments, the microorganism naturally associated with the insect larva is a yeast. In some embodiments, the microorganism naturally associated with the insect larva is a fungus. Mushroom pen can be a yeast-like fungus. In some embodiments, the microorganism naturally associated with the insect larva is a bacterium. It is possible to use, for example, a single yeast or a single fungus, but it is also possible to use a combination of several microorganisms that are naturally associated with the insect larva, 8 season two or more yeasts, atnninstone two fungi, or atnninstone a yeast and at least one sponge.
I nagra utforingsformer kan en sockerart kombineras med mikro- organismen som är naturligt associerad med skadeinsektslarven. Sockret 5 fungerar da som ett substrat for mikroorganismen. In some embodiments, a sugar may be combined with the microorganism naturally associated with the insect larva. The sugar 5 then acts as a substrate for the microorganism.
I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en jast av slaktet Metschnikowia. Jasten av slaktet Metschnikowia kan vara Ascomycota. Alternativt kan jasten av slaktet Metschnikowia vara Saccharomycetes. I nagra utforingsformer anvands M. andauensis. I nagra utforingsformer anvands M. pulcherrima. I nagra utforingsformer anvandslopburiensis. I nagra utforingsformer anvands M. saccharicola. In some embodiments, the microorganism naturally associated with the insect larva is a yeast of the genus Metschnikowia. The yeast of the genus Metschnikowia may be Ascomycota. Alternatively, the yeast of the genus Metschnikowia may be Saccharomycetes. In some embodiments, M. andauensis is used. In some embodiments, M. pulcherrima is used. In some embodiments use loop buriensis. In some embodiments, M. saccharicola is used.
I nagra utforingsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en jastliknande svamp av slaktet Aureobasidium. 15 Den jastliknande svampen av slaktet Aureobasidium kan vara Ascomycota. In some embodiments, the microorganism naturally associated with the insect larva is a yeast-like fungus of the genus Aureobasidium. The yeast-like fungus of the genus Aureobasidium may be Ascomycota.
Alternativt kan den jastliknande svampen av slaktet Aureobasidium vara Sordariomycetes. I nagra utforingsformer anvands A. pullulans. Alternatively, the yeast-like fungus of the genus Aureobasidium may be Sordariomycetes. In some embodiments, A. pullulans is used.
I nagra utfOringsformer är mikroorganismen som är naturligt associerad med skadeinsektslarven en svamp av slaktet Cryptococcus. Svampen av 20 slaktet Cryptococcus kan vara Basidiomycota. Alternativt, kan svampen av slaktet Cryptococcus vara Tremellomycetes. I nagra utforingsformer anvands C. tephrensis. I nagra utforingsfornner anvands C. nemorosus. In some embodiments, the microorganism naturally associated with the insect larva is a fungus of the genus Cryptococcus. The fungus of the genus Cryptococcus may be Basidiomycota. Alternatively, the fungus of the genus Cryptococcus may be Tremellomycetes. In some embodiments, C. tephrensis is used. In some liners, C. nemorosus is used.
I specifika utforingsformer, nar kompositionen eller forfarandet ska anvandas for att bekampa applevecklaren Cydia pomonella L. (Lepidoptera, 25 Tortricidae), är mikroorganismen som är naturligt associerad med skadeinsektslarven vald Than den grupp som bestar av Metschnikowia arter, sasom Ascomycota och Saccharomycetes; Aureobasidium arter, sasom Ascomycota och Sordarionnycetes; och Cryptococcus arter, sasonn Basidiomycota och Tremellomycetes och insektspatogenen är Cydia pomonella granulovirus 30 (CpGV). In specific embodiments, when the composition or method is to be used to control the apple developer Cydia pomonella L. (Lepidoptera, Tortricidae), the microorganism naturally associated with the insect larva is selected Than the group consisting of Metschnikowia species, such as Ascomycycetes and Sacchar; Aureobasidium species, such as Ascomycota and Sordarionnycetes; and Cryptococcus species, sasonn Basidiomycota and Tremellomycetes and the insect pathogen is Cydia pomonella granulovirus (CpGV).
I specifika utforingsformer, nar kompositionen eller forfarandet ska anvandas f6r att bekampa nattflyet Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), valjs mikroorganismen som är naturligt associerad 9 med skadeinsektslarven ut Than den grupp som bestar av Metschnikowia arter, sasom Ascomycota och Saccharomycetes; och Cryptococcus arter, sasom Basidiomycota och Tremellomycetes och insektspatogenen är Spodoptera frugiperda nucleopolyhedrovirus (SfNPV). In specific embodiments, when the composition or method is to be used to control the nocturnal aircraft Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), the microorganism naturally associated with the pest insect larva is selected from the group consisting of Metschnikowia species and Sasom; and Cryptococcus species, such as Basidiomycota and Tremellomycetes and the insect pathogen are Spodoptera frugiperda nucleopolyhedrovirus (SfNPV).
Enligt forfarandet enlig foreliggande uppfinning appliceras insekts- patogenet och mikroorganismen som är naturligt associerad med skadeinsektslarven, pa en vaxt till exempel genom besprutning. According to the method of the present invention, the insect pathogen and microorganism naturally associated with the pest insect larva are applied to a plant, for example by spraying.
Insektspatogen och mikroorganismen som är naturligt associerad med skadeinsektslarven, appliceras pa vaxten antingen samtidigt eller var och en 10 for sig. I manga utforingsformer appliceras patogenet och mikroorganismen samtidigt. For det fall att patogenet och mikroorganismen som är naturligt associerad med skadeinsektslarven inte appliceras samtidigt, ska de fOretradesvis appliceras inom en relativt kort tidsperiod. The insect pathogen and the microorganism naturally associated with the pest insect larva are applied to the plant either simultaneously or separately. In many embodiments, the pathogen and microorganism are applied simultaneously. In the event that the pathogen and microorganism naturally associated with the pest insect larva are not applied simultaneously, they should preferably be applied within a relatively short period of time.
Exempel De insektassocierade mikroorganismerna Cryptococcus tephrensis, Aureobasidium pullulans eller Metschnikowia pulcherrima kombinerades med applevecklarens granulosvirus (CpGV), ett virus som är ett patogen for C. pomonella. Mortaliteten hos nyklackta applevecklarlarver C. pomonella pa 20 apple behandlade med CpGV (3.8 x 7 partiklar/L) och 1.2 eller 3.6 g/L insektassocierade mikroorganismer, med eller utan tillsats av socker, var signifikant hogre an med enbart CpGV (dvs. patogent virus). Examples The insect-associated microorganisms Cryptococcus tephrensis, Aureobasidium pullulans or Metschnikowia pulcherrima were combined with apple granulose virus (CpGV), a virus that is a pathogen for C. pomonella. The mortality of freshly harvested apple peck larvae C. pomonella on 20 apples treated with CpGV (3.8 x 7 particles / L) and 1.2 or 3.6 g / L insect-associated microorganisms, with or without the addition of sugar, was significantly higher than with CpGV alone (ie pathogenic virus ).
Ire experiment genomfordes: patogent virus plus socker; patogent virus plus insektassocierad mikroorganism; patogent virus plus socker plus 25 insektassocierad mikroorganism, jamfort med patogent virus (ljus skuggning, bred stapel) och enbart vatten (torn bred stapel). Staplar markerade med olika bokstaver är signifikant skilda at (P < 0.05). Previous experiments were performed: pathogenic virus plus sugar; pathogenic virus plus insect-associated microorganism; pathogenic virus plus sugar plus 25 insect-associated microorganism, compared with pathogenic virus (light shading, wide bar) and water only (tower wide bar). Bars marked with different letters are significantly different at (P <0.05).
Applevecklaren Cydia pomonella 30 Applevecklarlarver är associerade med insektassocierade mikroorganismer av slakten Metschnikowia, Aureobasidium and Cryptococcus, som okar larvernas tillvaxt och overlevnad (Witzgall et al. 2012). Inledande laboratoriefOrsOk visar nu att en blandning av dessa insektassocierade mikroorganismer och applevecklar granulovirus (CpGV) avsevart okar larvernas mortalitet jamfort med enbart CpGV (se Fig. 1). The apple developer Cydia pomonella 30 Apple developer larvae are associated with insect-associated microorganisms of the genus Metschnikowia, Aureobasidium and Cryptococcus, which increase the growth and survival of the larvae (Witzgall et al. 2012). Initial laboratory research now shows that a mixture of these insect-associated microorganisms and apple-developing granulovirus (CpGV) significantly increases the mortality of the larvae compared to CpGV alone (see Fig. 1).
Var slutsats är att dessa insektassocierade mikroorganismer okar larvernas attraktion och fodointag, med intag av det patogena viruset som 5 foljd. Kombinationen av insektassocierade mikroorganismer och patogena insektsvirus är foljaktligen en ny och mer effektiv bekampningsteknik an enbart patogent virus. Our conclusion is that these insect-associated microorganisms increase the attraction and food intake of the larvae, with ingestion of the pathogenic virus as a result. The combination of insect-associated microorganisms and pathogenic insect viruses is consequently a new and more effective control technique than just pathogenic virus.
Ett replikerat faltforsok bekraftade effekten av insektassocierade mikroorganismer i kombination med CpGV. Signifikanta skillnader fanns 10 bland behandlingar med avseende pa andelen doda och levande larver. Besprutningar med CpGV (3 x 13 partiklar/L) med och utan M. pulcherrima och rOrsocker applicerades vid 1.2 L/appletrad (623 L/ha). Andelen dOda larver var hogst efter behandling med CpGV plus insektsassocierade mikroorganismer och socker. Andel levande larver i frukten var lagst vid 15 tillsats av insektassocierade mikroorganismer och socker till CpGV. Andelen frukt med larver som fullbordade sin utveckling var hOgst i obehandlade kontrollfOrsok och efter behandling med enbart CpGV. A replicated field trial confirmed the effect of insect-associated microorganisms in combination with CpGV. Significant differences were found among treatments with respect to the proportion of dead and live larvae. Sprays with CpGV (3 x 13 particles / L) with and without M. pulcherrima and cane sugar were applied at 1.2 L / appletrad (623 L / ha). The proportion of dOda larvae was harvested after treatment with CpGV plus insect-associated microorganisms and sugar. The proportion of live larvae in the fruit was lowest when insect-associated microorganisms and sugar were added to CpGV. The proportion of fruit with larvae that completed their development was highest in untreated control trials and after treatment with CpGV alone.
Fall arm yworm Spodoptera frugiperda Insektassocierade mikroorganismer av slaktet Metschnikowia och Cryptococcus har aven hittats i association med nattflylarver av arten Spodoptera frugiperda. Inledande laboratorieforsok visar att larverna av S. frugiperda attraheras till dessa insektassocierade Aster och vi antar baserat pa dessa experiment att de kan anvandas i kombination med S. frugiperda 25 nucleopolyhedrovirus (SfNPV) for bekampning av S. frugiperda. 11 Referenser Arthurs SP, Hilton R, Knight AL, Lacey LA. 2007. Evaluation of the pear ester kairomone as a formulation additive for the granulovirus of codling moth (Lepidoptera: Tortricidae) in pome fruit. J econ Entomol 100:702-709. Fall arm yworm Spodoptera frugiperda Insect-associated microorganisms of the genus Metschnikowia and Cryptococcus have also been found in association with moth larvae of the species Spodoptera frugiperda. Preliminary laboratory tests show that the larvae of S. frugiperda are attracted to these insect-associated asters and we assume based on these experiments that they can be used in combination with S. frugiperda nucleopolyhedrovirus (SfNPV) to control S. frugiperda. 11 References Arthurs SP, Hilton R, Knight AL, Lacey LA. 2007. Evaluation of the pear ester kairomone as a formulation additive for the granulovirus of codling moth (Lepidoptera: Tortricidae) in pome fruit. J econ Entomol 100: 702-709.
Ballard J, Ellis DJ, Payne CC. 2000a. Uptake of granulovirus from the surface of apples and leaves by first instar larvae of the codling moth Cydia pomonella L. (Lepidoptera: Olethreutidae). Biocontr Sci Technol 10:617-625. Ballard J, Ellis DJ, Payne CC. 2000a. Uptake of granulovirus from the surface of apples and leaves by first instar larvae of the codling moth Cydia pomonella L. (Lepidoptera: Olethreutidae). Biocontr Sci Technol 10: 617-625.
Ballard J, Ellis DJ, Payne CC. 2000b. The role of formulation additives in increasing the potency of Cydia pomonella granulovirus for codling moth 10 larvae, in laboratory and field experiments. Biocontr Sci Technol 10:627-640. Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M. 2012. Yeast, not fruit volatiles mediate attraction and development of the fruit fly Drosophila melanogaster. Funct Ecol 26:822-828. Ballard J, Ellis DJ, Payne CC. 2000b. The role of formulation additives in increasing the potency of Cydia pomonella granulovirus for codling moth 10 larvae, in laboratory and field experiments. Biocontr Sci Technol 10: 627-640. Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M. 2012. Yeast, not fruit volatiles mediate attraction and development of the fruit fly Drosophila melanogaster . Funct Ecol 26: 822-828.
Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987-1998. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366: 1987-1998.
Cory JS, Myers JH. 2003. The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34:239-272. Cory JS, Myers JH. 2003. The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34: 239-272.
Cross JV, Solomon MG, Chandler D, Jarrett P, Richardson PN, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch GA, Zimmerman G. 1999. Biocontrol of pests of apples and pears in northern and central Europe: 1. Microbial agents and nematodes. Bioctrl Sc Techn 9:125-149. Cross JV, Solomon MG, Chandler D, Jarrett P, Richardson PN, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch GA, Zimmerman G. 1999. Biocontrol of pests of apples and pears in northern and central Europe: 1. Microbial agents and nematodes. Bioctrl Sc Techn 9: 125-149.
Farrell BD, Sequeira AS, O'Meara BC, Normark BB, Chung JH, Jordal 25 BH. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011-2027. Farrell BD, Sequeira AS, O'Meara BC, Normark BB, Chung JH, Jordal 25 BH. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55: 2011-2027.
Fishilevich E, Domingos Al, Asahina K, Naef F, Vosshall LB, Louis M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086-2096. Fishilevich E, Domingos Al, Asahina K, Naef F, Vosshall LB, Louis M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15: 2086-2096.
Guzman B, Lachance M-A, Herrera CM. 2013. Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: have yeast and angiosperm lineages co-diversified? Mol Phylog Evol 68:161-175. 12 Jacques RP, Laing JE, Laing DR, Yu DSK. 1987. Effectiveness and persistence of the granulosis virus of the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) on apple. Can Entomol 119:1063-1067. Guzman B, Lachance M-A, Herrera CM. 2013. Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: have yeast and angiosperm lineages co-diversified? Mol Phylog Evol 68: 161-175. 12 Jacques RP, Laing JE, Laing DR, Yu DSK. 1987. Effectiveness and persistence of the granulosis virus of the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) on apple. Can Entomol 119: 1063-1067.
Janson EM, Stireman JO, Singer MS, Abbot P. 2008. Phytophagous 5 insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997-1012. Janson EM, Stireman JO, Singer MS, Abbot P. 2008. Phytophagous 5 insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62: 997-1012.
Klepzig, K. D., Adams, A. S., Handelsman, J. & Raffa, K. F. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environm 10 Entomol 38,67-77. Klepzig, K. D., Adams, A. S., Handelsman, J. & Raffa, K. F. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environm 10 Entomol 38.67-77.
Knight AL, Light DM. 2001. Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae. Naturwissenschaften 88:339-342. Knight AL, Light DM. 2001. Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae. Natural Sciences 88: 339-342.
Kreher SA, Kwon JY, Carlson JR. 2005. The molecular basis of odor coding in the Drosophila larva. Neuron 46:445-456. Kreher SA, Kwon JY, Carlson JR. 2005. The molecular basis of odor coding in the Drosophila larva. Neuron 46: 445-456.
Lacey LA, Shapiro-Ilan DI. 2008. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu. Rev. Entomol. 53:121-144. Lacey LA, Shapiro-Ilan DI. 2008. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu. Reef. Entomol. 53: 121-144.
Lacey, L. A., Thomson, D., Vincent, C. and Arthurs, S. P. 2008. Codling moth granulovirus: a comprehensive review. Biocontr. Sci. Technol. 20 18:639-663. Lacey, L. A., Thomson, D., Vincent, C. and Arthurs, S. P. 2008. Codling moth granulovirus: a comprehensive review. Biocontr. Sci. Technol. 20 18: 639-663.
Light DM, Knight AL. 2011. Microencapsulated pear ester enhances insecticide efficacy in walnut for codling moth (Lepidoptera; Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). J econ Entomol 104:1309-1315. Light DM, Knight AL. 2011. Microencapsulated pear ester enhances insecticidal efficacy in walnut for codling moth (Lepidoptera; Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). J econ Entomol 104: 1309-1315.
Moscardi F. 1999. Assessment of the application of baculoviruses for 25 control of Lepidoptera. Annu Rev Entomol 44:257-289. Moscardi F. 1999. Assessment of the application of baculoviruses for 25 control of Lepidoptera. Annu Rev Entomol 44: 257-289.
Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 2005. The evolution of agriculture in insects. Annu Rev Entomol 36:563-595. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 2005. The evolution of agriculture in insects. Annu Rev Entomol 36: 563-595.
Schmidt S, Tomasi C, Pasqualini E, loriatti C. 2008. The biological efficacy of pear ester on the activity of granulosis virus for codling moth. J 30 Pest Sci 81:29-34. Schmidt S, Tomasi C, Pasqualini E, loriatti C. 2008. The biological efficacy of pear ester on the activity of granulosis virus for codling moth. J 30 Pest Sci 81: 29-34.
Schoenian I, SpiteIler M, Ghaste M, Wirth R, Herz H, SpiteIler D. 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci 108:1955-1960. 13 Starnner WT, Fogleman JC. 1986. Coadaptation of Drosophila and yeasts in their natural habitat. J chem Ecol 12:1037-1055. Schoenian I, SpiteIler M, Ghaste M, Wirth R, Herz H, SpiteIler D. 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci 108: 1955-1960. 13 Starnner WT, Fogleman JC. 1986. Coadaptation of Drosophila and yeasts in their natural habitat. J chem Ecol 12: 1037-1055.
Sutherland RW. 1972. The attraction of newly-hatched codling moth (Laspeyresia pomonella) larvae to apple. Entomol exp appl. 15:481-487. Sutherland RW. 1972. The attraction of newly-hatched codling moth (Laspeyresia pomonella) larvae to apple. Entomol exp appl. 15: 481-487.
Villamizar L, Barrera G, Cotes AM, Martinez F. 2010. Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: physicochemical characterization, photostability and in vitro virus release. J Microencapsulation 27:314-324. Villamizar L, Barrera G, Cotes AM, Martinez F. 2010. Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: physicochemical characterization, photostability and in vitro virus release. J Microencapsulation 27: 314-324.
Witzgall P, Stelinski L, Gut L, Thomson D. 2008. Codling moth 10 management and chemical ecology. Annu Rev Entomol 53:503-522. Witzgall P, Stelinski L, Gut L, Thomson D. 2008. Codling moth 10 management and chemical ecology. Annu Rev Entomol 53: 503-522.
Witzgall P, Kirsch P, Cork A. 2010. Sex pheromones and their impact on pest management. J chem Ecol 36:80-100. Witzgall P, Kirsch P, Cork A. 2010. Sex pheromones and their impact on pest management. J chem Ecol 36: 80-100.
Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman 15 CP, Piskur J, Knight A. 2012. "This is not an apple" - yeast mutualism in codling moth. J chem Ecol 38:949-957. Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman 15 CP, Piskur J, Knight A. 2012. "This is not an apple" - yeast mutualism in codling moth. J chem Ecol 38: 949-957.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350560A SE537424C2 (en) | 2013-05-07 | 2013-05-07 | Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae |
PCT/SE2014/050555 WO2014182228A1 (en) | 2013-05-07 | 2014-05-07 | A method for controlling insects, using an insect pathogen and a microorganism that is naturally associated with the larvae of the insects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350560A SE537424C2 (en) | 2013-05-07 | 2013-05-07 | Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1350560A1 true SE1350560A1 (en) | 2014-11-08 |
SE537424C2 SE537424C2 (en) | 2015-04-21 |
Family
ID=51867572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1350560A SE537424C2 (en) | 2013-05-07 | 2013-05-07 | Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae |
Country Status (2)
Country | Link |
---|---|
SE (1) | SE537424C2 (en) |
WO (1) | WO2014182228A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112018012451B1 (en) | 2015-12-21 | 2022-07-12 | Corporación Colombiana De Investigación Agropecuaria- Agrosavia | BIOPESTICIDE COMPOSITION BASED ON VIRUS |
CN118979018B (en) * | 2024-05-23 | 2025-04-01 | 沈阳农业大学 | Malus pomonella nuclear polyhedrosis virus strain and application thereof in biological pesticides |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8753656B2 (en) * | 2000-10-04 | 2014-06-17 | Paul Stamets | Controlling zoonotic disease vectors from insects and arthropods using preconidial mycelium and extracts of preconidial mycelium from entomopathogenic fungi |
NZ528225A (en) * | 2001-03-14 | 2008-06-30 | Israel State | Use of yeast Metschnikowia fructicola to inhibit growth of unwanted microorganisms on a portion of a plant, for example, foliage, flowers, fruit, roots or vegetables |
JP4969373B2 (en) * | 2007-08-31 | 2012-07-04 | 協友アグリ株式会社 | Pest control agent |
BRPI0901235A2 (en) * | 2009-04-16 | 2010-12-28 | Embrapa Pesquisa Agropecuaria | insect biocontrol formulation process of the order lepidoptera and formulation obtained |
-
2013
- 2013-05-07 SE SE1350560A patent/SE537424C2/en not_active IP Right Cessation
-
2014
- 2014-05-07 WO PCT/SE2014/050555 patent/WO2014182228A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014182228A1 (en) | 2014-11-13 |
SE537424C2 (en) | 2015-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weber et al. | Chemical ecology of Halyomorpha halys: discoveries and applications | |
Khater | Ecosmart biorational insecticides: alternative insect control strategies | |
Lacey et al. | Codling moth granulovirus: a comprehensive review | |
Maloney et al. | TB190: Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations. | |
El-Sayed et al. | Potential of mass trapping for long-term pest management and eradication of invasive species | |
Sharma et al. | Biopesticides: Types and applications | |
Ahissou et al. | Integrated pest management options for the fall armyworm Spodoptera frugiperda in West Africa: Challenges and opportunities. A review | |
Butu et al. | Biopesticides: Clean and viable technology for healthy environment | |
Lösel et al. | Laboratory and field experiments towards the development of an attract and kill strategy for the control of the codling moth, Cydia pomonella | |
Leng et al. | Bioactivity of selected eco-friendly pesticides against Cylas formicarius (Coleoptera: Brentidae) | |
SE523876C2 (en) | Procedure for the control of insect trapping of insects from the group Argyresthia conjugella (rowan berry), Cydia pomonella (apple wicker), Hedya nubiferana and Pandemis heparana of fruit trees using certain volatile plant substances from rowan or apple and composition for carrying out the procedure | |
Sarwar | Information on activities regarding biochemical pesticides: an ecological friendly plant protection against insects | |
Jeyaparvathi et al. | Biological control potential of spiders on the selected cotton pests. | |
WO2016009981A1 (en) | Combination of harmful-arthropod-attracting compound and natural enemy | |
Malik et al. | Management of diamond back moth (Plutella xylostella) using indigenous isolated Granulovirus and Azadirachta indica | |
AU2017290129A1 (en) | Mixtures of sabadilla alkaloids and pyrethrum and uses thereof | |
EP4208019A1 (en) | Use of erythritol compositions as mammal-safe insecticides | |
SE1350560A1 (en) | Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae | |
Maqsood et al. | Efficacy of Nuclear Polyhedrosis Virus and Flubendiamide Alone and in Combination against Spodoptera litura F. | |
Visnupriya et al. | Acute toxicity and field evaluation of spinetoram 12 SC against Helicoverpa armigera Hubner on tomato | |
Fetoh et al. | Combined effect of entomopathogenic nematodes and biopesticides to control the greasy cut worm, Agrotis ipsilion (Hufn.) in the strawberry fields | |
Prasad et al. | Use of semio-chemicals and pheromones in insect pest management (IPM) | |
de França et al. | The use of behavioral manipulation techniques on synthetic insecticides optimization | |
Hutchinson | Popular methods of Biological control and the future of baculoviruses | |
Tillman et al. | Pest insects and natural enemies in transitional organic cotton in Georgia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |