[go: up one dir, main page]

RU97119798A - OPTICAL ATTENUATOR AND METHOD FOR ITS MANUFACTURE - Google Patents

OPTICAL ATTENUATOR AND METHOD FOR ITS MANUFACTURE

Info

Publication number
RU97119798A
RU97119798A RU97119798/09A RU97119798A RU97119798A RU 97119798 A RU97119798 A RU 97119798A RU 97119798/09 A RU97119798/09 A RU 97119798/09A RU 97119798 A RU97119798 A RU 97119798A RU 97119798 A RU97119798 A RU 97119798A
Authority
RU
Russia
Prior art keywords
optical attenuator
attenuator according
optical
manufacturing
optical fiber
Prior art date
Application number
RU97119798/09A
Other languages
Russian (ru)
Other versions
RU2141679C1 (en
Inventor
Парк Чан-Сик
Original Assignee
Самсунг Электроникс Ко., Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019960061400A external-priority patent/KR100206176B1/en
Application filed by Самсунг Электроникс Ко., Лтд filed Critical Самсунг Электроникс Ко., Лтд
Publication of RU97119798A publication Critical patent/RU97119798A/en
Application granted granted Critical
Publication of RU2141679C1 publication Critical patent/RU2141679C1/en

Links

Claims (17)

1. Оптический аттенюатор, содержащий оптическое волокно, оптические свойства которого включают в себя, по меньшей мере, один разрыв, который нарушает условия полного внутреннего отражения оптического волокна для ослабления светового сигнала, передаваемого через оптическое волокно.1. An optical attenuator containing an optical fiber, the optical properties of which include at least one gap, which violates the conditions for the total internal reflection of the optical fiber to attenuate the light signal transmitted through the optical fiber. 2. Оптический аттенюатор по п.1, отличающийся тем, что разрыв обусловлен изменением коэффициентов преломления слоя сердцевины и слоя оболочки оптического волокна. 2. The optical attenuator according to claim 1, characterized in that the gap is due to a change in the refractive indices of the core layer and the optical fiber sheath layer. 3. Оптический аттенюатор по пп.1 или 2, отличающийся тем, что разрыв содержит множество дифракционных решеток, сформированных на интервале от 500 нм до 600 нм при помощи процесса фазовой маски. 3. The optical attenuator according to claims 1 or 2, characterized in that the gap contains many diffraction gratings formed in the range from 500 nm to 600 nm using the phase mask process. 4. Оптический аттенюатор по п.3, отличающийся тем, что множество дифракционных решеток сформировано на расстоянии в пределах между 1 и 10 см. 4. The optical attenuator according to claim 3, characterized in that the plurality of diffraction gratings are formed at a distance between 1 and 10 cm. 5. Оптический аттенюатор по пп.1 или 2, отличающийся тем, что разрыв содержит множество дифракционных решеток, сформированных на интервале от 50 мкм до 60 мкм при помощи процесса амплитудной маски. 5. The optical attenuator according to claims 1 or 2, characterized in that the gap contains many diffraction gratings formed in the range from 50 μm to 60 μm using the amplitude mask process. 6. Оптический аттенюатор по п.5, отличающийся тем, что множество дифракционных решеток сформировано на расстоянии в пределах между 1 и 5 см. 6. The optical attenuator according to claim 5, characterized in that the plurality of diffraction gratings are formed at a distance between 1 and 5 cm. 7. Оптический аттенюатор по одному из пп.1-6, отличающийся тем, что он адаптирован для использования на длинах волн примерно 1550 нм. 7. The optical attenuator according to one of claims 1 to 6, characterized in that it is adapted for use at wavelengths of about 1550 nm. 8. Оптический аттенюатор по одному из пп.1-7, отличающийся тем, что оптическое волокно установлено в трубке для предотвращения влияния изменений внешних условий. 8. The optical attenuator according to one of claims 1 to 7, characterized in that the optical fiber is installed in the tube to prevent the influence of changes in external conditions. 9. Способ изготовления оптического аттенюатора, включающий формирование, по меньшей мере, одного разрыва оптических свойств оптического волокна, который нарушает условия полного внутреннего отражения оптического волокна для ослабления светового сигнала, передаваемого через оптическое волокно. 9. A method of manufacturing an optical attenuator, including the formation of at least one gap in the optical properties of the optical fiber, which violates the conditions for the total internal reflection of the optical fiber to attenuate the light signal transmitted through the optical fiber. 10. Способ изготовления оптического аттенюатора по п.9, отличающийся тем, что разрыв формируют при помощи изменения коэффициентов преломления слоя сердцевины и слоя оболочки оптического волокна. 10. A method of manufacturing an optical attenuator according to claim 9, characterized in that the gap is formed by changing the refractive indices of the core layer and the optical fiber sheath layer. 11. Способ изготовления оптического аттенюатора по п.10, отличающийся тем, что изменения вызывают при помощи облучения оптического волокна излучением эксимерного лазера. 11. A method of manufacturing an optical attenuator according to claim 10, characterized in that the changes are caused by irradiating the optical fiber with excimer laser radiation. 12. Способ изготовления оптического аттенюатора по п.11, отличающийся тем, что формируют множество дифракционных решеток на интервале от 500 нм до 600 нм с использованием процесса фазовой маски. 12. A method of manufacturing an optical attenuator according to claim 11, characterized in that a plurality of diffraction gratings are formed in the range from 500 nm to 600 nm using a phase mask process. 13. Способ изготовления оптического аттенюатора по п.12, отличающийся тем, что эксимерный лазер излучает лазерный световой пучок с энергией от 50 МВт до 400 МВт, напряжением от 15 кВ до 19 кВ и частотой следования импульсов от 5 Гц до 15 Гц. 13. A method of manufacturing an optical attenuator according to claim 12, wherein the excimer laser emits a laser light beam with an energy of 50 MW to 400 MW, a voltage of 15 kV to 19 kV and a pulse repetition rate of 5 Hz to 15 Hz. 14. Способ изготовления оптического аттенюатора по пп.12 или 13, отличающийся тем, что множество дифракционных решеток формируют на расстоянии в пределах между 1 и 10 см. 14. A method of manufacturing an optical attenuator according to claims 12 or 13, characterized in that a plurality of diffraction gratings are formed at a distance between 1 and 10 cm. 15. Способ изготовления оптического аттенюатора по п.11, отличающийся тем, что формируют множество дифракционных решеток на интервале от 50 мкм до 60 мкм с использованием процесса амплитудной маски. 15. The method of manufacturing an optical attenuator according to claim 11, characterized in that a plurality of diffraction gratings are formed in the range from 50 μm to 60 μm using an amplitude mask process. 16. Способ изготовления оптического аттенюатора по п.15, отличающийся тем, что эксимерный лазер излучает лазерный световой пучок с энергией от 50 МВт до 400 МВт, напряжением от 15 кВ до 19 кВт и частотой следования импульсов от 5 Гц до 15 Гц. 16. The method of manufacturing an optical attenuator according to clause 15, wherein the excimer laser emits a laser light beam with energies from 50 MW to 400 MW, voltage from 15 kV to 19 kW and pulse repetition rate from 5 Hz to 15 Hz. 17. Способ изготовления оптического аттенюатора по пп.15 или 16, отличающийся тем, что множество дифракционных решеток формируют на расстоянии в пределах между 1 и 5 см. 17. A method of manufacturing an optical attenuator according to claims 15 or 16, characterized in that a plurality of diffraction gratings are formed at a distance between 1 and 5 cm.
RU97119798A 1996-12-03 1997-11-28 Optical attenuator and method for its manufacturing RU2141679C1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960061400A KR100206176B1 (en) 1996-12-03 1996-12-03 Optical Attenuator and Manufacturing Method
KR61400/1996 1996-12-03

Publications (2)

Publication Number Publication Date
RU97119798A true RU97119798A (en) 1999-09-20
RU2141679C1 RU2141679C1 (en) 1999-11-20

Family

ID=19485595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97119798A RU2141679C1 (en) 1996-12-03 1997-11-28 Optical attenuator and method for its manufacturing

Country Status (8)

Country Link
US (1) US6185358B1 (en)
JP (1) JPH10160937A (en)
KR (1) KR100206176B1 (en)
CN (1) CN1111750C (en)
DE (1) DE19751534B4 (en)
FR (1) FR2756639B1 (en)
GB (1) GB2320106B (en)
RU (1) RU2141679C1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597833B1 (en) 2000-06-27 2003-07-22 Oluma, Inc. Wavelength-division multiplexers and demultiplexers based on mach-zehnder interferometers and evanescent coupling
US6621951B1 (en) 2000-06-27 2003-09-16 Oluma, Inc. Thin film structures in devices with a fiber on a substrate
US6516114B2 (en) 2000-06-27 2003-02-04 Oluma, Inc. Integration of fibers on substrates fabricated with grooves
US6501875B2 (en) 2000-06-27 2002-12-31 Oluma, Inc. Mach-Zehnder inteferometers and applications based on evanescent coupling through side-polished fiber coupling ports
US6625349B2 (en) 2000-06-27 2003-09-23 Oluma, Inc. Evanescent optical coupling between a waveguide formed on a substrate and a side-polished fiber
US6490391B1 (en) 2000-07-12 2002-12-03 Oluma, Inc. Devices based on fibers engaged to substrates with grooves
US6621952B1 (en) 2000-08-10 2003-09-16 Oluma, Inc. In-fiber variable optical attenuators and modulators using index-changing liquid media
US6571035B1 (en) 2000-08-10 2003-05-27 Oluma, Inc. Fiber optical switches based on optical evanescent coupling between two fibers
US6542663B1 (en) 2000-09-07 2003-04-01 Oluma, Inc. Coupling control in side-polished fiber devices
WO2002093697A2 (en) * 2001-05-15 2002-11-21 Optical Power Systems Incorporated Fiber laser having a suppressor
US6744948B1 (en) 2001-06-20 2004-06-01 Oluma, Inc. Fiber tap monitor based on evanescent coupling
TW493758U (en) * 2001-11-21 2002-07-01 Hon Hai Prec Ind Co Ltd Fixed light attenuator
WO2003098292A1 (en) * 2002-05-22 2003-11-27 Showa Electric Wire & Cable Co., Ltd. Signal cutout device, optical connector, and optical fiber coupler
CA2396831A1 (en) * 2002-08-02 2004-02-02 Femtonics Corporation Microstructuring optical wave guide devices with femtosecond optical pulses
JP4602739B2 (en) * 2004-11-01 2010-12-22 昭和電線ケーブルシステム株式会社 WDM transmission system
US7787772B2 (en) * 2005-01-28 2010-08-31 Canare Electric Co., Ltd. Optical signal transmission device and optical communication network
US7477827B2 (en) * 2007-02-02 2009-01-13 Jds Uniphase Corporation Variable Optical Attenuator
US9207421B2 (en) * 2008-10-14 2015-12-08 Corning Cable Systems Llc Fiber optic network architecture having optical connection terminals in series arrangement
US8873967B2 (en) * 2008-10-17 2014-10-28 Corning Cable Systems Llc Optical interconnection modules for hybrid electrical-optical networks
US9482840B2 (en) * 2009-05-27 2016-11-01 Corning Cable Systems Llc Port mapping for series connected fiber optic terminals
US8251591B2 (en) 2009-06-17 2012-08-28 Corning Cable Systems Optical interconnection assemblies and systems for high-speed data-rate optical transport systems
US9097873B2 (en) 2010-04-14 2015-08-04 Corning Cable Systems Llc Port mapping in fiber optic network devices
EP2788804A4 (en) * 2011-12-09 2015-08-05 Hewlett Packard Development Co Optical connections
US9057863B2 (en) 2012-07-25 2015-06-16 Corning Cable Systems Llc Polarity scheme for parallel-optics data transmission
US9097874B2 (en) 2012-07-25 2015-08-04 Corning Optical Communications LLC Polarity configurations for parallel optics data transmission, and related apparatuses, components, systems, and methods
CN102868447B (en) * 2012-09-24 2015-07-15 深圳太辰光通信股份有限公司 Fiber grating tracker and fault detection method of optical fiber circuit
DE102016203007A1 (en) * 2016-02-25 2017-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Seal and method of sealing
CN108783667B (en) * 2018-09-04 2023-12-05 廖丽荣 Moisture absorption and dissipation fiber mesh grid of humidifying mask

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2418994C2 (en) * 1974-04-19 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Waveguide structure with thin film filter and process for their production
DE2632861A1 (en) * 1976-07-21 1978-01-26 Siemens Ag Light guide fibre filter - has sinusoidal deformation of core radius along fibre determining spectral pattern and damping of filter
US4421384A (en) * 1979-08-03 1983-12-20 Sperry Corporation Fiber optic transducer
JPS5810701A (en) * 1981-07-10 1983-01-21 Omron Tateisi Electronics Co Optical variable attenuator
US4593969A (en) * 1983-10-28 1986-06-10 Chevron Research Company Ruggedized grated optical fiber
US4557557A (en) * 1983-10-28 1985-12-10 At&T Bell Laboratories Method of making an optical fiber attenuator using a lossy fusion splice
US4557556A (en) * 1983-10-28 1985-12-10 At&T Bell Laboratories Method of fabricating an optical attenuator by fusion splicing of optical fibers
US4749248A (en) * 1985-11-06 1988-06-07 American Telephone And Telegraph Company At&T Bell Laboratories Device for tapping radiation from, or injecting radiation into, single made optical fiber, and communication system comprising same
JPS6450002A (en) * 1987-08-21 1989-02-27 Seiko Instr & Electronics Optical attenuator and its manufacture
JPS6465506A (en) * 1987-09-04 1989-03-10 Seiko Instr & Electronics Optical attenuator
GB8722200D0 (en) 1987-09-21 1987-10-28 British Telecomm Modifying optical waveguide
US5048913A (en) 1989-12-26 1991-09-17 United Technologies Corporation Optical waveguide embedded transverse spatial mode discrimination filter
JP2633073B2 (en) * 1990-09-07 1997-07-23 株式会社精工技研 Variable optical attenuator
US5066133A (en) 1990-10-18 1991-11-19 United Technologies Corporation Extended length embedded Bragg grating manufacturing method and arrangement
US5231465A (en) * 1991-02-08 1993-07-27 Litton Systems, Inc. High efficiency fiber absorber and method for attenuating pump light in a broadband fiber optic light source
US5367588A (en) 1992-10-29 1994-11-22 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Communications Method of fabricating Bragg gratings using a silica glass phase grating mask and mask used by same
RU2084933C1 (en) * 1991-02-25 1997-07-20 Евгений Илларионович Ивлев Process of study of radiation scattered in channel of light guide of integrated optical circuit and device for its realization (versions)
RU2024039C1 (en) * 1991-06-04 1994-11-30 Войсковая Часть 32103 Fiber-optic attenuator
US5351321A (en) 1992-10-20 1994-09-27 Elias Snitzer Bragg grating made in optical waveguide
EP0609812B1 (en) 1993-02-01 1998-01-07 Matsushita Electric Industrial Co., Ltd. Waveguide-type image transmission device and fingerprint identification device
RU2064685C1 (en) * 1993-02-03 1996-07-27 Научно-исследовательский институт физической оптики, оптики лазеров и информационно-оптических систем - Головной институт Всероссийского научного центра "ГОИ им.С.И.Вавилова" Planar diaphragm and method of making planar diaphragm
US5351324A (en) 1993-09-10 1994-09-27 The Regents Of The University Of California, Office Of Technology Transfer Fiber optic security seal including plural Bragg gratings
US5367589A (en) 1993-10-22 1994-11-22 At&T Bell Laboratories Optical fiber package
US5384885A (en) * 1993-10-28 1995-01-24 At&T Corp. Variable attenuation optical fiber coupling
US5323404A (en) 1993-11-02 1994-06-21 At&T Bell Laboratories Optical fiber laser or amplifier including high reflectivity gratings
US5430817A (en) 1994-03-31 1995-07-04 At&T Corp. Optical systems and devices using long period spectral shaping devices
GB2289770A (en) * 1994-05-17 1995-11-29 Northern Telecom Ltd Writing bragg gratings in photosensitive waveguides
US5398296A (en) * 1994-05-31 1995-03-14 Industrial Technology Research Institute Method of fabricating an optical attenuator
GB2291208B (en) 1994-06-01 1997-07-30 Northern Telecom Ltd Incubated bragg gratings in waveguides
IT1271222B (en) * 1994-09-28 1997-05-27 Sirti Spa OPTICAL FILTER FOR TELECOMMUNICATIONS
DE69513937T2 (en) 1994-11-17 2000-07-20 Alcatel, Paris Method for measuring and detecting physical quantities using a multi-point sensor
GB2295689B (en) * 1994-12-03 1998-04-22 Northern Telecom Ltd Bragg reflection gratings in optical fibres
AUPN089895A0 (en) * 1995-02-03 1995-03-02 University Of Sydney, The Broadband grating
SE9500406L (en) * 1995-02-06 1996-07-01 Ericsson Telefon Ab L M Device and method for coupling one or more wavelength channels to and from an optical fiber
JP3612780B2 (en) * 1995-04-14 2005-01-19 住友電気工業株式会社 Optical filter
US5604829A (en) 1995-04-17 1997-02-18 Hughes Aircraft Company Optical waveguide with diffraction grating and method of forming the same
TW358167B (en) * 1996-03-25 1999-05-11 Corning Inc Method of forming a grating in an optical waveguide
JP3883601B2 (en) * 1996-03-27 2007-02-21 富士通株式会社 Optical equalizer
US5699468A (en) * 1996-06-28 1997-12-16 Jds Fitel Inc. Bragg grating variable optical attenuator

Similar Documents

Publication Publication Date Title
RU97119798A (en) OPTICAL ATTENUATOR AND METHOD FOR ITS MANUFACTURE
KR100425568B1 (en) Grating
RU2141679C1 (en) Optical attenuator and method for its manufacturing
US5104209A (en) Method of creating an index grating in an optical fiber and a mode converter using the index grating
US5367588A (en) Method of fabricating Bragg gratings using a silica glass phase grating mask and mask used by same
US5604829A (en) Optical waveguide with diffraction grating and method of forming the same
US6993221B2 (en) Bragg grating and method of producing a bragg grating using an ultrafast laser
Archambault et al. High reflectivity and narrow bandwidth fibre gratings written by single excimer pulse
KR100282993B1 (en) Optical signal shaping device for complex spectral shaping applications
KR100334799B1 (en) Apparatus and method for fabricating fiber grating
Rao et al. Characteristics of novel long-period fiber gratings written by focused high-frequency CO2 laser pulses
JP3950138B2 (en) Fiber grating and manufacturing method of fiber grating
JP2000249859A (en) Manufacturing method of optical waveguide with grating
Zagorul'ko et al. Fabrication of a long-period grating in a fibre by second-harmonic radiation from a femtosecond Ti: sapphire laser
RU2156485C1 (en) Photosensitive fibre-optic light conduit and photoinduced structure
Guo et al. Preparation of photosensitive fibers for weak fiber Bragg grating arrays
Reekie et al. 100% reflectivity fibre gratings produced by a single excimer laser pulse
JP3426145B2 (en) Manufacturing method of optical fiber with grating
RU2104568C1 (en) Method for periodic modulation of refraction index in fiber-optical waveguide
US20010016098A1 (en) Process and device for making gratings in optical fibres
Voloshina et al. Inscription study of superimposed chirped fiber Bragg gratings
JP2024509059A (en) Systems and methods for enhancing backscattering in hermetic optical fibers
Kalli et al. Spatial apodization of femtosecond laser inscribed fibre Bragg gratings with arbitrary profile
Halstuch et al. Femtosecond inscription of a spectral array of seven fiber Bragg gratings at the same spot using a single uniform phase-mask
AU678892B2 (en) Optical grating