[go: up one dir, main page]

RU97107859A - METHOD FOR DETERMINING CHARACTERISTICS OF POROUS UNDERGROUND FORMATION - Google Patents

METHOD FOR DETERMINING CHARACTERISTICS OF POROUS UNDERGROUND FORMATION

Info

Publication number
RU97107859A
RU97107859A RU97107859/25A RU97107859A RU97107859A RU 97107859 A RU97107859 A RU 97107859A RU 97107859/25 A RU97107859/25 A RU 97107859/25A RU 97107859 A RU97107859 A RU 97107859A RU 97107859 A RU97107859 A RU 97107859A
Authority
RU
Russia
Prior art keywords
nmr
gaseous hydrocarbon
record
relaxation
periods
Prior art date
Application number
RU97107859/25A
Other languages
Russian (ru)
Other versions
RU2134894C1 (en
Inventor
Аккурт Ридван
Назарет Тутуньян Пьер
Дж.Вайнегар Харолд
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/326,560 external-priority patent/US5497087A/en
Priority claimed from US08/326,561 external-priority patent/US5498960A/en
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority claimed from PCT/EP1995/004137 external-priority patent/WO1996012976A1/en
Publication of RU97107859A publication Critical patent/RU97107859A/en
Application granted granted Critical
Publication of RU2134894C1 publication Critical patent/RU2134894C1/en

Links

Claims (9)

1. Способ определения характеристики пористой подземной формации, содержащей текучую среду, через которую проходит скважина, включающий получение записи ЯМР, используя время восстановления, и оценку упомянутой характеристики, отличающийся тем, что упомянутой текучей средой является газообразный углеводород, упомянутой характеристикой является объем поры, занимаемый газообразным углеводородом, при условии, что упомянутое время восстановления равно или больше, чем время или период продольной релаксации газообразного углеводорода, и где способ включает дополнительный этап определения распределения периодов поперечной релаксации из записи ЯМР, содержащего периоды поперечной релаксации, свойственные газообразному углеводороду, и оценку объема поры, занятого газообразным углеводородом, из распределения периодов поперечной релаксации, полученной из записи ЯМР.1. The method of determining the characteristics of a porous underground formation containing a fluid through which a well passes, including obtaining an NMR record using recovery time, and evaluating said characteristic, characterized in that said fluid is a gaseous hydrocarbon, said characteristic is the pore volume occupied gaseous hydrocarbon, provided that said reduction time is equal to or greater than the time or period of longitudinal relaxation of the gaseous hydrocarbon, and g e method includes the further step of determining the distribution of transverse relaxation times of the NMR log having transverse relaxation periods peculiar to the hydrocarbon gas, and evaluating the pore volume occupied by hydrocarbon gas from the distribution of transverse relaxation times obtained from the NMR log. 2. Способ по п.1, отличающийся тем, что дополнительно включает этап определения из распределения периодов поперечной релаксации коэффициента ограниченной диффузии газообразного углеводорода, содержащегося в упомянутой подземной формации, в котором размер поры подземной формации оценивают из упомянутого коэффициента ограниченной диффузии. 2. The method according to claim 1, characterized in that it further includes the step of determining from the distribution of the periods of lateral relaxation the coefficient of limited diffusion of the gaseous hydrocarbon contained in said subterranean formation, in which the pore size of the underground formation is estimated from said coefficient of limited diffusion. 3. Способ по п.1 или 2, отличающийся тем, что запись ЯМР образует импульсную запись ЯМР. 3. The method according to claim 1 or 2, characterized in that the NMR record forms a pulsed NMR record. 4. Способ по любому из пп. 1-3, отличающийся тем, что дополнительно включает этап определения распределения периодов поперечной релаксации, свойственных газообразному углеводороду, путем получения второй записи ЯМР, использующей время восстановления, которое значительно короче, чем время или период продольной релаксации газообразного углеводорода, и вычитания распределений периодов поперечной релаксации двух записей друг из друга. 4. The method according to any one of paragraphs. 1-3, characterized in that it further includes the step of determining the distribution of the periods of transverse relaxation characteristic of gaseous hydrocarbon by obtaining a second NMR record using a recovery time that is significantly shorter than the time or period of longitudinal relaxation of the gaseous hydrocarbon, and subtracting the distributions of the periods of transverse relaxation two records from each other. 5. Способ по п.4, отличающийся тем, что вторая запись ЯМР образует импульсную запись ЯМР. 5. The method according to claim 4, characterized in that the second NMR record forms a pulsed NMR record. 6. Способ по любому из пп. 1-5, отличающийся тем, что вместе с распределением периодов поперечной релаксации, полученной из записи ЯМР, используют запись плотности для оценки объема поры, занятой газообразным углеводородом. 6. The method according to any one of paragraphs. 1-5, characterized in that together with the distribution of the periods of transverse relaxation obtained from the NMR record, a density record is used to estimate the pore volume occupied by the gaseous hydrocarbon. 7. Способ по любому из пп.1-6, отличающийся тем, что в записи ЯМР используют последовательность Карр-Персела. 7. The method according to any one of claims 1 to 6, characterized in that the Carr-Purcell sequence is used in the NMR record. 8. Способ по любому из пп.1-7, отличающийся тем, что оценивают размер поры подземной формации, причем способ дополнительно включает этап оценки проницаемой формации из оценки размера поры подземной формации. 8. The method according to any one of claims 1 to 7, characterized in that the pore size of the underground formation is estimated, the method further comprising the step of evaluating the permeable formation from the assessment of the pore size of the underground formation. 9. Способ по любому из пп.1-8, отличающийся тем, что дополнительно включает этап оценки периода релаксации газообразного углеводорода. 9. The method according to any one of claims 1 to 8, characterized in that it further includes the step of evaluating the relaxation period of the gaseous hydrocarbon.
RU97107859A 1994-10-20 1995-10-19 Method determining characteristic of porous underground formation RU2134894C1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US326560 1989-03-24
US326,560 1989-03-24
US326561 1994-10-20
US08/326,560 US5497087A (en) 1994-10-20 1994-10-20 NMR logging of natural gas reservoirs
US326,561 1994-10-20
US08/326,561 US5498960A (en) 1994-10-20 1994-10-20 NMR logging of natural gas in reservoirs
PCT/EP1995/004137 WO1996012976A1 (en) 1994-10-20 1995-10-19 Nmr logging of natural gas in reservoirs

Publications (2)

Publication Number Publication Date
RU97107859A true RU97107859A (en) 1999-05-20
RU2134894C1 RU2134894C1 (en) 1999-08-20

Family

ID=26985456

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97107859A RU2134894C1 (en) 1994-10-20 1995-10-19 Method determining characteristic of porous underground formation

Country Status (12)

Country Link
EP (1) EP0787309B1 (en)
CN (1) CN1122858C (en)
AU (1) AU686029B2 (en)
CA (1) CA2202978C (en)
DE (1) DE69516532T2 (en)
DZ (1) DZ1936A1 (en)
MY (1) MY114398A (en)
NO (1) NO316763B1 (en)
NZ (1) NZ295355A (en)
PE (1) PE3397A1 (en)
RU (1) RU2134894C1 (en)
WO (1) WO1996012976A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680043A (en) * 1995-03-23 1997-10-21 Schlumberger Technology Corporation Nuclear magnetic resonance technique for determining gas effect with borehole logging tools
US6559639B2 (en) * 1998-10-02 2003-05-06 Schlumberger Technology Corporation Estimating permeability without determinating a distribution of relaxation times
US6316940B1 (en) * 1999-03-17 2001-11-13 Numar Corporation System and method for identification of hydrocarbons using enhanced diffusion
FR2822053B1 (en) 2001-03-15 2003-06-20 Stryker Spine Sa ANCHORING MEMBER WITH SAFETY RING FOR SPINAL OSTEOSYNTHESIS SYSTEM
US6859034B2 (en) * 2003-05-09 2005-02-22 Baker Hughes Incorporated Time-domain data integration of multiple gradient, multiple TE echo trains
RU2475782C2 (en) * 2007-10-12 2013-02-20 Эксонмобил Апстрим Рисерч Компани Nondestructive determination of pore size distribution and distribution of fluid flow velocities
RU2475784C2 (en) * 2007-12-19 2013-02-20 Эксонмобил Апстрим Рисерч Компани Simulation of gamma-ray logging probe characteristics
CN101915716B (en) * 2010-07-06 2012-01-04 中国石油天然气股份有限公司 Method for judging wettability of reservoir rock
WO2013023011A2 (en) * 2011-08-10 2013-02-14 Schlumberger Canada Limited Logging in gas shale and other unconventional reservoirs
AR097834A1 (en) * 2013-10-01 2016-04-20 Shell Int Research METHODS TO ESTIMATE THE DENSITY OF THE RESOURCE USING RAMAN SPECTROSCOPY OF INCLUSIONS IN THE SCHOOL RESOURCES PLAYS
CN104897712B (en) * 2015-04-27 2017-03-01 中国石油天然气股份有限公司 Method and system for measuring oil content of shale
US10338052B2 (en) 2015-11-30 2019-07-02 Vanderbilt University Methods of detecting sulfur-containing compounds
US10422916B2 (en) 2017-08-10 2019-09-24 Saudi Arabian Oil Company Methods and systems for determining bulk density, porosity, and pore size distribution of subsurface formations
CN108918574B (en) * 2018-09-14 2021-01-15 张善文 Method for measuring hydrogen index of crude oil by nuclear magnetic resonance
CN110346395B (en) * 2019-06-26 2020-09-25 中国地质大学(武汉) Method for calculating maximum gas content of tight sandstone under simulated formation condition
CN111351813B (en) * 2020-03-17 2021-09-24 无锡鸣石峻致医疗科技有限公司 Method for measuring apparent diffusion coefficient based on non-uniform field magnetic resonance system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424487A (en) * 1981-06-02 1984-01-03 Phillips Petroleum Company Dispersion coefficient determination
US4413512A (en) * 1982-01-04 1983-11-08 Mobil Oil Corporation Method of locating potential low water cut hydrocarbon reservoirs
US4719423A (en) * 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US5212447A (en) * 1990-12-03 1993-05-18 Numar Corporation Apparatus and technique for nmr diffusion measurement
US5387865A (en) * 1991-09-20 1995-02-07 Exxon Research And Engineering Company Permeability determination from NMR relaxation measurements for fluids in porous media

Similar Documents

Publication Publication Date Title
RU97107859A (en) METHOD FOR DETERMINING CHARACTERISTICS OF POROUS UNDERGROUND FORMATION
Banavar et al. Magnetic resonance as a probe of permeability in porous media
Jones et al. A laboratory study of low-permeability gas sands
Koponen et al. Permeability and effective porosity of porous media
US7092822B2 (en) Method of evaluating the capillary pressure curve of an underground deposit rocks based on rock cuttings measurements
Diederix Anomalous relationships between resistivity index and water saturations in the Rotliegend sandstone (The Netherlands)
CN107735668A (en) Method for determining the unconventional liquid imbibition in low-permeability material
CA2396496A1 (en) Determination of t1 relaxation time from multiple wait time nmr logs acquired in the same or different logging passes
MY114398A (en) Nmr logging of natural gas in reservoirs
Van Everdingen et al. Application of the Material Balance Equation to a Partial Water-Drive Reservoir
Reznik et al. Air-water relative permeability studies of Pittsburgh and Pocahontas coals
Dabbous et al. Gas-water capillary pressure in coal at various overburden pressures
Ma et al. Tortuosity, mean residence time, and deformation of tritium breakthroughs from soil columns
Saidikowski Numerical simulations of the combined effects of wellbore damage and partial penetration
EA000175B1 (en) Evaluation of formation porous volume filled by hydrocarbon and method thereof
Howard Influence of authigenic-clay minerals on permeability
Fallow et al. Field measurement of hydraulic conductivity in slowly permeable materials using early-time infiltration measurements in unsaturated media
Bouvier et al. Reconciliation of log and laboratory derived irreducible water saturations in a double porosity reservoir
Ding et al. Estimation of residual gas saturation from different reservoirs
Al-Kaabi et al. Effect of hysteresis on the Archie saturation exponent
Mitkov et al. Dynamics of wetting fronts in porous media
GB2593291A (en) Method for determining a quantity of gas adsorbed in a porous medium
Zaslavskii et al. Study of acoustic radiation during air stream filtration through a porous medium
Baldwin Immobile water determination in shaly sandstone
Boukadi et al. Threshold pressure as a measure of degree of rock wettability and diagenesis in consolidated Omani limestone cores