[go: up one dir, main page]

RU99118171A - METHOD FOR ELECTROCHEMICAL PRODUCTION OF NI (O) PHOSPHITE AND DIPHOSPHITE COMPLEXES - Google Patents

METHOD FOR ELECTROCHEMICAL PRODUCTION OF NI (O) PHOSPHITE AND DIPHOSPHITE COMPLEXES

Info

Publication number
RU99118171A
RU99118171A RU99118171/12A RU99118171A RU99118171A RU 99118171 A RU99118171 A RU 99118171A RU 99118171/12 A RU99118171/12 A RU 99118171/12A RU 99118171 A RU99118171 A RU 99118171A RU 99118171 A RU99118171 A RU 99118171A
Authority
RU
Russia
Prior art keywords
ligands
ions
cathode
anode
metallic
Prior art date
Application number
RU99118171/12A
Other languages
Russian (ru)
Other versions
RU2226228C2 (en
Inventor
Виталий Аркадьевич Гринберг
Татьяна Львовна Кулова
Андрей Александрович Степанов
Original Assignee
Дю Пон Де Немур Энтернасьональ С.А.
Filing date
Publication date
Application filed by Дю Пон Де Немур Энтернасьональ С.А. filed Critical Дю Пон Де Немур Энтернасьональ С.А.
Priority claimed from RU99118171/04A external-priority patent/RU2226228C2/en
Priority to RU99118171/04A priority Critical patent/RU2226228C2/en
Priority to CA002376294A priority patent/CA2376294A1/en
Priority to PCT/US2000/022527 priority patent/WO2001014392A1/en
Priority to AU67790/00A priority patent/AU6779000A/en
Priority to EP00955616A priority patent/EP1218389B1/en
Priority to MXPA02001756A priority patent/MXPA02001756A/en
Priority to KR1020027002135A priority patent/KR100760788B1/en
Priority to DE60006144T priority patent/DE60006144T2/en
Priority to CZ2002501A priority patent/CZ2002501A3/en
Priority to JP2001518722A priority patent/JP2003507582A/en
Priority to SK218-2002A priority patent/SK286309B6/en
Priority to CNB008118299A priority patent/CN1211393C/en
Priority to PL353637A priority patent/PL202487B1/en
Priority to BR0013556-9A priority patent/BR0013556A/en
Publication of RU99118171A publication Critical patent/RU99118171A/en
Publication of RU2226228C2 publication Critical patent/RU2226228C2/en
Application granted granted Critical

Links

Claims (15)

1. Способ электрохимического получения фосфитных и дифосфитных Ni(0)комплексов в бездиафрагменном электролизере, содержащем анод и катод, путем анодного растворения металлического никеля в апротонном растворителе с последующим электровосстановлением ионов никеля на катоде в присутствии фосфорных лигандов с использованием постоянного или переменного тока.1. A method for the electrochemical production of phosphite and diphosphite Ni (0) complexes in a diaphragmless cell containing an anode and a cathode, by anodic dissolution of metallic nickel in an aprotic solvent followed by electroreduction of nickel ions on the cathode in the presence of phosphoric ligands using direct or alternating current. 2. Способ по п.1, отличающийся тем, что в качестве катода используются металлы с низким перенапряжением водорода, выбранные из группы, состоящей из платины, золота, палладия, рутения, иридия, кобальта, молибдена, никеля и железа. 2. The method according to claim 1, characterized in that the cathode uses metals with low hydrogen overvoltage selected from the group consisting of platinum, gold, palladium, ruthenium, iridium, cobalt, molybdenum, nickel and iron. 3. Способ по п.1 или 2, отличающийся тем, что фосфорные комплексы содержат фосфитные лиганды общей формулы Р(ОR)3, где R - алкильный радикал, содержащий 1 - 10 углеродных атомов или арильную группу или ее производные, и дифосфитные лиганды, включающие замещенные пирокатехина, бис(фенола) или бис(нафтола).3. The method according to claim 1 or 2, characterized in that the phosphorus complexes contain phosphite ligands of the general formula P (OR) 3 , where R is an alkyl radical containing 1 to 10 carbon atoms or an aryl group or its derivatives, and diphosphite ligands, including substituted pyrocatechol, bis (phenol) or bis (naphthol). 4. Способ по п.3, отличающийся тем, что соотношение между ионами Ni2+, полученными в ходе электрохимического растворения металлического Ni и фосфорными лигандами составляет 1: 4 в случае фосфитных лигандов, 1:2 в случае дифосфитных лигандов или 1:1 в случае стерически затрудненных дифосфитных лигандов.4. The method according to claim 3, characterized in that the ratio between Ni 2+ ions obtained during the electrochemical dissolution of metallic Ni and phosphoric ligands is 1: 4 in the case of phosphite ligands, 1: 2 in the case of diphosphite ligands, or 1: 1 in case of sterically hindered diphosphite ligands. 5. Способ по п.1, отличающийся тем, что электрохимическое растворение металлического Ni и электровосстановление Ni2+ ионов происходит в растворе, включающем ацетонитрил, диметилформамид и 3-пентеннитрил.5. The method according to claim 1, characterized in that the electrochemical dissolution of metallic Ni and electroreduction of Ni 2+ ions occurs in a solution comprising acetonitrile, dimethylformamide and 3-pentenonitrile. 6. Способ по п.1, отличающийся тем, что электрохимическое растворение металлического Ni и электровосстановление Ni2+ ионов происходит в присутствии ацетилацетона.6. The method according to claim 1, characterized in that the electrochemical dissolution of metallic Ni and electroreduction of Ni 2+ ions occurs in the presence of acetylacetone. 7. Способ по п.6, отличающийся тем, что количество ацетилацетона в электролите соответствует количеству Ni2+ ионов, растворенных в ходе предварительного электролиза.7. The method according to claim 6, characterized in that the amount of acetylacetone in the electrolyte corresponds to the number of Ni 2+ ions dissolved in the preliminary electrolysis. 8. Способ по п.1, отличающийся тем, что анодная плотность тока составляет 1-20 мА/см2.8. The method according to claim 1, characterized in that the anode current density is 1-20 mA / cm 2 . 9. Способ по п.1, отличающийся тем, что катодная плотность тока составляет 1-15 мА/см2.9. The method according to claim 1, characterized in that the cathodic current density is 1-15 mA / cm 2 . 10. Способ по п.1, отличающийся тем, что его проводят при температуре (-10) - 40oС.10. The method according to claim 1, characterized in that it is carried out at a temperature of (-10) - 40 o C. 11. Способ по п.1, отличающийся тем, что электролиз после растворения металлического никеля проводят с растворяющимся анодом, выбранным из металлов II, IV, V, VI, VII и VIII групп Периодической системы элементов. 11. The method according to claim 1, characterized in that the electrolysis after dissolution of the metallic nickel is carried out with a dissolving anode selected from metals of groups II, IV, V, VI, VII and VIII of the Periodic table of the elements. 12. Способ по п.11, отличающийся тем, что анод включает цинк, а катод включает никель. 12. The method according to claim 11, characterized in that the anode includes zinc, and the cathode includes nickel. 13. Способ по п.12, отличающийся тем, что соотношение площади поверхности Zn анода и Ni катода составляет около 1:1. 13. The method according to p. 12, characterized in that the ratio of the surface area Zn of the anode and the Ni cathode is about 1: 1. 14. Способ по п.12, отличающийся тем, что количество растворенных Zn2+ ионов (пропущенный заряд) соответствует эквимолярному количеству образованного Ni(0) комплекса.14. The method according to p. 12, characterized in that the amount of dissolved Zn 2+ ions (missed charge) corresponds to the equimolar amount of the formed Ni (0) complex. 15. Способ по п.1, отличающийся тем, что используется переменный ток. 15. The method according to claim 1, characterized in that the alternating current is used.
RU99118171/04A 1999-08-20 1999-08-20 METHOD OF ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES RU2226228C2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
RU99118171/04A RU2226228C2 (en) 1999-08-20 1999-08-20 METHOD OF ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES
KR1020027002135A KR100760788B1 (en) 1999-08-20 2000-08-17 Electrochemical Preparation of Ni (O) Phosphite and Diphosphite Complexes
CZ2002501A CZ2002501A3 (en) 1999-08-20 2000-08-17 Electrochemical process for producing phopshite and diphosphite Ni(0) complexes
AU67790/00A AU6779000A (en) 1999-08-20 2000-08-17 Method for electrochemical production of ni(0) phosphite and diphosphite complexes
EP00955616A EP1218389B1 (en) 1999-08-20 2000-08-17 METHOD FOR ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES
MXPA02001756A MXPA02001756A (en) 1999-08-20 2000-08-17 METHOD FOR ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES.
CA002376294A CA2376294A1 (en) 1999-08-20 2000-08-17 Method for electrochemical production of ni(0) phosphite and diphosphite complexes
DE60006144T DE60006144T2 (en) 1999-08-20 2000-08-17 METHOD FOR THE ELECTROCHEMICAL PRODUCTION OF NI (0) PHOSPHITE AND DIPHOSPHITE COMPLEXES
PCT/US2000/022527 WO2001014392A1 (en) 1999-08-20 2000-08-17 METHOD FOR ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES
JP2001518722A JP2003507582A (en) 1999-08-20 2000-08-17 Method for the electrochemical production of Ni (0) phosphite and diphosphite complexes
SK218-2002A SK286309B6 (en) 1999-08-20 2000-08-17 Method for electrochemical production of Ni(0) phosphite and diphosphite complexes and method of olefin hydrocyanation or alkene nitrite isomerization
CNB008118299A CN1211393C (en) 1999-08-20 2000-08-17 Method for electrochemical prodn. of Ni(O) phosphite and diphosphite complexes
PL353637A PL202487B1 (en) 1999-08-20 2000-08-17 METHOD FOR ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES
BR0013556-9A BR0013556A (en) 1999-08-20 2000-08-17 Electrochemical production method of a ni (0) phosphite or diphosphite complex, olefin hydrocyanation complex or nitrile alkylene isomerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99118171/04A RU2226228C2 (en) 1999-08-20 1999-08-20 METHOD OF ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES

Publications (2)

Publication Number Publication Date
RU99118171A true RU99118171A (en) 2001-07-27
RU2226228C2 RU2226228C2 (en) 2004-03-27

Family

ID=20224153

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99118171/04A RU2226228C2 (en) 1999-08-20 1999-08-20 METHOD OF ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES

Country Status (14)

Country Link
EP (1) EP1218389B1 (en)
JP (1) JP2003507582A (en)
KR (1) KR100760788B1 (en)
CN (1) CN1211393C (en)
AU (1) AU6779000A (en)
BR (1) BR0013556A (en)
CA (1) CA2376294A1 (en)
CZ (1) CZ2002501A3 (en)
DE (1) DE60006144T2 (en)
MX (1) MXPA02001756A (en)
PL (1) PL202487B1 (en)
RU (1) RU2226228C2 (en)
SK (1) SK286309B6 (en)
WO (1) WO2001014392A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136488A1 (en) 2001-07-27 2003-02-06 Basf Ag Catalyst system comprising Ni(0) and phosphorous ligands is useful for the production of nitrile and dinitrile compounds
AR038161A1 (en) 2002-01-24 2004-12-29 Basf Ag PROCEDURE FOR SEPARATING ACIDS FROM CHEMICAL REACTION MIXTURES WITH THE HELP OF ION LIQUIDS
US7253298B2 (en) 2002-07-15 2007-08-07 Rhodia Polyamide Intermediates Process for preparing nitrile compounds from ethylenically unsaturated compounds
FR2842197A1 (en) * 2002-07-15 2004-01-16 Rhodia Polyamide Intermediates PROCESS FOR THE PRODUCTION OF NITRILIC COMPOUNDS FROM ETHYLENE-UNSATURATED COMPOUNDS
US6897329B2 (en) * 2003-01-14 2005-05-24 Invista North America S.A.R.L. Process for the preparation of nickel/phosphorous ligand catalyst for olefin hydrocyanation
CN1313641C (en) * 2003-12-09 2007-05-02 南开大学 Method for chemical plating nickel phosphor alloy
DE102004004718A1 (en) 2004-01-29 2005-08-18 Basf Ag Hydrocyanation process
EP1825914A1 (en) * 2006-02-22 2007-08-29 Basf Aktiengesellschaft Improved process for the preparation of nickel(0) - phosphorus ligand - complexes
EP2614071B1 (en) 2010-09-07 2015-12-02 Invista Technologies S.a r.l. Preparing a nickel phosphorus ligand complex

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512695A (en) 1994-04-14 1996-04-30 E. I. Du Pont De Nemours And Company Bidentate phosphite and nickel catalyst compositions for hydrocyanation of monoolefins
FR2727637B1 (en) * 1994-12-06 1997-01-03 Rhone Poulenc Chimie PROCESS FOR THE ELECTROCHEMICAL PREPARATION OF CATALYZERS BASED ON TRANSITION METAL AND PHOSPHINE
US5602228A (en) * 1995-06-06 1997-02-11 Maxdem Incorporated Nickel phosphate catalysts
FR2743011B1 (en) * 1995-12-29 1998-02-20 Rhone Poulenc Fibres PROCESS FOR THE ELECTROCHEMICAL PREPARATION OF CATALYZERS BASED ON TRANSITION METAL AND PHOSPHINE
DE19740180A1 (en) * 1997-09-12 1999-03-18 Basf Ag Nickel (0) phosphonite complex useful in production of organic nitriles

Similar Documents

Publication Publication Date Title
PL94988B1 (en)
CN101027432B (en) anode for electroplating
RU2226228C2 (en) METHOD OF ELECTROCHEMICAL PRODUCTION OF Ni(0) PHOSPHITE AND DIPHOSPHITE COMPLEXES
EP0238714A1 (en) Electrolytic recovery of lead from scrap
RU99118171A (en) METHOD FOR ELECTROCHEMICAL PRODUCTION OF NI (O) PHOSPHITE AND DIPHOSPHITE COMPLEXES
CA2054252A1 (en) Process for replenishing metals in aqueous electrolyte solutions
Ilea et al. The electrodeposition of manganese from aqueous solutions of MnSO4. IV: electrowinning by galvanostatic electrolysis
KR880010157A (en) Electrochemical Substitution of Halogen Atoms in Organic Compounds
Watson et al. The role of chromium II and VI in the electrodeposition of chromium nickel alloys from trivalent chromium—amide electrolytes
Parker et al. Solvation of ions. Some applications. I. Electrorefining of silver by means of silver sulphate solutions in mixtures of water with 3-hydroxypropionitrile
US6569311B2 (en) Continuous electrochemical process for preparation of zinc powder
US3580828A (en) Electrodeposition of lithium
JP2015509558A (en) Operation method of anode and electrolytic cell
US3287168A (en) Fuel cell electrode and preparation thereof
US6569310B2 (en) Electrochemical process for preparation of zinc powder
Abd El-Halim Electroplating of cadmium from acidic bromide baths
Abd El Meguid et al. The electroplating of nickel from aqueous gluconate baths
Caielli Zn anode shape-change suppression in mildly acidic aqueous zinc-ion battery electrolytes containing quaternary ammonium salts
US4367128A (en) Energy efficient self-regulating process for winning copper from aqueous solutions
KR100571796B1 (en) The method of electro co-deposition to Ag-Cu eutectic alloy
Brossard et al. Influence of iron impurities on the time dependence of the hydrogen evolution reaction on platinum cathodes during electrolysis of 30 w/o KOH
Menzies et al. The Electrodeposition of Cadmium from Non-aqueous Solutions: Pt. II Deposition from Mixed Iodide-Dimethylformamide Systems
JPH1136099A (en) Plating device and plating method thereby
EP1229150A1 (en) Electrochemical process for preparation of Zinc powder
Johal et al. Electrodeposition of thallium from a sulphamate solution