[go: up one dir, main page]

RU95106101A - Method for controlling wind-electric power plant - Google Patents

Method for controlling wind-electric power plant

Info

Publication number
RU95106101A
RU95106101A RU95106101/06A RU95106101A RU95106101A RU 95106101 A RU95106101 A RU 95106101A RU 95106101/06 A RU95106101/06 A RU 95106101/06A RU 95106101 A RU95106101 A RU 95106101A RU 95106101 A RU95106101 A RU 95106101A
Authority
RU
Russia
Prior art keywords
wind
power
braking
plant
windwheel
Prior art date
Application number
RU95106101/06A
Other languages
Russian (ru)
Other versions
RU2075638C1 (en
Inventor
А.И. Забегаев
Ю.Н. Горбунов
Н.И. Забегаев
Ю.И. Новак
В.В. Демкин
Я.Г. Соболь
Original Assignee
Товарищество с ограниченной ответственностью Фирма "Общемаш-Инжиниринг"
Научно-производственное объединение "Ветроэн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью Фирма "Общемаш-Инжиниринг", Научно-производственное объединение "Ветроэн" filed Critical Товарищество с ограниченной ответственностью Фирма "Общемаш-Инжиниринг"
Priority to RU9595106101A priority Critical patent/RU2075638C1/en
Publication of RU95106101A publication Critical patent/RU95106101A/en
Application granted granted Critical
Publication of RU2075638C1 publication Critical patent/RU2075638C1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

FIELD: wind-electric power engineering; wind-electric power plants using synchronous generators primarily operating into supply mains. SUBSTANCE: method involves aerodynamic limitation of power capacity developed by windwheel due to varying position of its blades relative to wind and windwheel stopping within preliminary time interval allowing for reducing windwheel power by approximately 40-60% of its rated value; then, while disconnecting generator from supply mains, mechanical brake of entire set of revolving members of plant is imposed in addition onto aerodynamic power limitation; braking torque is set as constant value corresponding to rated torque in plant transmission, whereupon, at same braking torque, moment of inertia of revolving members of plant being braked is reduced in steps by separating set of revolving members into at least two or more parts. Braking torque is applied to the following revolving members of plant: to intermediate shaft of multistep step-up gear drive, or to output shaft of step-up gear drive, such as, by applying it to generator shaft. Additional braking torque may be built up by operating the generator as electromagnetic brake which is turned on in absence of blade position angle control. At windwheel power capacities below 40% of rated value, across-the-line braking of revolving members of plant is effected without aerodynamic power limitation. Stepwise variation of moment of inertia of revolving members is made in time interval found from equation: t= (2-5)T, where T is low-frequency oscillation period of windwheel blade in minimum-stiffness plane. EFFECT: enlarged functional capabilities and, hence, improved economic efficiency of plant due to extended range of working wind flow speeds during power generation and reduced transient time in plant braking and stopping; improved safety and reliability in operation due to provision for remote braking, improved safety for personnel, extended service life due to reduced transient loads on transmission parts, power structure, and windwheel blades. 10 cl, 3 dwg

Claims (1)

Изобретение относится к ветроэнергетике, конкретно к ветроэнергетическим установкам (ВЭУ) с синхронными генераторами, преимущественно работающими на сеть. Целью изобретения является расширение возможностей управления ВЭУ и тем самым повышение экономичности за счет расширения диапазона рабочих скоростей рабочих ветропотоков в режиме работы ВЭУ на отдачу мощности, и сокращения продолжительности переходных процессов торможения и остановки ВЭУ, повышение надежности и безопасности работы ВЭУ за счет применения в ней дистанционно включаемых устройств торможения, повышения безопасности эксплуатации ВЭУ при работе персонала, повышение ресурса ВЭУ за счет снижения динамических нагрузок, действующих на узлы и агрегаты трансмиссии ВЭУ, силовую конструкцию и лопасти ветроколеса. Способ управления ветроэнергетической установкой включает аэродинамическое ограничение мощности, развиваемой ветроколесом, за счет изменения положения его лопастей относительно ветра, и остановку ветроколеса в течении предварительного временного интервала, за который понижают мощность на ветроколесе не менее, чем на 40 - 60% от ее номинального значения, далее одновременно с выводом генератора из сети, на аэродинамическое ограничение мощности ветроколеса дополнительно накладывают механическое торможение всей системы вращающихся элементов установки, при этом величину момента торможения задают постоянной и соответствующей величине номинального момента в трансмиссии установки, после чего сохраняя момент торможения, скачкообразно уменьшают момент инерции вращающихся и подвергающихся торможению элементов установки путем разъединения системы вращающихся элементов установки на несколько частей по меньшей мере на две. Тормозной момент к вращающимся элементам установки прикладывают к промежуточному валу многоступенчатого мультипликатора или к выходному валу мультипликатора, например, прикладывая его к валу генератора. Дополнительный тормозной момент может быть создан за счет перевода генератора в режим электромагнитного тормоза, который включают при отсутствии регулирования угла положения лопастей. На уровнях мощности ветроколеса менее 40% от номинальной торможение вращающихся элементов установки и остановку ветроколеса осуществляют непосредственно без аэродинамического ограничения мощности. Скачкообразное изменение момента инерции вращающихся частей установки производят через интервал времени t, определяемой из соотношения t = (2 - 5) T, где Т - период низшей частоты колебаний лопасти ветроколеса в плоскости наименьшей жесткости.The invention relates to wind energy, specifically to wind power plants (wind turbines) with synchronous generators, mainly working on the network. The aim of the invention is to expand the control capabilities of wind turbines and thereby increase efficiency by expanding the range of operating speeds of the working wind flows in the mode of operation of wind turbines for power output, and reducing the duration of transient braking and stopping wind turbines, increasing the reliability and safety of wind turbines through the use of it remotely included braking devices, increasing the safety of operation of wind turbines during personnel work, increasing the life of wind turbines by reducing dynamic loads, Enikeev on transmission units and sets the wind turbine, load-bearing structure and the propeller blades. A method of controlling a wind power installation includes aerodynamic limitation of the power developed by the wind wheel by changing the position of its blades relative to the wind, and stopping the wind wheel during a preliminary time interval during which the power on the wind wheel is reduced by at least 40-60% of its nominal value, then, simultaneously with the generator’s output from the network, mechanical braking of the entire system of rotating elements is additionally imposed on the aerodynamic limitation of the power of the wind wheel ntov installation, wherein the magnitude of the braking torque is set constant and the corresponding value rated torque of the transmission, and then maintaining braking torque, abruptly reduce the moment of inertia of rotating or undergoing braking elements Fitting disconnecting system rotating setting element into several portions by at least two. Braking torque to the rotating elements of the installation is applied to the intermediate shaft of the multi-stage multiplier or to the output shaft of the multiplier, for example, applying it to the shaft of the generator. Additional braking torque can be created by putting the generator in electromagnetic brake mode, which is turned on if there is no regulation of the angle of the blade position. At power levels of the wind wheel less than 40% of the nominal braking of the rotating elements of the installation and the stop of the wind wheel is carried out directly without aerodynamic limitation of power. A jumplike change in the moment of inertia of the rotating parts of the installation is made through a time interval t determined from the relation t = (2 - 5) T, where T is the period of the lowest frequency of oscillation of the wind wheel blade in the plane of least rigidity.
RU9595106101A 1995-04-20 1995-04-20 Wind-electric power plant control process RU2075638C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9595106101A RU2075638C1 (en) 1995-04-20 1995-04-20 Wind-electric power plant control process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9595106101A RU2075638C1 (en) 1995-04-20 1995-04-20 Wind-electric power plant control process

Publications (2)

Publication Number Publication Date
RU95106101A true RU95106101A (en) 1997-01-27
RU2075638C1 RU2075638C1 (en) 1997-03-20

Family

ID=20166908

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9595106101A RU2075638C1 (en) 1995-04-20 1995-04-20 Wind-electric power plant control process

Country Status (1)

Country Link
RU (1) RU2075638C1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2305204C2 (en) * 2005-04-28 2007-08-27 Альберт Васильевич Вовк Method of control of wind power-generating plant (versions)
RU2312249C2 (en) * 2005-06-07 2007-12-10 Андрей Владимирович Смирнов Method of and device to control wind power generating plant
RU2370410C2 (en) * 2005-08-18 2009-10-20 Александр Николаевич Лавренов Method of shaping and aerodynamic overspeeding of wind impeller with horizontal rotation axis
DE102013207209A1 (en) * 2013-04-22 2014-10-23 Wobben Properties Gmbh Wind farm and method for controlling a wind farm
DE102016121961A1 (en) * 2016-11-15 2018-05-17 Wobben Properties Gmbh Method for controlling a wind turbine and associated wind turbine

Also Published As

Publication number Publication date
RU2075638C1 (en) 1997-03-20

Similar Documents

Publication Publication Date Title
EP3596334B1 (en) Method for operating a hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
US4435647A (en) Predicted motion wind turbine tower damping
KR101192240B1 (en) Control system for a wind power with hydrodynamic gear
US9450416B2 (en) Wind turbine generator controller responsive to grid frequency change
Ramtharan et al. Frequency support from doubly fed induction generator wind turbines
Erlich et al. Impact of large wind power generation on frequency stability
KR940002928B1 (en) Variable speed wind turbine
EP2290236B1 (en) Method and system for extracting inertial energy from a wind turbine
JP6882452B2 (en) Wind turbine control method
KR20100139120A (en) Wind Energy Inverter with Overlap Gear
CN111725848B (en) Fan controllable frequency droop control method suitable for various wind power permeabilities
CN109361233A (en) Modeling method for dynamic process of output power of doubly-fed variable-speed pumped-storage power station
GB2206930A (en) Wind turbine operating system
Ali et al. Adaptive fuzzy-PID based pitch angle control of wind turbine
WO2004011801A1 (en) Wind turbine with blades of variable inertia
Zhang et al. Transient vibration of shafting in coupled hydraulic-mechanical-electrical-structural system for hydropower station during start-up process
JP5951424B2 (en) Wind power generation system
RU95106101A (en) Method for controlling wind-electric power plant
Prakash et al. Maximum energy extraction of a wind farm using pitch angle control
RU2468251C1 (en) Control method of wind-driven power plant, and device for its implementation
JP2018007458A5 (en)
RU2075637C1 (en) Wind-electric power plant
Spichartz et al. Advanced primary control structure for variable speed wind turbines with regard to wind fluctuations
RU95107095A (en) Method for controlling wind-electric power plant
Abhinash et al. DFIG performance improvement at high wind speed using fractional order fuzzy controlled fractional order PI for pitch angle control