RU96110434A - METHOD FOR DETERMINING LOCATION OF MOBILE OBJECTS AND DEVICE FOR ITS IMPLEMENTATION - Google Patents
METHOD FOR DETERMINING LOCATION OF MOBILE OBJECTS AND DEVICE FOR ITS IMPLEMENTATIONInfo
- Publication number
- RU96110434A RU96110434A RU96110434/28A RU96110434A RU96110434A RU 96110434 A RU96110434 A RU 96110434A RU 96110434/28 A RU96110434/28 A RU 96110434/28A RU 96110434 A RU96110434 A RU 96110434A RU 96110434 A RU96110434 A RU 96110434A
- Authority
- RU
- Russia
- Prior art keywords
- unit
- magnetic field
- inputs
- horizontal
- axis
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims 7
- 230000014509 gene expression Effects 0.000 claims 7
- 230000001133 acceleration Effects 0.000 claims 3
- 238000006073 displacement reaction Methods 0.000 claims 3
- 230000005484 gravity Effects 0.000 claims 2
- 230000000875 corresponding Effects 0.000 claims 1
Claims (1)
М(HxB, HyBmax) = М(x1, y1),
М(HxBmax, HyB) = М(x2, y2);
М(HxB, HyBmin) = М(x3, y3);
М(HxB min, HyB) = М(x4, y4),
по которым определяют коэффициенты коррекции - смещение δx, δy центра горизонтального эллипса магнитного годографа, угол доворота γ его осей и полуоси b, a из выражений
δx = (x2 + x4)/2;
δy = (y1 + y3)/2;
где
где
3. Способ по п.1, отличающийся тем, что в каждом рабочем цикле измеряют усредненные значения проекций Aх, Ay, Az ускорения силы тяжести и значения проекций Hx, Hy, Hz суммарного вектора напряженности МПЗ и магнитного поля объекта на оси приборной системы координат Охyz, где ось Y направлена вдоль продольной оси объекта в направлении движения, ось Z вдоль вертикальной оси объекта, а ось Х вдоль поперечной оси подвижного объекта, по которым определяют горизонтальные проекции HxB, HyB суммарного вектора напряженности МПЗ и магнитного поля объекта на оси горизонтальной системы координат ОxByBzB, где ось ZB направлена вертикально вверх, ось YB в направлении движения, а ось ХB перпендикулярно направлению движения, из выражения
где
4. Способ по п. 1, отличающийся тем, что в каждом рабочем цикле при проведении коррекции горизонтальных проекций HxB, HyB суммарного вектора напряженности МПЗ и магнитного поля объекта учитывают смещение δx, δy центра горизонтального эллипса магнитного годографа в соответствии с выражениями
и определяют составляющие вектора напряженности МПЗ на оси горизонтальной системы координат ОхByBzB из выражения
5. Способ по п.1, отличающийся тем, что в каждом рабочем цикле определяют приращения координат из выражений
где ΔX, ΔY - приращения прямоугольных координат, м;
Δs - приращение пройденного пути за рабочий цикл, м;
значения проекций суммарного вектора напряженности МПЗ в горизонтальной плоскости;
горизонтальная составляющая магнитного поля Земли;
косинус угла наклона объекта в продольной плоскости;
δ - угол между магнитным меридианом и вертикальной линией сетки прямоугольных координат,
значения прямоугольных координат объекта определяют из выражений
X = Xo + ΣΔXi,
Y = Yo + ΣΔYi,
где X, Y - прямоугольные координаты объекта, м; Xо, Yо прямоугольные координаты начальной точки, м; ΔXi, ΔYi - - приращения координат за рабочий цикл, м.2. The method according to claim 1, characterized in that in the calibration cycle determine the control values of the horizontal projections Hx B , Hy B of the total vector of tension MPZ and the magnetic field of the object at four points of the horizontal ellipse of the magnetic hodograph, corresponding to:
M (Hx B , Hy Bmax ) = M (x 1 , y 1 ),
M (Hx Bmax , Hy B ) = M (x 2 , y 2 );
M (Hx B , Hy Bmin ) = M (x 3 , y 3 );
M (Hx B min , Hy B ) = M (x 4 , y 4 ),
by which the correction coefficients are determined - the displacement δx, δy of the center of the horizontal ellipse of the magnetic hodograph, the angle of rotation γ of its axes and semiaxis b, a from the expressions
δx = (x 2 + x 4 ) / 2;
δy = (y 1 + y 3 ) / 2;
Where
Where
3. The method according to claim 1, characterized in that in each working cycle, the averaged values of the projections Ax, Ay, Az of the gravity acceleration and the values of the projections Hx, Hy, Hz of the total intensity vector of the MPZ and the magnetic field of the object on the axis of the instrument coordinate system Ohyz are measured where the Y axis is directed along the longitudinal axis of the object in the direction of movement, the Z axis is along the vertical axis of the object, and the X axis is along the transverse axis of the moving object, which determine the horizontal projections Hx B , Hy B of the total stress vector of the MPZ and the magnetic field of the object on the g axis of the horizontal coordinate system Оx B y B z B , where the Z B axis is directed vertically upward, the Y B axis is in the direction of motion, and the X B axis is perpendicular to the direction of motion, from the expression
Where
4. The method according to p. 1, characterized in that in each working cycle, when correcting the horizontal projections Hx B , Hy B of the total vector of the MPF intensity and the magnetic field of the object, the offset δx, δy of the center of the horizontal ellipse of the magnetic hodograph is taken into account in accordance with the expressions
and determine the components the stress vector MPZ on the axis of the horizontal coordinate system Oh B y B z B from the expression
5. The method according to claim 1, characterized in that in each working cycle determine the increment of coordinates from the expressions
where ΔX, ΔY - increments of rectangular coordinates, m;
Δs is the increment of the distance traveled per working cycle, m;
projection values of the total stress vector MPZ in the horizontal plane;
the horizontal component of the Earth’s magnetic field;
the cosine of the angle of inclination of the object in the longitudinal plane;
δ is the angle between the magnetic meridian and the vertical grid line of rectangular coordinates,
the values of the rectangular coordinates of the object are determined from the expressions
X = X o + ΣΔX i ,
Y = Y o + ΣΔY i ,
where X, Y are the rectangular coordinates of the object, m; Xо, Yо rectangular coordinates of the starting point, m; ΔX i , ΔY i - - increment of coordinates for the duty cycle, m
где Ам - магнитный азимут.6. The method according to p. 1, characterized in that the magnetic azimuth of the direction of movement of the object is determined from the expression
where Am is the magnetic azimuth.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU96110434A RU2098764C1 (en) | 1996-05-29 | 1996-05-29 | Method for determination of moving object location and device for its realization |
PCT/RU1997/000166 WO1997045703A1 (en) | 1996-05-29 | 1997-05-27 | Method for determining the location of a mobile object and device for realising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU96110434A RU2098764C1 (en) | 1996-05-29 | 1996-05-29 | Method for determination of moving object location and device for its realization |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2098764C1 RU2098764C1 (en) | 1997-12-10 |
RU96110434A true RU96110434A (en) | 1997-12-27 |
Family
ID=20181001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU96110434A RU2098764C1 (en) | 1996-05-29 | 1996-05-29 | Method for determination of moving object location and device for its realization |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2098764C1 (en) |
WO (1) | WO1997045703A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA011541B1 (en) * | 2006-12-21 | 2009-04-28 | Еужен Морару | A method for determining the motion trajectory (orientation) of a person (sportsman) or the members thereof and a device for carrying out said method |
GB2478561A (en) * | 2010-03-09 | 2011-09-14 | Servomex Group Ltd | Apparatus and methods for three axis vector field sensor calibration |
CN105352487B (en) * | 2015-10-13 | 2018-06-15 | 上海华测导航技术股份有限公司 | A kind of accuracy calibrating method of attitude measurement system |
CN112834018B (en) * | 2020-12-18 | 2022-11-04 | 哈尔滨工大正元信息技术有限公司 | Detection method of working state of navigation aid lamp, storage medium and electronic equipment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU395716A1 (en) * | 1971-08-23 | 1973-08-28 | INDUCTION COMPASS | |
GB2130729B (en) * | 1982-10-12 | 1986-05-14 | Plessey Co Plc | Electronic compasses |
JPS5991311A (en) * | 1982-10-12 | 1984-05-26 | ロケ マナ リサーチ リミテッド | Electronic compass for transport means |
GB2159278B (en) * | 1984-05-23 | 1988-04-13 | Stc Plc | Heading sensor |
DE3422491A1 (en) * | 1984-06-16 | 1985-12-19 | Robert Bosch Gmbh, 7000 Stuttgart | METHOD FOR DETERMINING THE DIRECTION OF A VEHICLE WITH AN ELECTRONIC COMPASS |
EP0226653B1 (en) * | 1985-12-20 | 1989-02-22 | LITEF GmbH | Method to determine heading by using and automatically calibrating a 3-axis magnetometer rigidly fitted in an aircraft |
DE3644682A1 (en) * | 1986-12-30 | 1988-07-14 | Bosch Gmbh Robert | NAVIGATION METHOD FOR VEHICLES WITH ELECTRONIC COMPASS |
DE3834531A1 (en) * | 1988-10-11 | 1990-04-12 | Deutsche Forsch Luft Raumfahrt | ACCELERATOR |
FR2637984B1 (en) * | 1988-10-19 | 1991-01-11 | Sagem | PENDULUM ACCELEROMETER WITH ELECTROSTATIC DETECTION |
US4930043A (en) * | 1989-02-28 | 1990-05-29 | United Technologies | Closed-loop capacitive accelerometer with spring constraint |
SU1728807A1 (en) * | 1990-01-25 | 1992-04-23 | Научно-исследовательский институт физических измерений | Compensating accelerometer |
-
1996
- 1996-05-29 RU RU96110434A patent/RU2098764C1/en not_active IP Right Cessation
-
1997
- 1997-05-27 WO PCT/RU1997/000166 patent/WO1997045703A1/en active Application Filing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0192719A1 (en) | Method and apparatus for determining at least one characteristic value of movement of a body. | |
IL157663A (en) | Apparatus for detecting location of movable body in navigation system and method thereof | |
US3849636A (en) | Method and apparatus for determining the position of a vehicle | |
ATE442573T1 (en) | METHOD, DEVICE AND SYSTEM FOR CALIBRATION OF ANGLE RATE MEASUREMENT SENSORS | |
KR19980042029A (en) | Method and apparatus for sculling correction in a strap-down inertial navigation system | |
JP4876204B2 (en) | Small attitude sensor | |
RU96110434A (en) | METHOD FOR DETERMINING LOCATION OF MOBILE OBJECTS AND DEVICE FOR ITS IMPLEMENTATION | |
JPS60135814A (en) | Azimuth detecting apparatus | |
JPS5599016A (en) | Measuring apparatus for position coordinates | |
RU2548115C1 (en) | Platform-free navigation complex with inertial orientation system built around coarse sensors and method of correction of its inertial transducers | |
RU2000131776A (en) | METHOD FOR DETERMINING LOCATION OF MOBILE OBJECTS AND DEVICE FOR ITS IMPLEMENTATION | |
RU118740U1 (en) | ADAPTIVE NAVIGATION COMPLEX | |
RU2202102C2 (en) | Procedure establishing positions of mobile objects and device for its realization | |
RU100232U1 (en) | COMPLEX NAVIGATION SYSTEM FOR DETERMINING THE COORDINATES OF MOBILE LAND OBJECTS | |
EP1530023A3 (en) | Magnetic north detecting device and magnetic north detecting method | |
RU2098764C1 (en) | Method for determination of moving object location and device for its realization | |
RU2221991C1 (en) | Method establishing positions of mobile ground objects and facility for its realization | |
CN108510550A (en) | A kind of binocular camera automatic calibration method and device | |
RU2194250C1 (en) | Method for controlling movable objects traveling route | |
KR20120028416A (en) | Integration motion sensing device | |
JP2000180170A (en) | Earth magnetism detecting device | |
FI121440B (en) | Method and apparatus for determining distance | |
RU2142143C1 (en) | Method of reduction of results of measurement of magnetic field by line bed to coordinate system of object | |
RU2107897C1 (en) | Method of inertia navigation | |
RU2085850C1 (en) | System of course and vertical and method determining magnetic course |