RU2820857C2 - Entropy coding of motion vector differences - Google Patents
Entropy coding of motion vector differences Download PDFInfo
- Publication number
- RU2820857C2 RU2820857C2 RU2022119574A RU2022119574A RU2820857C2 RU 2820857 C2 RU2820857 C2 RU 2820857C2 RU 2022119574 A RU2022119574 A RU 2022119574A RU 2022119574 A RU2022119574 A RU 2022119574A RU 2820857 C2 RU2820857 C2 RU 2820857C2
- Authority
- RU
- Russia
- Prior art keywords
- bin
- motion vector
- bins
- decoder
- entropy
- Prior art date
Links
Images
Abstract
Description
Настоящее изобретение относится к принципу энтропийного кодирования для кодирования видеоданных.The present invention relates to an entropy coding principle for encoding video data.
В технике известны многие видеокодеки. Как правило, эти кодеки уменьшают необходимое количество данных, чтобы представлять видеоконтент, т.е. они сжимают данные. В контексте видеокодирования известно, что сжатие видеоданных выгодно достигается последовательным применением разных методов кодирования: используется предсказание с компенсацией движения, чтобы предсказывать содержимое изображения. Векторы движения, определенные при предсказании с компенсацией движения, а также остаток предсказания, подвергаются энтропийному кодированию без потерь. Чтобы дополнительно уменьшить количество данных сами векторы движения подвергаются предсказанию, так что только разности векторов движения, представляющие остаток предсказания вектора движения, должны энтропийно кодироваться. В H.264, например, применяется только что кратко изложенная процедура, чтобы передавать информацию о разностях векторов движения. В частности, разности векторов движения бинаризуются в строки бинов (контейнеров), соответствующие комбинации усеченного унарного кода и, от некоторого значения отсечки, экспоненциального кода Голомба. Тогда как бины экспоненциального кода Голомба легко кодируются с использованием режима равновероятного обхода с фиксированной вероятностью 0,5, для первых бинов обеспечиваются несколько контекстов. Значение отсечки выбирается равным девяти. Следовательно, обеспечивается большое количество контекстов для кодирования разностей векторов движения.Many video codecs are known in the art. Typically, these codecs reduce the amount of data required to represent video content, i.e. they compress data. In the context of video encoding, it is known that video compression is advantageously achieved by sequentially applying different encoding techniques: motion-compensated prediction is used to predict the content of the image. The motion vectors determined by the motion-compensated prediction, as well as the remainder of the prediction, are subject to lossless entropy encoding. To further reduce the amount of data, the motion vectors themselves are subject to prediction, so that only the motion vector differences representing the remainder of the motion vector prediction need to be entropy encoded. H.264, for example, uses the procedure just outlined to convey motion vector difference information. In particular, the motion vector differences are binarized into strings of bins (containers) corresponding to a combination of a truncated unary code and, from some cutoff value, an exponential Golomb code. While exponential Golomb code bins are easily encoded using the equiprobable walk mode with a fixed probability of 0.5, multiple contexts are provided for the first bins. The cutoff value is chosen to be nine. Therefore, a large number of contexts are provided for encoding motion vector differences.
Обеспечение большого количества контекстов, однако, не только увеличивает сложность кодирования, но также может оказывать отрицательное влияние на эффективность кодирования: если контекст посещается очень редко, не выполняется эффективно вероятностная адаптация, т.е. адаптация оценки вероятности, ассоциированной с соответствующим контекстом во время причины энтропийного кодирования. Следовательно, примененные не надлежащим образом оценки вероятности оценивают фактическую статистику символов. Кроме того, если для некоторого бина бинаризации обеспечивается несколько контекстов, выбор между ними может потребовать инспектирование значений соседних бинов/синтаксических элементов, необходимость чего может препятствовать выполнению процесса декодирования. С другой стороны, если количество контекстов обеспечивается слишком малым, бины с сильно изменяющейся фактической статистикой символов группируются вместе в одном контексте и, следовательно, оценка вероятности, ассоциированная с этим контекстом, не кодирует эффективно бины, ассоциированные с ним.Providing a large number of contexts, however, not only increases encoding complexity, but can also have a negative impact on encoding efficiency: if the context is visited very rarely, probabilistic adaptation is not performed effectively, i.e. adapting the probability estimate associated with the corresponding context during entropy encoding reason. Consequently, probability estimates that are not properly applied estimate the actual symbol statistics. Additionally, if multiple contexts are provided for a given binarization bin, choosing between them may require inspecting the values of adjacent bins/syntactic elements, which may interfere with the decoding process. On the other hand, if the number of contexts is provided too small, bins with highly varying actual character statistics are grouped together in one context and, therefore, the probability estimate associated with that context does not effectively encode the bins associated with it.
Существует текущая потребность в дальнейшем повышении эффективности кодирования энтропийного кодирования разностей векторов движения.There is a current need to further improve the coding efficiency of entropy coding of motion vector differences.
Следовательно, задачей настоящего изобретения является обеспечение такого принципа кодирования.Therefore, it is an object of the present invention to provide such a coding principle.
Данная задача достигается объектом независимых пунктов формулы изобретения, приложенных к данному документу.This object is achieved by the subject of the independent claims appended to this document.
Основным решением настоящего изобретения является то, что эффективность кодирования энтропийного кодирования разностей векторов движения может быть дополнительно повышена посредством снижения значения отсечки, до которого используется усеченный унарный код, чтобы бинаризировать разности векторов движения, до двух, так что имеется только две позиции бинов усеченного унарного кода, и, если порядок единицы используется для экспоненциального кода Голомба для бинаризации разностей векторов движения от значения отсечки, и, если, дополнительно, точно один контекст обеспечивается для двух позиций бинов усеченного унарного кода, соответственно, так что не является необходимым выбор контекста, основанный на значениях бина или синтаксического элемента соседних блоков изображения, и исключается слишком мелкая классификация бинов в этих позициях бинов в контексты, так что вероятностная адаптация работает надлежащим образом, и, если одинаковые контексты используются для горизонтальных и вертикальных составляющих, тем самым дополнительно уменьшая отрицательные эффекты слишком мелкого подразделения контекста.The main solution of the present invention is that the coding efficiency of entropy encoding of motion vector differences can be further improved by reducing the cutoff value to which the truncated unary code is used to binarize the motion vector differences to two, so that there are only two bin positions of the truncated unary code , and, if the order of one is used for the exponential Golomb code to binarize the motion vector differences from the cutoff value, and if, additionally, exactly one context is provided for the two bin positions of the truncated unary code, respectively, so that it is not necessary to select a context based on values of a bin or syntactic element of adjacent image blocks, and over-fine classification of bins at these bin positions into contexts is avoided, so that probabilistic adaptation works as expected, and if the same contexts are used for horizontal and vertical components, thereby further reducing the negative effects of over-fine divisions of context.
Кроме того, было обнаружено, что только что упомянутые установки в отношении энтропийного кодирования разностей векторов движения являются особенно ценными при объединении их с улучшенными способами предсказания векторов движения и уменьшения необходимого количества разностей векторов движения, подлежащих передаче. Например, могут обеспечиваться многочисленные предикторы вектора движения, чтобы получать упорядоченный список предикторов вектора движения, и индекс этого списка предикторов вектора движения может использоваться, чтобы определять фактический предиктор вектора движения, остаток предсказания которого представляется рассматриваемой разностью вектора движения. Хотя информация об используемом индексе списка должна выводиться из потока данных на декодирующей стороне, общее качество предсказания векторов движения повышается, и, следовательно, величина разностей векторов движения дополнительно уменьшается, так что в целом эффективность кодирования дополнительно повышается, и уменьшение значения отсечки и общее использование контекста для горизонтальных и вертикальных составляющих разностей векторов движения соответствуют такому улучшенному предсказанию вектора движения. С другой стороны, может использоваться слияние, чтобы уменьшить количество разностей векторов движения, подлежащих передаче в потоке данных: с этой целью, информация слияния может передаваться в потоке данных, сигнализируя блокам декодера о подразделении блоков, которые группируются в группу блоков. Разности векторов движения затем могут передаваться в потоке данных в единицах этих объединенных групп вместо индивидуальных блоков, таким образом уменьшая количество разностей векторов движения, которые необходимо передавать. Так как эта кластеризация блоков уменьшает взаимную корреляцию между соседними разностями векторов движения, только что упомянутое исключение обеспечения нескольких контекстов для одной позиции бина предотвращает очень мелкую классификацию схемы энтропийного кодирования в контексты в зависимости от соседних разностей векторов движения. Вместо этого, принцип слияния уже использует взаимную корреляцию между разностями векторов движения соседних блоков, и, следовательно, является достаточным один контекст для одной позиции бина - один и тот же для горизонтальной и вертикальной составляющих.In addition, it has been found that the just mentioned techniques for entropy encoding of motion vector differences are particularly valuable when combined with improved methods for predicting motion vectors and reducing the required number of motion vector differences to be transmitted. For example, multiple motion vector predictors may be provided to obtain an ordered list of motion vector predictors, and an index of this list of motion vector predictors may be used to determine the actual motion vector predictor whose prediction remainder is represented by the motion vector difference under consideration. Although information about the used list index must be inferred from the data stream at the decoding side, the overall quality of motion vector prediction is improved, and therefore the magnitude of motion vector differences is further reduced, so that overall coding efficiency is further improved, and the cutoff value and overall context utilization are reduced for the horizontal and vertical components of the motion vector differences correspond to this improved motion vector prediction. On the other hand, fusion may be used to reduce the number of motion vector differences to be transmitted in the data stream: to this end, fusion information may be transmitted in the data stream, signaling the decoder blocks to subdivide the blocks, which are grouped into a group of blocks. The motion vector differences can then be transmitted in the data stream in units of these combined groups instead of individual blocks, thereby reducing the number of motion vector differences that need to be transmitted. Since this clustering of blocks reduces the cross-correlation between adjacent motion vector differences, the just mentioned exception of providing multiple contexts for a single bin position prevents the entropy encoding scheme from very fine-grained classification into contexts depending on adjacent motion vector differences. Instead, the fusion principle already exploits the cross-correlation between the motion vector differences of adjacent blocks, and therefore one context for one bin position is sufficient - the same for the horizontal and vertical components.
Предпочтительные варианты осуществления настоящей заявки описываются ниже в отношении фигур, среди которых:Preferred embodiments of the present application are described below with respect to the figures, including:
фиг. 1 изображает блок-схему кодера согласно варианту осуществления;fig. 1 is a block diagram of an encoder according to an embodiment;
фиг. 2a-2c схематически изображают разные подразделения массива элементов дискретизации, такого как изображение, на блоки;fig. 2a-2c schematically depict various subdivisions of a bin array, such as an image, into blocks;
фиг. 3 изображает блок-схему декодера согласно варианту осуществления;fig. 3 is a block diagram of a decoder according to an embodiment;
фиг. 4 изображает более подробно блок-схему кодера согласно варианту осуществления;fig. 4 is a block diagram of an encoder according to an embodiment in more detail;
фиг. 5 изображает более подробно блок-схему декодера согласно варианту осуществления;fig. 5 shows in more detail a block diagram of a decoder according to an embodiment;
фиг. 6 схематическим иллюстрирует преобразование блока из пространственной области в спектральную область, результирующий блок преобразования и его повторное преобразование;fig. 6 schematically illustrates the transformation of a block from the spatial domain to the spectral domain, the resulting transform block, and its reconversion;
фиг. 7 изображает блок-схему кодера согласно варианту осуществления;fig. 7 is a block diagram of an encoder according to an embodiment;
фиг. 8 изображает блок-схему декодера, пригодного для декодирования битового потока, генерируемого кодером по фиг. 8, согласно варианту осуществления;fig. 8 is a block diagram of a decoder suitable for decoding a bit stream generated by the encoder of FIG. 8, according to an embodiment;
фиг. 9 изображает схематическую диаграмму, иллюстрирующую пакет данных с мультиплексированными частичными битовыми потоками согласно варианту осуществления;fig. 9 is a schematic diagram illustrating a data packet with multiplexed partial bit streams according to an embodiment;
фиг. 10 изображает схематическую диаграмму, иллюстрирующую пакет данных с альтернативным сегментированием, использующим сегменты фиксированного размера, согласно другому варианту осуществления;fig. 10 is a schematic diagram illustrating a data packet with alternative segmentation using fixed size segments, according to another embodiment;
фиг. 11 изображает декодер, поддерживающий переключение режимов, согласно варианту осуществления;fig. 11 shows a decoder supporting mode switching according to an embodiment;
фиг. 12 изображает декодер, поддерживающий переключение режимов, согласно другому варианту осуществления;fig. 12 shows a decoder supporting mode switching according to another embodiment;
фиг. 13 изображает кодер, соответствующий декодеру по фиг. 11, согласно варианту осуществления;fig. 13 shows an encoder corresponding to the decoder of FIG. 11, according to an embodiment;
фиг. 14 изображает кодер, соответствующий декодеру по фиг. 12, согласно варианту осуществления;fig. 14 shows an encoder corresponding to the decoder of FIG. 12, according to an embodiment;
фиг. 15 изображает отображение pStateCtx и fullCtxState/256**E**;fig. 15 shows the display of pStateCtx and fullCtxState/256**E**;
фиг. 16 изображает декодер согласно варианту осуществления настоящего изобретения; иfig. 16 shows a decoder according to an embodiment of the present invention; And
фиг. 17 изображает кодер согласно варианту осуществления настоящего изобретения.fig. 17 depicts an encoder according to an embodiment of the present invention.
Фиг. 18 схематически изображает бинаризацию разности векторов движения согласно варианту осуществления настоящего изобретения;Fig. 18 schematically shows a binarization of a motion vector difference according to an embodiment of the present invention;
фиг. 19 схематически иллюстрирует принцип слияния согласно варианту осуществления; иfig. 19 schematically illustrates the merging principle according to the embodiment; And
фиг. 20 схематически иллюстрирует схему предсказания вектора движения согласно варианту осуществления.fig. 20 schematically illustrates a motion vector prediction circuit according to an embodiment.
Отмечается, что при описании фигур, элементы, встречающиеся на нескольких из этих фигур, обозначаются одинаковой ссылочной позицией на каждой из этих фигур, и исключается повторное описание этих элементов, что касается функциональных возможностей, чтобы исключить необязательные повторения. Тем не менее, функциональные возможности и описания, обеспечиваемые в отношении одной фигуры, также применимы к другим фигурам, если только в явной форме не указано противоположное.It is noted that in describing the figures, elements appearing in more than one of these figures are designated by the same reference numeral in each of these figures, and repeated description of these elements with respect to functionality is avoided so as to avoid unnecessary repetition. However, functionality and descriptions provided with respect to one figure also apply to other figures, unless expressly stated to the contrary.
Ниже сначала описываются варианты осуществления общего принципа видеокодирования, в отношении фиг. 1-10. Фиг. 1-6 относятся к части видеокодека, работающей на уровне синтаксиса. Последующие фиг. 8-10 относятся к вариантам осуществления для части кода, относящегося к преобразованию потока синтаксических элементов в поток данных и наоборот. Затем описываются конкретные аспекты и варианты осуществления настоящего изобретения в виде возможных реализаций общего принципа, представительно кратко изложенного в отношении фиг. 1-10.Below, embodiments of the general video encoding principle will first be described with respect to FIGS. 1-10. Fig. 1-6 refer to the part of the video codec that operates at the syntax level. Subsequent figs. 8-10 relate to embodiments for a portion of code related to converting a stream of syntax elements to a stream of data and vice versa. Specific aspects and embodiments of the present invention are then described in terms of possible implementations of the general principle briefly outlined in relation to FIG. 1-10.
Фиг. 1 изображает пример кодера 10, в котором могут быть реализованы аспекты настоящей заявки.Fig. 1 depicts an
Кодер кодирует массив элементов 20 дискретизации информации в поток данных. Массив элементов дискретизации информации может представлять элементы дискретизации информации, соответствующие, например, значениям освещенности, значениям цветности, значениям яркости, значениям насыщенности цвета или т.п. Однако элементы дискретизации информации также могут представлять собой значения глубины в случае массива 20 элементов дискретизации, представляющего собой карту глубины, сгенерированную, например, по времени датчика света или т.п.The encoder encodes the array of
Кодер 10 представляет собой кодер на основе блоков. Т.е. кодер 10 кодирует массив 20 элементов дискретизации в поток 30 данных в единицах блоков 40. Кодирование в единицах блоков 40 не обязательно означает, что кодер 10 кодирует эти блоки 40 совершенно независимо один от другого. Вместо этого кодер 10 может использовать восстановления ранее кодированных блоков, чтобы экстраполировать или внутренне предсказывать остальные блоки, и может использовать степень разбиения блоков для установки параметров кодирования, т.е. для установки метода, которым кодируется каждая область массива элементов дискретизации, соответствующая соответствующему блоку.
Кроме того, кодер 10 представляет собой кодер с преобразованием. Т.е. кодер 10 кодирует блоки 40 посредством использования преобразования, чтобы переносить элементы дискретизации информации в каждом блоке 40 из пространственной области в спектральную область. Может использоваться двумерное преобразование, такое как дискретное косинусное преобразование (DCT) быстрого преобразования Фурье (FFT) или т.п. Предпочтительно, что блоки 40 имеют квадратную форму или прямоугольную форму.In addition, the
Подразделение массива 20 элементов дискретизации на блоки 40, показанное на фиг. 1, служит просто для целей иллюстрации. Фиг. 1 изображает массив 20 элементов дискретизации с подразделением на обычное двумерное расположение квадратных или прямоугольных блоков 40, которые примыкают друг к другу неперекрывающимся образом. Размер блоков 40 может определяться заранее. Т.е. кодер 10 может не переносить информацию о размере блока блоков 40 в потоке 30 данных на декодирующую сторону. Например, декодер может ожидать заданный размер блока.The subdivision of the
Однако возможно несколько альтернатив. Например, блоки могут перекрывать друг друга. Перекрытие, однако, может ограничиваться до такой степени, что каждый блок имеет часть, не перекрываемую никаким соседним блоком, или так, что каждый элемент дискретизации блоков перекрывается по максимуму одним блоком из числа соседних блоков, расположенных рядом друг с другом с текущим блоком по заданному направлению. Последнее означает, что левый и правый соседние блоки могут перекрывать текущий блок, чтобы полностью покрывать текущий блок, но они могут не накладываться друг на друга, и это же применимо к соседям в вертикальном и диагональном направлении.However, several alternatives are possible. For example, blocks can overlap each other. The overlap, however, may be limited to such an extent that each block has a portion not overlapped by any neighboring block, or such that each block bin is overlapped by at most one block from among the neighboring blocks adjacent to each other with the current block for a given direction. The latter means that the left and right neighboring blocks may overlap the current block to completely cover the current block, but they may not overlap each other, and the same applies to neighbors in the vertical and diagonal direction.
В качестве другой альтернативы, подразделение массива 20 элементов дискретизации на блоки 40 может адаптироваться к содержимому массива 20 элементов дискретизации кодером 10, причем информация подразделения об используемом подразделении пересылается на сторону декодера по битовому потоку 30.As another alternative, subdividing the
Фиг. 2a-2c изображают разные примеры для подразделения массива 20 элементов дискретизации в блоки 40. Фиг. 2a изображает подразделение на основе квадродерева массива 20 элементов дискретизации в блоки 40 разных размеров, причем типовые блоки обозначаются позициями 40a, 40b, 40c и 40d с увеличивающимся размером. В соответствии с подразделением на фиг. 2a, массив 20 элементов дискретизации сначала делится на обычное двумерное расположение древовидных блоков 40d, которые, в свою очередь, имеют индивидуальную информацию подразделения, ассоциированную с ним, в соответствии с которой некоторый древовидный блок 40d может дополнительно подразделяться или нет в соответствии со структурой квадродерева. Древовидный блок слева от блока 40d, в качестве примера, подразделяется на меньшие блоки в соответствии со структурой квадродерева. Кодер 10 может выполнять одно двумерное преобразование для каждого из блоков, показанных сплошными и пунктирными линиями на фиг. 2a. Другими словами, кодер 10 может преобразовывать массив 20 в единицах подразделения блока.Fig. 2a-2c depict various examples for subdividing the
Вместо подразделения на основе квадродерева может использоваться более общее подразделение на основе нескольких деревьев, и количество дочерних узлов на уровень иерархии может отличаться между разными уровнями иерархии.Instead of a quadtree subdivision, a more general multi-tree subdivision may be used, and the number of child nodes per hierarchy level may differ between different hierarchy levels.
Фиг. 2b изображает другой пример для подразделения. В соответствии с фиг. 2b массив 20 элементов дискретизации сначала делится на макроблоки 40b, расположенные в обычном двумерном расположении неперекрывающимся, взаимно примыкающим образом, причем каждый макроблок 40b имеет ассоциированную с ним информацию подразделения, в соответствии с которой макроблок не подразделяется, или, если подразделяется, подразделяется обычным двумерным образом на подблоки равного размера для достижения разных степеней разбиения подразделения для разных макроблоков. Результатом является подразделение массива 20 элементов дискретизации в блоках 40 с разным размером, причем представители разных размеров обозначаются позициями 40a, 40b и 40a’. Как на фиг. 2a, кодер 10 выполняет двумерное преобразование в отношении каждого из блоков, показанных на фиг.2b сплошными и пунктирными линиями. Фиг. 2c описывается ниже.Fig. 2b depicts another example for a subdivision. According to FIG. 2b, the
Фиг. 3 изображает декодер 50, способный декодировать поток 30 данных, сгенерированный кодером 10 для восстановления восстановленной версии 60 массива 20 элементов дискретизации. Декодер 50 извлекает из потока 30 данных блок коэффициентов преобразования для каждого из блоков 40 и восстанавливает восстановленную версию 60 посредством выполнения обратного преобразования в отношении каждого из блоков коэффициентов преобразования.Fig. 3 depicts a
Кодер 10 и декодер 50 могут быть выполнены с возможностью выполнения энтропийного кодирования/декодирования, чтобы вставлять информацию о блоках коэффициентов преобразования в поток данных и извлекать эту информацию из него соответственно. Ниже описываются подробности в этом отношении в соответствии с разными вариантами осуществления. Необходимо отметить, что поток 30 данных необязательно содержит информацию о блоках коэффициентов преобразования для всех блоков 40 массива 20 элементов дискретизации. Вместо этого, так как подмножество блоков 40 может кодироваться в битовый поток 30 другим образом. Например, кодер 10, вместо этого, может принять решение воздержаться от вставки блока коэффициентов преобразования для некоторого блока из блоков 40 со вставкой в битовый поток 30 параметров альтернативного кодирования, которые позволяют декодеру 50 предсказывать или иным образом наполнять соответствующий блок в восстановленной версии 60. Например, кодер 10 может выполнять анализ текстуры, чтобы определять расположение блоков в массиве 20 элементов дискретизации, который может наполняться на стороне декодера декодером посредством синтеза текстуры, и указывать это в битовом потоке соответствующим образом.
Как описывается в отношении следующих фигур, блоки коэффициентов преобразования необязательно представляют представление спектральной области исходных элементов дискретизации информации соответствующего блока 40 массива 20 элементов дискретизации. Вместо этого, такой блок коэффициентов преобразования может представлять представление спектральной области остатка предсказания соответствующего блока 40. Фиг. 4 изображает вариант осуществления для такого кодера. Кодер по фиг. 4 содержит ступень (каскад) 100 преобразования, энтропийный кодер 102, ступень 104 обратного преобразования, предиктор (предсказатель) 106 и вычитатель 108, а также сумматор 110. Вычитатель 108, ступень 100 преобразования и энтропийный кодер 102 соединены последовательно в упомянутом порядке между входом 112 и выходом 114 кодера на фиг. 4. Ступень 104 обратного преобразования, сумматор 110 и предиктор 106 соединены в упомянутом порядке между выходом ступени 100 преобразования и инвертирующим входом вычитателя 108, причем выход предиктора 106 также соединен с другим входом сумматора 110.As described in relation to the following figures, the transform coefficient blocks do not necessarily represent a spectral domain representation of the original bins of information of the
Кодер по фиг. 4 представляет собой блочный кодер на основе преобразования с предсказанием. Т.е. блоки массива 20 элементов дискретизации, поступающие на вход 112, предсказываются из ранее кодированных и восстановленных частей этого же массива 20 элементов дискретизации или ранее кодированных и восстановленных других массивов элементов дискретизации, которые могут предшествовать или следовать за текущим массивом 20 элементов дискретизации во времени представления. Предсказание выполняется предиктором 106. Вычитатель 108 вычитает предсказание из такого исходного блока, и ступень 100 преобразования выполняет двумерное преобразование остатков предсказания. Само двумерное преобразование или последующая мера в ступени 100 преобразования могут приводить к квантованию коэффициентов преобразования в блоках коэффициентов преобразования. Квантованные блоки коэффициентов преобразования кодируются без потерь, например, посредством энтропийного кодирования в энтропийном кодере 102, причем результирующий поток данных выводится на выходе 114. Ступень 104 обратного преобразования восстанавливает квантованный остаток, и сумматор 110, в свою очередь, объединяет восстановленный остаток с соответствующим предсказанием для получения восстановленных элементов дискретизации информации, основываясь на которых предиктор 106 может предсказывать вышеупомянутые кодируемые в настоящий момент блоки предсказания. Предиктор 106 может использовать разные режимы предсказания, такие как режимы внутреннего предсказания и режимы внешнего предсказания, чтобы предсказывать блоки, и параметры предсказания направляются энтропийному кодеру 102 для вставки в поток данных. Для каждого блока предсказания с внешним предсказанием соответствующие данные движения вставляются в битовый поток при помощи энтропийного кодера 114, чтобы предоставить возможность декодирующей стороне повторно выполнить предсказание. Данные движения для блока предсказания изображения могут включать в себя часть синтаксиса, включающую в себя синтаксический элемент, представляющий разность вектора движения, дифференциально кодирующую вектор движения для текущего блока предсказания относительно предиктора вектора движения, полученного, например, посредством заданного способа из векторов движения соседних, уже кодированных блоков предсказания.The encoder according to FIG. 4 is a block encoder based on predictive transform. Those. blocks of
Т.е. согласно варианту осуществления по фиг. 4 блоки коэффициентов преобразования представляют спектральное представление остатка массива элементов дискретизации, а не его фактические элементы дискретизации информации. Т.е. согласно варианту осуществления по фиг. 4 последовательность синтаксических элементов может поступать в энтропийный кодер 102 для энтропийного кодирования в поток 114 данных. Последовательность синтаксических элементов может содержать синтаксические элементы разностей векторов движения для блоков внешнего предсказания и синтаксические элементы, касающиеся карты значимостей, указывающей позиции значимых уровней коэффициентов преобразования, а также синтаксические элементы, определяющие сами значимые уровни коэффициентов преобразования, для блоков преобразования.Those. according to the embodiment of FIG. 4, the transform coefficient blocks represent the spectral representation of the remainder of the sample array, rather than its actual information samples. Those. according to the embodiment of FIG. 4, a sequence of syntax elements may be provided to
Необходимо отметить, что несколько альтернатив существует для варианта осуществления по фиг. 4, причем некоторые из них были описаны в вводной части описания изобретения, описание которых включено в описание фиг. 4 настоящего документа.It should be noted that several alternatives exist for the embodiment of FIG. 4, some of which were described in the introductory part of the description of the invention, the description of which is included in the description of FIG. 4 of this document.
Фиг. 5 изображает декодер, способный декодировать поток данных, генерируемый кодером по фиг. 4. Декодер по фиг. 5 содержит энтропийный декодер 150, ступень 152 обратного преобразования, сумматор 154 и предиктор 156. Энтропийный декодер 150, ступень 152 обратного преобразования и сумматор 154 последовательно соединены между входом 158 и выходом 160 декодера по фиг. 5 в упомянутом порядке. Другой выход энтропийного декодера 150 соединен с предиктором 156, который, в свою очередь, подсоединен между выходом сумматора 154 и другим его входом. Энтропийный декодер 150 извлекает из потока данных, поступающего в декодер по фиг. 5 на входе 158, блоки коэффициентов преобразования, причем обратное преобразование применяется к блокам коэффициентов преобразования в ступени 152 для получения сигнала остатка. Сигнал остатка объединяется с предсказанием от предиктора 156 в сумматоре 154 для получения восстановленного блока восстановленной версии массива элементов дискретизации на выходе 160. Основываясь на восстановленных версиях, предиктор 156 генерирует предсказания, таким образом восстанавливая предсказания, выполняемые предиктором 106 на стороне кодера. Для получения таких же предсказаний, что и те, которые используются на стороне кодера, предиктор 156 использует параметры предсказания, которые энтропийный декодер 150 также получает из потока данных на входе 158.Fig. 5 depicts a decoder capable of decoding the data stream generated by the encoder of FIG. 4. Decoder according to FIG. 5 includes an
Необходимо отметить, что в вышеописанных вариантах осуществления пространственная степень разбиения, с которой выполняется предсказание и преобразование остатка, не должна быть равной друг другу. Это показано на фиг. 2C. Эта фигура изображает подразделение для блоков предсказания степени разбиения предсказания сплошными линиями и степень разбиения остатка - пунктирными линиями. Как можно видеть, подразделения могут выбираться кодером независимо друг от друга. Более точно, синтаксис потока данных может учитывать определение подразделения остатка независимо от подразделения предсказания. Альтернативно, подразделение остатка может представлять собой расширение подразделения предсказания, так что каждый блок остатка или равен блоку предсказания или представляет собой надлежащее подмножество его. Это показано на фиг. 2a и фиг. 2b, например, где снова степень разбиения предсказания показана сплошными линиями и степень разбиения остатка - пунктирными линиями. Т.е. на фиг. 2a-2c все блоки, имеющие ссылочную позицию, ассоциированную с ними, будут блоками остатка, для которых будет выполняться одно двумерное преобразование, тогда как блоки со сплошными линиями большего размера, охватывающие блоки 40a с пунктирными линиями, например, будут блоками предсказания, для которых установка параметров предсказания выполняется индивидуально.It should be noted that in the above-described embodiments, the spatial degree of partitioning with which prediction and transformation of the remainder are performed need not be equal to each other. This is shown in Fig. 2C. This figure depicts the subdivision for prediction blocks of the degree of prediction partitioning with solid lines and the degree of partitioning of the remainder with dashed lines. As can be seen, the divisions can be selected independently of each other by the encoder. More precisely, the data flow syntax may respect the definition of the remainder division independently of the prediction division. Alternatively, the remainder division may be an extension of the prediction division such that each residue block is either equal to or a proper subset of the prediction block. This is shown in Fig. 2a and fig. 2b, for example, where again the degree of prediction partitioning is shown by solid lines and the degree of partitioning of the remainder by dotted lines. Those. in fig. 2a-2c, all blocks having a reference position associated with them will be residual blocks for which one 2D transform will be performed, while larger solid line blocks enclosing dotted line blocks 40a, for example, will be prediction blocks for which Prediction parameters are set individually.
Вышеупомянутые варианты осуществления имеют в общем то, что блок (элементов дискретизации остатка или исходных элементов дискретизации) должен преобразовываться на стороне кодера в блок коэффициентов преобразования, который, в свою очередь, должен обратно преобразовываться в восстановленный блок элементов дискретизации на стороне декодера. Это изображено на фиг. 6. Фиг. 6 изображает блок 200 элементов дискретизации. В случае фиг. 6, этот блок 200 в качестве примера является квадратным и имеет 4×4 элементов 202 дискретизации в размере. Элементы 202 дискретизации регулярно располагаются по горизонтальному направлению x и по вертикальному направлению y. Посредством вышеупомянутого двумерного преобразования T, блок 200 преобразуется в спектральную область, а именно, в блок 204 коэффициентов 206 преобразования, причем блок 204 преобразования имеет такой же размер, что и блок 200. Т.е. блок 204 преобразования имеет столько коэффициентов 206 преобразования, сколько блок 200 имеет элементов дискретизации как в горизонтальном направлении, так и вертикальном направлении. Однако так как преобразование T представляет собой спектральное преобразование, позиции коэффициентов 206 преобразования в блоке 204 преобразования не соответствуют пространственным позициям, но скорее спектральным составляющим содержимого блока 200. В частности, горизонтальная ось блока 204 преобразования соответствует оси, вдоль которой спектральная частота в горизонтальном направлении монотонно увеличивается, в то время как вертикальная ось соответствует оси, вдоль которой пространственная частота в вертикальном направлении монотонно увеличивается, причем коэффициент преобразования составляющей постоянного тока (DC) располагается в углу - здесь, в качестве примера, верхний левый угол - блока 204, так что в нижнем правом углу располагается коэффициент 206 преобразования, соответствующий наибольшей частоте как в горизонтальном, так и в вертикальном направлении. Пренебрегая пространственным направлением, пространственная частота, к которой принадлежит некоторый коэффициент 206 преобразования, как правило увеличивается от верхнего левого угла к нижнему правому углу. Посредством обратного преобразования T-1, блок 204 преобразования переносится из спектральной области в пространственную область, чтобы повторно получить копию 208 блока 200. В случае отсутствия введения потерь квантования при преобразовании, восстановление будет совершенным.The above embodiments have in general that a block (of residual bins or original bins) must be converted at the encoder side into a block of transform coefficients, which in turn must be converted back into a reconstructed block of bins at the decoder side. This is shown in FIG. 6. Fig. 6 depicts a
Как уже отмечено выше, можно видеть на фиг. 6, что большие размеры блока у блока 200 увеличивают спектральное разрешение результирующего спектрального представления 204. С другой стороны, шум квантования стремится распространиться по всему блоку 208, и, таким образом, резкие и очень локализованные объекты в блоках 200 стремятся привести к отклонениям повторно преобразованного блока относительно исходного блока 200 из-за шума квантования. Главным преимуществом использования больших блоков является, однако, то, что отношение между количеством значимых, т.е. ненулевых (квантованных) коэффициентов преобразования, т.е. уровней, с одной стороны, и количеством незначимых коэффициентов преобразования, с другой стороны, может уменьшаться в больших блоках по сравнению с меньшими блоками, тем самым позволяя получить лучшую эффективность кодирования. Другими словами, часто значимые уровни коэффициентов преобразования, т.е. коэффициенты преобразования, не квантованные в нуль, редко распределяются по блоку 204 преобразования. Вследствие этого, согласно вариантам осуществления, описанным более подробно ниже, позиции значимых уровней коэффициентов преобразования сигнализируются в потоке данных посредством карты значимостей. Отдельно от нее, значения значимого коэффициента преобразования, т.е. уровней коэффициентов преобразования в случае, когда коэффициенты преобразования квантуются, передаются в потоке данных.As noted above, it can be seen in FIG. 6 that the larger block sizes of
Все кодеры и декодеры, описанные выше, таким образом, выполнены с возможностью работы с некоторым синтаксисом синтаксических элементов. Т.е. вышеупомянутые синтаксические элементы, такие как уровни коэффициентов преобразования, синтаксические элементы, касающиеся карты значимостей блоков преобразования, синтаксические элементы данных движения, касающиеся блоков внешнего предсказания, и т.п., как предполагается, располагаются последовательно в потоке данных заданным образом. Такой заданный образ может представляться в виде псевдокода, как, например, сделано в стандарте H.264 или других видеокодеках.All encoders and decoders described above are thus configured to operate with some syntax of syntax elements. Those. the above-mentioned syntax elements such as transform coefficient levels, syntax elements relating to the significance map of transform blocks, motion data syntax elements relating to inter prediction blocks, and the like are assumed to be arranged sequentially in the data stream in a predetermined manner. Such a given image can be represented as pseudocode, as, for example, is done in the H.264 standard or other video codecs.
Другими словами, вышеупомянутое описание, имеющее дело главным образом с преобразованием мультимедийных данных, здесь, в качестве примера, видеоданные, в последовательность синтаксических элементов в соответствии с предварительно определенной синтаксической структурой, задающей некоторые типы синтаксических элементов, его семантикой и порядком среди них. Энтропийный кодер и энтропийный декодер по фиг. 4 и 5 может быть выполнен с возможностью работы, и может быть структурирован, как кратко изложено ниже. Они отвечают за выполнение преобразования между последовательностью синтаксических элементов и потоком данных, т.е. потоком символов или битов.In other words, the above description deals primarily with the transformation of multimedia data, here video data as an example, into a sequence of syntactic elements in accordance with a predefined syntactic structure specifying certain types of syntactic elements, its semantics and the order among them. The entropy encoder and entropy decoder of FIG. 4 and 5 may be operable, and may be structured as summarized below. They are responsible for performing the transformation between a sequence of syntax elements and a data stream, i.e. a stream of characters or bits.
Энтропийный кодер согласно варианту осуществления изображен на фиг. 7. Кодер без потерь преобразует поток синтаксических элементов 301 в множество из двух или более частичных битовых потоков 312.An entropy encoder according to an embodiment is shown in FIG. 7. The lossless encoder converts the
В предпочтительном варианте осуществления изобретения каждый синтаксический элемент 301 ассоциируется с категорией множества из одной или нескольких категорий, т.е. типом синтаксического элемента. В качестве примера, категории могут задавать тип синтаксического элемента. В контексте гибридного видеокодирования отдельная категория может ассоциироваться с режимами кодирования макроблоков, режимами кодирования блоков, индексами опорного изображения, разностями векторов движения, флагами подразделения, флагами кодированного блока, параметрами квантования, уровнями коэффициентов преобразования и т.д. В других областях применения, таких как аудио, речь, текст, документ или обычное кодирование данных, возможны разные категоризации синтаксических элементов.In a preferred embodiment of the invention, each
Обычно, каждый синтаксический элемент может принимать значение конечного или счетно-бесконечного множества значений, где множество возможных значений синтаксического элемента может различаться для разных категорий синтаксических элементов. Например, имеются двоичные синтаксические элементы, а также целочисленные.Typically, each syntactic element can take on a finite or countably infinite set of values, where the set of possible values for a syntactic element may vary for different categories of syntactic elements. For example, there are binary syntax elements as well as integer ones.
Для уменьшения сложности алгоритма кодирования и декодирования и для предоставления возможности общей разработки кодирования и декодирования для разных синтаксических элементов и категорий синтаксических элементов, синтаксические элементы 301 преобразуются в упорядоченные множества двоичных решений, и эти двоичные решения затем обрабатываются простыми алгоритмами двоичного кодирования. Поэтому, бинаризатор 302 биективно (взаимно-однозначно) отображает значение каждого синтаксического элемента 301 на последовательность (или строку или слово) бинов 303. Последовательность бинов 303 представляет множество упорядоченных двоичных решений. Каждый бин 303 или двоичное решение может принимать одно значение из множества из двух значений, например, одно из значений 0 и 1. Схема бинаризации может быть разной для разных категорий синтаксических элементов. Схема бинаризации для конкретной категории синтаксических элементов может зависеть от множества возможных значений синтаксических элемента и/или других свойств синтаксического элемента для конкретной категории.To reduce the complexity of the encoding and decoding algorithm and to enable general encoding and decoding design for different syntax elements and categories of syntax elements,
Таблица 1 иллюстрирует три примерные схемы бинаризации для счетно-бесконечных множеств. Схемы бинаризации для счетно-бесконечных множеств также могут применимы для конечных множеств значений синтаксических элементов. В частности для больших конечных множеств значений синтаксических элементов может быть незначительной неэффективность (являющаяся результатом неиспользованных последовательностей бинов), но универсальность таких схем бинаризации обеспечивает преимущество в смысле сложности и требований к памяти. Для малых конечных множеств значений синтаксических элементов часто бывает предпочтительным (в смысле эффективности кодирования) адаптировать схему бинаризации к количеству возможных значений символов.Table 1 illustrates three example binarization schemes for countably infinite sets. Binarization schemes for countably infinite sets can also be applied to finite sets of values of syntactic elements. Particularly for large finite sets of syntactic element values, there may be little inefficiency (resulting from unused bin sequences), but the generality of such binarization schemes provides an advantage in terms of complexity and memory requirements. For small finite sets of syntactic element values, it is often preferable (in terms of encoding efficiency) to adapt the binarization scheme to the number of possible symbol values.
Таблица 2 иллюстрирует три примерные схемы бинаризации для конечных множеств из 8 значений. Схемы бинаризации для конечных множеств могут быть выведены из универсальных схем бинаризации для счетно-бесконечных множеств посредством модифицирования некоторых последовательностей бинов таким образом, что конечные множества последовательностей бинов представляют код без избыточности (и потенциально переупорядочение последовательностей бинов). В качестве примера, схема усеченной унарной бинаризации в таблице 2 была создана посредством модифицирования последовательности бинов для синтаксического элемента 7 универсальной унарной бинаризации (см. таблицу 1). Усеченная и переупорядоченная экспоненциальная бинаризация Голомба порядка 0 в таблице 2 была создана посредством модифицирования последовательности бинов для синтаксического элемента 7 универсальной экспоненциальной бинаризации Голомба порядка 0 (см. таблица 1) и посредством переупорядочения последовательностей бинов (усеченная последовательность бинов для символа 7 была назначена символу 1). Для конечных множеств синтаксических элементов также возможно использование несистематических/неуниверсальных схем бинаризации, как приведено в качестве примера в последнем столбце таблицы 2.Table 2 illustrates three example binarization schemes for finite sets of 8 values. Binarization schemes for finite sets can be derived from universal binarization schemes for countably infinite sets by modifying some sequences of bins such that finite sets of sequences of bins represent code without redundancy (and potentially a reordering of the sequences of bins). As an example, the truncated unary binarization scheme in Table 2 was created by modifying the sequence of bins for syntax element 7 of the universal unary binarization (see Table 1). The truncated and reordered Golomb exponential binarization of
Каждый бин 303 последовательности бинов, создаваемых бинаризатором 302, подается в средство 304 назначения параметра в последовательном порядке. Средство назначения параметра назначает множество из одного или нескольких параметров каждому бину 303 и выводит бин с ассоциированным множеством параметров 305. Множество параметров определяется точно одинаковым образом в кодере и декодере. Множество параметров может состоять из одного или нескольких из следующих параметров:Each bin 303 of the sequence of bins produced by the
В частности, средство 304 назначения параметра может быть выполнено с возможностью назначения текущему бину 303 контекстной модели. Например, средство 304 назначения параметра может выбирать один из доступных индексов контекста для текущего бина 303. Доступное множество контекстов для текущего бина 303 может зависеть от типа бина, который, в свою очередь, может определяться типом/категорией синтаксического элемента 301, бинаризация какого текущего бина 303 является частью и позицией текущего бина 303 в последней бинаризации. Выбор контекста из числа доступного множества контекстов может зависеть от предыдущих бинов и синтаксических элементов, ассоциированных с последним. Каждый из этих контекстов имеет вероятностную модель, ассоциированную с ним, т.е. меру для оценки вероятности для одного из двух возможных значений бина для текущего бина. Вероятностная модель, в частности, может представлять собой меру для оценки вероятности для менее вероятного или более вероятного значения бина для текущего бина, причем вероятностная модель дополнительно определяется идентификатором, задающим оценку, какое из двух возможных значений бина представляет менее вероятное или более вероятное значение бина для текущего бина 303. В случае, когда доступен только один контекст для текущего бина, может быть исключен выбор контекста. Как более подробно изложено ниже, средство 304 назначения параметра также может выполнять адаптацию вероятностной модели, чтобы адаптировать вероятностные модели, ассоциированные с различными контекстами, с фактической статистикой бинов соответствующих бинов, принадлежащих соответствующим контекстам.In particular, the
Как также более подробно описано ниже, средство 304 назначения параметра может работать по-разному в зависимости от активизированного режима высокой эффективности (HE) или режима низкой сложности (LC). В обоих режимах вероятностная модель ассоциирует текущий бин 303 с любым из кодеров 310 бина, как изложено ниже, но режим работы средства 304 назначения параметра стремится быть менее сложным в режиме LC, причем, однако, эффективность кодирования повышается в режиме высокой эффективности из-за того, что средство 304 назначения параметра вызывает более точную адаптацию ассоциирования индивидуальных бинов 310 с индивидуальными кодерами 310 со статистикой бинов, тем самым оптимизируя энтропию относительно режима LC.As also described in more detail below, the
Каждый бин с ассоциированным множеством параметров 305, который представляет собой выходной результат средства 304 назначения параметра, подается в селектор 306 буфера бинов. Селектор 306 буфера бинов потенциально модифицирует значение введенного бина 305, основываясь на значении введенного бина и ассоциированных параметрах 305, и подает выводимый бин 307 - с потенциально модифицированным значением - в один из двух или более буферов 308 бинов. Буфер 308 бинов, на который посылается выводимый бин 307, определяется на основе значения вводимого бина 305 и/или значения ассоциированных параметров 305.Each bin with an associated set of
В предпочтительном варианте осуществления изобретения селектор 306 буфера бинов не модифицирует значение бина, т.е. выводимый бин 307 всегда имеет одно и тоже значение, что и вводимый бин 305. В другом предпочтительном варианте осуществления изобретения селектор 306 буфера бинов определяет значение 307 выводимого бина, основываясь на значении 305 вводимого бина и ассоциированной мере для оценки вероятности для одного из двух возможных значений бина для текущего бина. В предпочтительном варианте осуществления изобретения значение 307 выводимого бина устанавливается равным значению 305 вводимого бина, если мера для вероятности для одного из двух возможных значений бина для текущего бина меньше (или меньше или равна) конкретному порогу; если мера для вероятности для одного из двух возможных значений бина для текущего бина больше или равна (или больше) конкретного порога, значение 307 выводимого бина модифицируется (т.е. устанавливается на противоположное значение значению вводимого бина). В другом предпочтительном варианте осуществления изобретения значение 307 выводимого бина устанавливается равным значению 305 вводимого бина, если мера для вероятности для одного из двух возможных значений бина для текущего бина больше (или больше или равна) конкретному порогу; если мера для вероятности для одного из двух возможных значений бина для текущего бина меньше или равна (или меньше) конкретному порогу, значение 307 выводимого бина модифицируется (т.е. устанавливается на противоположное значение значению вводимого бина). В предпочтительном варианте осуществления изобретения значение порога соответствует значению 0,5 для оцененной вероятности для обоих возможных значений бина.In the preferred embodiment of the invention, the
В другом предпочтительном варианте осуществления изобретения селектор 306 буфера бинов определяет значение 307 выводимого бина, основываясь на значении 305 вводимого бина и ассоциированном идентификаторе, задающим оценку, какое из двух возможных значений бина представляет менее вероятное или более вероятное значение бина для текущего бина. В предпочтительном варианте осуществления изобретения значение 307 выводимого бина устанавливается равным значению 305 вводимого бина, если идентификатор задает, что первое из двух возможных значений бина представляет менее вероятное (или более вероятное) значение бина для текущего бина, и значение 307 выводимого бина модифицируется (т.е. устанавливается на противоположное значение значению вводимого бина), если идентификатор задает, что второе из двух возможных значений бина представляет менее вероятное (или более вероятное) значение бина для текущего бина.In another preferred embodiment of the invention, the
В предпочтительном варианте осуществления изобретения селектор 306 буфера бинов определяет буфер 308 бинов, на который посылается выводимый бин 307, основываясь на ассоциированной мере для оценки вероятности для одного из двух возможных значений бина для текущего бина. В предпочтительном варианте осуществления изобретения множество возможных значений для меры для оценки вероятности для одного из двух возможных значений бина является конечным, и селектор 306 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 308 бинов с каждым возможным значением для оценки вероятности для одного из двух возможных значений бина, где разные значения для меры для оценки вероятности для одного из двух возможных значений бина могут ассоциироваться с одним и тем же буфером 308 бинов. В другом предпочтительном варианте осуществления изобретения диапазон возможных значений для меры для оценки вероятности для одного из двух возможных значений бина разделяется на несколько интервалов, селектор 306 буфера бинов определяет индекс интервала для текущей меры для оценки вероятности для одного из двух возможных значений бина, и селектор 306 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 308 бинов с каждым возможным значением для индекса интервала, где разные значения для индекса интервала могут ассоциироваться с одним и тем же буфером 308 бинов. В предпочтительном варианте осуществления изобретения вводимые бины 305 с противоположными мерами для оценки вероятности для одного из двух возможных значений бина (противоположной мерой являются те, которые представляют оценки P и 1-P вероятности) подаются в один и тот же буфер 308 бинов. В другом предпочтительном варианте осуществления изобретения ассоциирование меры для оценки вероятности для одного из двух возможных значений бина для текущего бина с конкретным буфером бинов адаптируется во времени, например, чтобы гарантировать, что созданные частичные битовые потоки имеют подобные скорости передачи битов. Кроме того, индекс интервала также называется индексом pipe (энтропия разделения интервала вероятности), тогда как индекс pipe вместе с индексом уточнения, и флаг, указывающий более вероятное значение бина, индексирует фактическую вероятностную модель, т.е. оценку вероятности.In a preferred embodiment of the invention,
В другом предпочтительном варианте осуществления изобретения селектор 306 буфера бинов определяет буфер 308 бинов, на который посылается выводимый бин 307, основываясь на ассоциированной мере для оценки вероятности для менее вероятного или более вероятного значения бина для текущего бина. В предпочтительном варианте осуществления изобретения множество возможных значений для меры для оценки вероятности для менее вероятного или более вероятного значения бина является конечным, и селектор 306 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 308 бинов с каждым возможным значением оценки вероятности для менее вероятного или более вероятного значения бина, где разные значения для меры для оценки вероятности для менее вероятного или более вероятного значения бина могут ассоциироваться с одним и тем же буфером 308 бинов. В другом предпочтительном варианте осуществления изобретения диапазон возможных значений для меры для оценки вероятности для менее вероятного или более вероятного значения бина разделяется на несколько интервалов, селектор 306 буфера бинов определяет индекс интервала для текущей меры для оценки вероятности для менее вероятного или более вероятного значения бина, и селектор 306 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 308 бинов с каждым возможным значением для индекса интервала, где разные значения для индекса интервала могут ассоциироваться с одним и тем же буфером 308 бинов. В другом предпочтительном варианте осуществления ассоциирование меры для оценки вероятности для менее вероятного или более вероятного значения бина для текущего бина с конкретным буфером бинов адаптируется во времени, например, чтобы гарантировать, что создаваемые частичные битовые потоки имеют подобные скорости передачи битов.In another preferred embodiment of the invention,
Каждый из двух или более буферов 308 бинов соединен с точно одним кодером 310 бинов, и каждый кодер бинов соединен только с одним буфером 308 бинов. Каждый кодер 310 бинов считывает бины из ассоциированного буфера 308 бинов и преобразует последовательность бинов 309 в кодовое слово 311, которое представляет последовательность битов. Буферы 308 бинов представляют буферы «первым пришел - первым обслужен»; бины, которые подаются позже (в последовательном порядке) в буфер 308 бинов, не кодируются перед бинами, которые подаются ранее (в последовательном порядке) в буфер бинов. Кодовые слова 311, которые представляют собой выходной результат конкретного кодера 310 бинов, записываются в конкретный частичный битовый поток 312. Общий алгоритм кодирования преобразует синтаксические элементы 301 в два или более частичных битовых потока 312, где количество частичных битовых потоков равно количеству буферов бинов и кодеров бинов. В предпочтительном варианте осуществления изобретения кодер 310 бинов преобразует изменяемое количество бинов 309 в кодовое слово 311 с изменяемым количеством битов. Одним преимуществом вышеупомянутых и ниже кратко изложенных вариантов осуществления изобретения является то, что кодирование бинов может выполняться параллельно (например, для разных групп мер вероятности), что уменьшает время обработки для нескольких реализаций.Each of two or more bin buffers 308 is connected to exactly one
Другим преимуществом вариантов осуществления изобретения является то, что кодирование бинов, которое выполняется кодерами 310 бинов, может быть конкретно разработано для разных множеств параметров 305. В частности, кодирование бинов и кодирование могут быть оптимизированы (в смысле эффективности и/или сложности кодирования) для разных групп оцененных вероятностей. С одной стороны, это предоставляет возможность уменьшить сложность кодирования/декодирования, и, с другой стороны, это позволяет получить повышение эффективности кодирования. В предпочтительном варианте осуществления изобретения кодеры 310 бинов реализуют разные алгоритмы кодирования (т.е. отображение последовательностей бинов в кодовые слова) для разных групп мер для оценки вероятности для одного из двух возможных значений 305 бина для текущего бина. В другом предпочтительном варианте осуществления изобретения кодеры 310 бинов реализуют разные алгоритмы кодирования для разных групп мер для оценки вероятности для менее вероятного или более вероятного значения бина для текущего бина.Another advantage of embodiments of the invention is that the bin encoding that is performed by the bin encoders 310 can be specifically designed for different parameter sets 305. In particular, the bin encoding and encoding can be optimized (in terms of encoding efficiency and/or complexity) for different groups of estimated probabilities. On the one hand, this makes it possible to reduce the complexity of encoding/decoding, and on the other hand, it makes it possible to obtain an increase in encoding efficiency. In a preferred embodiment of the invention,
В предпочтительном варианте осуществления изобретения кодеры 310 бинов - или один или несколько из кодеров бинов - представляют энтропийные кодеры, которые прямо отображают последовательности вводимых бинов 309 в кодовые слова 310. Такое отображение может быть эффективно реализовано и не требует сложного механизма арифметического кодирования. Обратное отображение кодовых слов в последовательности бинов (что выполняется в декодере) должно быть уникальным, чтобы гарантировать совершенное декодирование вводимой последовательности, но отображение последовательностей 309 бинов в кодовые слова 310 необязательно должно быть уникальным, т.е. возможно, что конкретная последовательность бинов может отображаться на более чем одну последовательность кодовых слов. В предпочтительном варианте осуществления изобретения отображение последовательностей вводимых бинов 309 в кодовые слова 310 является биективным. В другом предпочтительном варианте осуществления изобретения кодеры 310 бинов - или один или несколько из кодеров бинов - представляют энтропийные кодеры, которые прямо отображают последовательности переменной длины вводимых бинов 309 в кодовые слова 310 переменной длины. В предпочтительном варианте осуществления изобретения выводимые кодовые слова представляют коды без избыточности, такие как общие коды Хаффмана или канонические коды Хаффмана.In a preferred embodiment of the invention,
В таблице 3 изображены два примера для биективного отображения последовательностей бинов в коды без избыточности. В другом предпочтительном варианте осуществления изобретения выводимые кодовые слова представляют избыточные коды, пригодные для обнаружения ошибок и восстановления при ошибках. В другом предпочтительном варианте осуществления изобретения выводимые кодовые слова представляют коды шифрования, пригодные для шифрования синтаксических элементов.Table 3 shows two examples for bijectively mapping sequences of bins into codes without redundancy. In another preferred embodiment of the invention, the output codewords represent redundant codes useful for error detection and error recovery. In another preferred embodiment of the invention, the output codewords represent encryption codes suitable for encrypting syntax elements.
В другом предпочтительном варианте осуществления изобретения кодеры 310 бинов - или один или несколько из кодеров бинов - представляют энтропийные кодеры, которые прямо отображают последовательности переменной длины вводимых бинов 309 в кодовые слова 310 фиксированной длины. В другом предпочтительном варианте осуществления изобретения кодеры 310 бинов - или один или несколько из кодеров бинов - представляют энтропийные кодеры, которые прямо отображают последовательности фиксированной длины вводимых бинов 309 в кодовые слова 310 переменной длины.In another preferred embodiment of the invention,
Декодер согласно варианту осуществления изобретения изображен на фиг. 8. Декодер выполняет, в основном, операции, обратные кодеру, так что (ранее кодированная) последовательность синтаксических элементов 327 декодируется из множества из двух или нескольких частичных битовых потоков 324. Декодер включает в себя два разных потока обработки: поток для запроса данных, который повторяет поток данных кодера, и поток данных, который представляет обратное потока данных кодера. На иллюстрации на фиг. 8 пунктирные стрелки представляют поток запросов данных, тогда как сплошные стрелки представляют поток данных. Стандартные блоки декодера, в основном, повторяют стандартные блоки кодера, но реализуют обратные операции.A decoder according to an embodiment of the invention is shown in FIG. 8. The decoder performs essentially the inverse of the encoder such that the (previously encoded) sequence of
Декодирование синтаксического элемента запускается запросом нового декодируемого синтаксического элемента 313, который посылается на бинаризатор 314. В предпочтительном варианте осуществления изобретения каждый запрос нового декодируемого синтаксического элемента 313 ассоциируется с категорией множества из одной или нескольких категорий. Категория, которая ассоциируется с запросом синтаксического элемента, является той же, что и категория, которая была ассоциирована с соответствующим синтаксическим элементом во время кодирования.Decoding of a syntax element is triggered by a request for a new decodable syntax element 313, which is sent to the
Бинаризатор 314 отображает запрос синтаксического элемента 313 на один или несколько запросов бина, которые посылаются на средство 316 назначения параметра. В качестве окончательного ответа на запрос бина, который посылается средству 316 назначения параметра бинаризатором 314, бинаризатор 314 принимает декодируемый бин 326 от селектора 318 буфера бинов. Бинаризатор 314 сравнивает принятую последовательность декодируемых бинов 326 с последовательностями бинов конкретной схемы бинаризации для запрашиваемого синтаксического элемента, и, если принятая последовательность декодируемых бинов 26 совпадает с бинаризацией синтаксического элемента, бинаризатор освобождает свой буфер бинов и выводит декодируемый синтаксический элемент в качестве окончательного ответа на запрос нового декодируемого символа. Если уже принятая последовательность декодируемых бинов не совпадает ни с какой из последовательностей бинов для схемы бинаризации для запрашиваемого синтаксического элемента, бинаризатор посылает другой запрос бина средству назначения параметра до тех пор, пока последовательность декодируемых бинов не будет совпадать с одной из последовательностей бинов схемы бинаризации для запрашиваемого синтаксического элемента. Для каждого запроса синтаксического элемента декодер использует одну и туже схему бинаризации, которая использовалась для кодирования соответствующего синтаксического элемента. Схема бинаризации может быть разной для разных категорий синтаксических элементов. Схема бинаризации для конкретной категории синтаксических элементов может зависеть от множества возможных значений синтаксического элемента и/или других свойств синтаксических элементов для конкретной категории.The
Средство 316 назначения параметра назначает множество из одного или нескольких параметров каждому запросу бина и посылает запрос бина с ассоциированным множеством параметров селектору буфера бинов. Множество параметров, которое назначается запрашиваемому бину средством назначения параметра, является тем же, которое было назначено соответствующему бину во время кодирования. Множество параметров может состоять из одного или нескольких параметров, которые упомянуты при описании кодера на фиг. 7.The
В предпочтительном варианте осуществления изобретения средство 316 назначения параметра ассоциирует каждый запрос бина с теми же параметрами, что и делало средство 304 назначения, т.е. контекст и его ассоциированная мера для оценки вероятности для одного из двух возможных значений бина для текущего запрашиваемого бина, такую как мера для оценки вероятности для менее вероятного или более вероятного значения бина для текущего запрашиваемого бина и идентификатор, задающий оценку, какое из двух возможных значений бина представляет менее вероятное или более вероятное значение бина для текущего запрашиваемого бина.In the preferred embodiment of the invention, the
Средство 316 назначения параметра может определять одну или несколько из вышеупомянутых мер вероятности (мера для оценки вероятности для одного из двух возможных значений бина для текущего запрашиваемого бина, мера для оценки вероятности для менее вероятного или более вероятного значения бина для текущего запрашиваемого бина, идентификатор, задающий оценку, какое из двух возможных значений бина представляет менее вероятное или более вероятное значение бина для текущего запрашиваемого бина), основываясь на множестве из одного или нескольких уже декодированных символов. Определение мер вероятности для конкретного запроса бина повторяет процесс в кодере для соответствующего бина. Декодированные символы, которые используются для определения мер вероятности, могут включать в себя один или несколько уже декодированных символов этой же категории символов, один или несколько уже декодированных символов этой же категории символов, которая соответствует множествам данных (таким как блоки или группы элементов дискретизации) соседних пространственных и/или временных расположений (в отношении множества данных, ассоциированного с текущим запросом синтаксического элемента), или один или несколько уже декодированных символов разных категорий символов, которые соответствуют множествам данных этого же и/или соседних пространственных и/или временных расположений (в отношении к множеству данных, ассоциированному с текущим запросом синтаксического элемента).The
Каждый запрос бина с ассоциированным множеством параметров 317, который представляет собой выходной результат средство 316 назначения параметра, подается на селектор 318 буфера бинов. Основываясь на ассоциированном множестве параметров 317, селектор 318 буфера бинов посылает запрос бина 319 одному из двух или более буферов 320 бинов и принимает декодированный бин 325 от выбранного буфера 320 бинов. Декодированный вводимый бин 325 потенциально модифицируется, и декодированный выводимый бин 326 - с потенциально модифицированным значением - посылается на бинаризатор 314 в качестве окончательного ответа на запрос бина с ассоциированным множеством параметров 317.Each bean request with an associated set of
Буфер 320 бинов, на который направляется запрос бина, выбирается таким же образом, что и буфер бинов, на который был послан выводимый бин селектора буфера бинов на стороне кодера.The
В предпочтительном варианте осуществления изобретения селектор 318 буфера бинов определяет буфер 320 бинов, на который посылается запрос бина 319, основываясь на ассоциированной мере для оценки вероятности для одного из двух возможных значений бина для текущего запрашиваемого бина. В предпочтительном варианте осуществления изобретения множество возможных значений для меры для оценки вероятности для одного из двух возможных значений бина является конечным, и селектор 318 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 320 бинов с каждым возможным значением оценки вероятности для одного из двух возможных значений бина, где разные значения для меры для оценки вероятности для одного из двух возможных значений бина могут ассоциироваться с одним и тем же буфером 320 бинов. В другом предпочтительном варианте осуществления изобретения диапазон возможных значений для меры для оценки вероятности для одного из двух возможных значений бина разделяется на несколько интервалов, селектор 318 буфера бинов определяет индекс интервала для текущей меры для оценки вероятности для одного из двух возможных значений бина, и селектор 318 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 320 бинов с каждым возможным значением для индекса интервала, где разные значения для индекса интервала могут ассоциироваться с одним и тем же буфером 320 бинов. В предпочтительном варианте осуществления изобретения запросы бинов 317 с противоположными мерами для оценки вероятности для одного из двух возможных значений бина (противоположной мерой являются те, которые представляют оценки P и 1-P вероятности) направляются одному и тому же буферу 320 бинов. В другом предпочтительном варианте осуществления изобретения ассоциирование меры для оценки вероятности для одного из двух возможных значений бина для текущего запроса бина с конкретным буфером бинов адаптируется во времени.In a preferred embodiment of the invention,
В другом предпочтительном варианте осуществления изобретения селектор 318 буфера бинов определяет буфер 320 бинов, на который посылается запрос бина 319, основываясь на ассоциированной мере для оценки вероятности для менее вероятного или более вероятного значения бина для текущего запрашиваемого бина. В предпочтительном варианте осуществления изобретения множество возможных значений для меры для оценки вероятности для менее вероятного или более вероятного значения бина является конечным, и селектор 318 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 320 бинов с каждым возможным значением оценки вероятности для менее вероятного или более вероятного значения бина, где разные значения для меры для оценки вероятности для менее вероятного или более вероятного значения бина могут ассоциироваться с одним и тем же буфером 320 бинов. В другом предпочтительном варианте осуществления изобретения диапазон возможных значений для меры для оценки вероятности для менее вероятного или более вероятного значения бина разделяется на несколько интервалов, селектор 318 буфера бинов определяет индекс интервала для текущей меры для оценки вероятности для менее вероятного или более вероятного значения бина, и селектор 318 буфера бинов содержит таблицу, которая ассоциирует точно один буфер 320 бинов с каждым возможным значением для индекса интервала, где разные значения для индекса интервала могут ассоциироваться с одним и тем же буфером 320 бинов. В другом предпочтительном варианте осуществления изобретения ассоциирование меры для оценки вероятности для менее вероятного или более вероятного значения бина для текущего запроса бина с конкретным буфером бинов адаптируется во времени.In another preferred embodiment of the invention,
После приема декодированного бина 325 от выбранного буфера 320 бинов селектор 318 буфера бинов потенциально модифицирует вводимый бин 325 и посылает выводимый бин 326 - с потенциально модифицированным значением - бинаризатору 314. Отображение вводимого/выводимого бина селектора 318 буфера бинов представляет собой обратное отображению вводимого/выводимого бина селектора буфера бинов на стороне кодера.Upon receiving the decoded
В предпочтительном варианте осуществления изобретения селектор 318 буфера бинов не модифицирует значение бина, т.е. выводимый бин 326 всегда имеет одно и тоже значение, что и вводимый бин 325. В другом предпочтительном варианте осуществления изобретения селектор 318 буфера бинов определяет значение 326 выводимого бина, основываясь на значении 325 вводимого бина и мере для оценки вероятности для одного из двух возможных значений бина для текущего запрашиваемого бина, который ассоциируется с запросом бина 317. В предпочтительном варианте осуществления изобретения значение 326 выводимого бина устанавливается равным значению 325 вводимого бина, если мера для вероятности для одного из двух возможных значений бина для текущего запроса бина меньше (или меньше или равна) конкретному порогу; если мера для вероятности для одного из двух возможных значений бина для текущего запроса бина больше или равна (или больше) конкретного порога, значение 326 выводимого бина модифицируется (т.е. устанавливается на значение, противоположное значению вводимого бина). В другом предпочтительном варианте осуществления изобретения значение 326 выводимого бина устанавливается равным значению 325 вводимого бина, если мера для вероятности для одного из двух возможных значений бина для текущего запроса бина больше (или больше или равна) конкретному порогу; если мера для вероятности для одного из двух возможных значений бина для текущего запроса бина меньше или равна (или меньше) конкретного порога, значение 326 выводимого бина модифицируется (т.е. устанавливается на значение, противоположное значению вводимого бина). В предпочтительном варианте осуществления изобретения значение порога соответствует значению 0,5 для оцененной вероятности для обоих возможных значений бина.In the preferred embodiment of the invention, the
В другом предпочтительном варианте осуществления изобретения селектор 318 буфера бинов определяет значение 326 выводимого бина, основываясь на значении 325 вводимого бина и идентификатора, задающего оценку, какое из двух возможных значений бина представляет менее вероятное или более вероятное значение бина для текущего запроса бина, который ассоциируется с запросом бина 317. В предпочтительном варианте осуществления изобретения значение 326 выводимого бина устанавливается равным значению 325 вводимого бина, если идентификатор задает, что первое из двух возможных значений бина представляет менее вероятное (или более вероятное) значение бина для текущего запроса бина, и значение 326 выводимого бина модифицируется (т.е устанавливается на значение, противоположное значению вводимого бина), если идентификатор задает, что второе из двух возможных значений бина представляет менее вероятное (или более вероятное) значение бина для текущего запроса бина.In another preferred embodiment of the invention, the
Как описано выше, селектор буфера бинов посылает запрос бина 319 одному из двух или более буферов 320 бинов. Буферы 20 бинов представляют буфер «первый пришел - первым обслужен», на которые подаются последовательности декодированных бинов 321 от подсоединенных декодеров 322 бинов. В качестве ответа на запрос бина 319, который посылается буферу 320 бинов от селектора 318 буфера бинов, буфер 320 бинов удаляет бин из своего содержимого, который был первым подан в буфер 320 бинов, и посылает его на селектор 318 буфера бинов. Бины, которые ранее были посланы буферу 320 бинов, раньше удаляются и посылаются селектору 318 буфера бинов.As described above, the bin buffer selector sends a
Каждый из двух или более буферов 320 бинов соединен с точно одним декодером 322 бинов, и каждый декодер бинов соединен только с одним буфером 320 бинов. Каждый декодер 322 бинов считывает кодовые слова 323, которые представляют последовательности битов, из отдельного частичного битового потока 324. Декодер бинов преобразует кодовое слово 323 в последовательность бинов 321, которая посылается на подсоединенный буфер 320 бинов. Общий алгоритм декодирования преобразует два или более частичных битовых потока 324 в несколько декодированных синтаксических элементов, где количество частичных битовых потоков равно количеству буферов бинов и декодеров бинов, и декодирование синтаксических элементов запускается запросами новых синтаксических элементов. В предпочтительном варианте осуществления изобретения декодер 322 бинов преобразует кодовые слова 323 с переменным количеством битов в последовательность переменного количества бинов 321. Одним преимуществом вариантов осуществления изобретения является то, что декодирование бинов из двух или более частичных битовых потоков может выполняться параллельно (например, для разных групп мер вероятности), что уменьшает время обработки для нескольких реализаций.Each of two or more bin buffers 320 is connected to exactly one
Другим преимуществом вариантов осуществления изобретения является то, что декодирование бинов, которое выполняется декодерами 322 бинов, может быть специально разработано для разных множеств параметров 317. В частности, кодирование и декодирование бинов может оптимизироваться (в смысле эффективности и/или сложности кодирования) для разных групп оцениваемых вероятностей. С одной стороны, это позволяет уменьшить сложность кодирования/декодирования относительно современных алгоритмов энтропийного кодирования с подобной эффективностью кодирования. С другой стороны, это позволяет улучшить эффективность кодирования относительно современных алгоритмов энтропийного кодирования с подобной сложностью кодирования/декодирования. В предпочтительном варианте осуществления изобретения декодеры 322 бинов реализуют разные алгоритмы декодирования (т.е. отображение последовательностей бинов в кодовые слова) для разных групп мер для оценки вероятности для одного из двух возможных значений 317 бина для текущего запроса бина. В другом предпочтительном варианте осуществления изобретения декодеры 322 бинов реализуют разные алгоритмы декодирования для разных групп мер для оценки вероятности для менее вероятного или более вероятного значения бина для текущего запрашиваемого бина.Another advantage of embodiments of the invention is that the bin decoding that is performed by
Декодеры 322 бинов выполняют отображение, обратное соответствующим кодерам бинов на стороне кодера.The
В предпочтительном варианте осуществления изобретения декодеры 322 бинов - или один или несколько из декодеров бинов - представляют энтропийные декодеры, которые прямо отображают кодовые слова 323 в последовательности бинов 321. Такое отображение может быть эффективно реализовано и не требует сложного механизма арифметического кодирования. Отображение кодовых слов в последовательности бинов должно быть уникальным. В предпочтительном варианте осуществления изобретения отображение кодовых слов 323 в последовательности бинов 321 является биективным. В другом предпочтительном варианте осуществления изобретения декодеры 310 бинов - или один или несколько из декодеров бинов - представляют энтропийные декодеры, которые прямо отображают кодовые слова 323 переменной длины в последовательности переменной длины бинов 321. В предпочтительном варианте осуществления изобретения вводимые кодовые слова представляют коды без избыточности, такие как общие коды Хаффмана или канонические коды Хаффмана. Два примера для биективного отображения кодов без избыточности в последовательности бинов приведены в таблице 3.In a preferred embodiment of the invention,
В другом предпочтительном варианте осуществления изобретения декодеры 322 бинов - или один или несколько из декодеров бинов - представляют энтропийные декодеры, которые прямо отображают кодовые слова 323 фиксированной длины на последовательности переменной длины бинов 321. В другом предпочтительном варианте осуществления изобретения декодеры 322 бинов - или один или несколько из декодеров бинов - представляют энтропийные декодеры, которые прямо отображают кодовые слова 323 переменной длины на последовательности фиксированной длины бинов 321.In another preferred embodiment, the
Таким образом, фиг. 7 и 8 изображают вариант осуществления для кодера для кодирования последовательности символов 3 и декодера для восстановления их. Кодер содержит средство 304 назначения, выполненное с возможностью назначения нескольких параметров 305 каждому символу последовательности символов. Назначение основывается на информации, содержащейся в предыдущих символах последовательности символов, такой как категория синтаксического элемента 1 для представления - такого как бинаризация - к которой принадлежит текущий символ, и который, в соответствии со структурой синтаксиса синтаксических элементов 1, как ожидается в настоящий момент, которое ожидание, в свою очередь, является выводимым из предыстории предыдущих синтаксических элементов 1 и символов 3. Кроме того, кодер содержит множество энтропийных кодеров 10, каждый из которых выполнен с возможностью преобразования символов 3, направляемых в соответствующий энтропийный кодер, в соответствующий битовый поток 312, и селектор 306, выполненный с возможностью направления каждого символа 3 к выбранному одному из множества энтропийных кодеров 10, причем выбор зависит от количества параметров 305, назначенных соответствующему символу 3. Средство 304 назначения может рассматриваться как интегрируемое в селектор 206, чтобы получить соответствующий селектор 502.Thus, FIG. 7 and 8 depict an embodiment for an encoder for encoding a sequence of
Декодер для восстановления последовательности символов содержит множество энтропийных декодеров 322, каждый из которых выполнен с возможностью преобразования соответствующего битового потока 323 в символы 321; средство 316 назначения, выполненное с возможностью назначения нескольких параметров 317 каждому символу 315 последовательности символов, подлежащей восстановлению, основываясь на информации, содержащейся в ранее восстановленных символах последовательности символов (см. позиции 326 и 327 на фиг. 8); и селектор 318, выполненный для извлечения каждого символа из последовательности символов, подлежащей восстановлению, от выбранного одного из множества энтропийных декодеров 322, причем выбор зависит от количества параметров, определенных для соответствующего символа. Средство 316 назначения может быть выполнено так, что количество параметров, назначаемых каждому символу, содержит или представляет собой, меру для оценки вероятности распределения среди возможных значений символа, которые соответствующий символ может принимать. Снова, средство 316 назначения и селектор 318 могут рассматриваться как интегрируемые в один блок, селектор 402. Последовательность символов, подлежащих восстановлению, может представлять собой двоичный алфавит, и средство 316 назначения может быть выполнено так, что оценка распределения вероятности состоит из меры для оценки вероятности менее вероятного или более вероятного значения бина из двух возможных значений бина двоичного алфавита и идентификатора, задающего оценку, какое из двух возможных значений бина представляет менее вероятное или более вероятное значение бина. Средство 316 назначения может быть дополнительно выполнено с возможностью внутреннего назначения контекста каждому символу последовательности символов 315, подлежащих восстановлении, основываясь на информации, содержащейся в ранее восстановленных символах последовательности символов, подлежащих восстановлению, причем каждый контекст имеет соответствующую оценку распределения вероятности, ассоциированную с ним, и адаптации оценки распределения вероятности для каждого контекста фактической статистике символов, основываясь на значениях символа ранее восстановленных символов, которым назначен соответствующий контекст. Контекст может принимать во внимание пространственную зависимость или соседство позиций, к которым принадлежат синтаксические элементы, такие как при кодировании видео или изображений, или даже в таблицах, в случае финансовых применений. Затем мера для оценки распределения вероятности для каждого символа может определяться на основе оценки распределения вероятности, ассоциированной с контекстом, назначенным соответствующему символу, например, посредством квантования, или использования в качестве индекса в соответствующей таблице, оценки распределения вероятности, ассоциированной с контекстом, назначенным с соответствующим символом (в последующих вариантах осуществления, индексируемых индексом pipe вместе с индексом уточнения), одному из множества представителей оценки распределения вероятности (вырезая индекс уточнения), чтобы получить меру для оценки распределения вероятности (индекс pipe индексирует частичный битовый поток 312). Селектор может быть выполнен так, что определяется биективная ассоциация между множеством энтропийных кодеров и множеством представителей оценки распределения вероятности. Селектор 18 может быть выполнен с возможностью изменения во времени отображения квантования из диапазона оценок распределения вероятности в множество представителей оценки распределения вероятности заданным детерминированным образом в зависимости от ранее восстановленных символов последовательности символов. Т.е. селектор 318 может изменять размеры шага квантования, т.е. интервалы распределений вероятности, отображаемых на индивидуальные индексы вероятности, биективно ассоциированные с индивидуальными энтропийными декодерами. Множество энтропийных декодеров 322, в свою очередь, может быть выполнено с возможностью адаптации их способа преобразования символов в битовые потоки, реагируя на изменение в отображении квантования. Например, каждый энтропийный декодер 322 может быть оптимизирован, т.е. может иметь оптимальный коэффициент сжатия, для некоторой оценки распределения вероятности в пределах соответствующего интервала квантования оценки распределения вероятности, и может изменять отображение своих кодовых слов/последовательности символов, чтобы адаптировать позицию этой некоторой оценки распределения вероятности в пределах соответствующего интервала квантования оценки распределения вероятности при изменении последнего, чтобы она была оптимизирована. Селектор может быть выполнен с возможностью изменения отображения квантования, так что скорости, с которыми символы извлекаются из множества энтропийных декодеров, делаются менее рассредоточенными. Что касается бинаризатора 314, отмечается, что он может быть исключен, если синтаксические элементы уже являются двоичными. Кроме того, в зависимости от типа декодера 322 существование буферов 320 не является необходимым. Кроме того, буферы могут интегрироваться в декодеры.The symbol decoder includes a plurality of
Завершение конечных последовательностей синтаксических элементовCompletion of finite sequences of syntactic elements
В предпочтительном варианте осуществления изобретения кодирование и декодирование выполняется для конечного множества синтаксических элементов. Часто кодируется некоторое количество данных, такое как неподвижное изображение, кадр или поле видеопоследовательности, слайс изображения, слайс кадра или поля видеопоследовательности или множество последовательных элементов дискретизации аудио и т.д. Для конечных множеств синтаксических элементов, как правило, частичные битовые потоки, которые создаются на стороне кодера, должны завершаться, т.е. необходимо гарантировать, что все синтаксические элементы могут декодироваться из передаваемых или хранимых частичных битовых потоков. После того как последний бин будет вставлен в соответствующий буфер 308 бинов, кодер 310 бинов должен гарантировать, что полное кодовое слово записывается в частичный битовый поток 312. Если кодер 310 бинов представляет энтропийный кодер, который реализует прямое отображение последовательностей бинов в кодовые слова, последовательность бинов, которая сохраняется в буфере бинов после записи последнего бина в буфер бинов, может не представлять последовательность бинов, которая ассоциируется с кодовым словом (т.е. она может представлять префикс двух или более последовательностей бинов, которые ассоциируются с кодовыми словами). В таком случае, любое из кодовых слов, ассоциированное с последовательностью бинов, которая содержит последовательность бинов в буфере бинов в качестве префикса, должна записываться в частичный битовый поток (буфер бинов должен быть очищен). Это может выполняться посредством вставки бинов с конкретным или произвольным значением в буфер бинов до тех пор, пока не будет записано кодовое слово. В предпочтительном варианте осуществления изобретения кодер бинов выбирает одно из кодовых слов с минимальной длиной (в дополнение к свойству, что ассоциированная последовательность бинов должна содержать последовательность бинов в буфере бинов в качестве префикса). На стороне декодера декодер 322 бинов может декодировать больше бинов, чем требуется для последнего кодового слова в частичном битовом потоке; эти бины не запрашиваются селектором 318 буфера бинов и отбрасываются и игнорируются. Декодирование конечного множества символов управляется запросами декодируемых синтаксических элементов; если не запрашивается дальнейший синтаксический элемент для количества данных, декодирование завершается.In a preferred embodiment of the invention, encoding and decoding is performed on a finite set of syntactic elements. Often a quantity of data is encoded, such as a still image, a frame or field of a video sequence, a slice of an image, a slice of a frame or field of a video sequence, or a plurality of sequential audio sampling units, etc. For finite sets of syntax elements, as a rule, partial bitstreams that are created on the encoder side must be terminated, i.e. it is necessary to ensure that all syntax elements can be decoded from transmitted or stored partial bitstreams. After the last bin is inserted into the corresponding
Передача и мультиплексирование частичных битовых потоковTransmission and multiplexing of partial bit streams
Частичные битовые потоки 312, которые создаются кодером, могут передаваться отдельно, или они могут мультиплексироваться в единственный битовый поток, или кодовые слова частичных битовых потоков могут перемежаться в единственном битовом потоке.The
В варианте осуществления изобретения каждый частичный битовый поток для некоторого количества данных записывается в один пакет данных. Количество данных может представлять собой произвольное множество синтаксических элементов, такое как неподвижное изображение, поле или кадр видеопоследовательности, слайс неподвижного изображения, слайс поля или кадра видеопоследовательности, или кадр элементов дискретизации аудио, и т.д.In an embodiment of the invention, each partial bitstream for a certain amount of data is written into one data packet. The amount of data may be an arbitrary plurality of syntactic elements, such as a still image, a field or frame of a video sequence, a slice of a still image, a slice of a field or frame of a video sequence, or a frame of audio sampling units, etc.
В другом предпочтительном варианте осуществления изобретения два или более частичных битовых потоков для некоторого количества данных или все частичные битовые потоки для некоторого количества данных мультиплексируются в один пакет данных. Структура пакета данных, который содержит мультиплексированные частичные битовые потоки, изображена на фиг. 9.In another preferred embodiment of the invention, two or more partial bitstreams for an amount of data, or all partial bitstreams for an amount of data, are multiplexed into one data packet. The structure of a data packet that contains multiplexed partial bit streams is shown in FIG. 9.
Пакет 400 данных состоит из заголовка и одного раздела для данных каждого частичного битового потока (для рассматриваемого количества данных). Заголовок 400 пакета данных содержит указания для разделения (остальной части) пакета данных на сегменты данных 402 битового потока. Кроме указаний для разделения заголовок может содержать дополнительную информацию. В предпочтительном варианте осуществления изобретения указания для разделения пакета данных представляют собой расположения начала сегментов данных в единицах битов или байтов или кратных битам или кратным байтам. В предпочтительном варианте осуществления изобретения расположения начала сегментов данных кодируются в виде абсолютных значений в заголовке пакета данных, или относительно начала пакета данных, или относительно конца заголовка, или относительно начала предыдущего пакета данных. В другом предпочтительном варианте осуществления изобретения расположения начала сегментов данных кодируются дифференцированно, т.е. кодируется только разность между фактическим началом сегмента данных и предсказанием для начала сегмента данных. Предсказание может выводиться на основе уже известной или переданной информации, такой как общий размер пакета данных, размер заголовка, количество сегментов данных в пакете данных, расположение начала предшествующих сегментов данных. В предпочтительном варианте осуществления изобретения расположение начала первого пакета данных не кодируется, но выводится на основе размера заголовка пакета данных. На стороне декодера переданные указания о разделах используются для выведения начала сегментов данных. Сегменты данных затем используются в качестве частичных битовых потоков, и данные, содержащиеся в сегментах данных, подаются в соответствующие декодеры бинов в последовательном порядке.
Существует несколько альтернатив для мультиплексирования частичных битовых потоков в пакет данных. Одна альтернатива, которая может уменьшать требуемую дополнительную информацию, в частности для случаев, в которых размеры частичных потоков являются очень похожими, изображена на фиг. 10. Полезная нагрузка пакета данных, т.е. пакет 410 данных без заголовка 411, разделяется на сегменты 412 заданным образом. В качестве примера, полезная нагрузка пакета данных может разделяться на сегменты одинакового размера. Затем каждый сегмент ассоциируется с частичным битовым потоком или с первой частью частичного битового потока 413. Если частичный битовый поток больше ассоциированного сегмента данных, его оставшаяся часть 414 размещается в неиспользуемое пространство в конце других сегментов данных. Это может выполняться таким образом, что оставшаяся часть битового потока вставляется в обратном порядке (начиная с конца сегмента данных), что уменьшает дополнительную информацию. Ассоциирование остальных частей частичных битовых потоков с сегментами данных, и, когда более одной остальной части добавляется к сегменту данных, начальная точка для одной или нескольких остальных частей должна сигнализироваться внутри битового потока, например, в заголовке пакета данных.There are several alternatives for multiplexing partial bit streams into a data packet. One alternative that may reduce the required additional information, particularly for cases in which the sizes of the partial streams are very similar, is depicted in FIG. 10. Data packet payload, i.e.
Перемежение кодовых слов переменной длиныVariable Length Codeword Interleaving
Для некоторых применений вышеописанное мультиплексирование частичных битовых потоков (для некоторого количества синтаксических элементов) в одном пакете данных может иметь следующие недостатки: С одной стороны, для малых пакетов данных количество битов для дополнительной информации, которая требуется для сигнализации разделения, может стать существенным относительно фактических данных в частичных битовых потоках, что, в конце концов, уменьшает эффективность кодирования. С другой стороны, мультиплексирование может не быть подходящим для применений, которые требуют низкой задержки (например, для приложений видеоконференции). С описанным мультиплексированием кодер не может начать передачу пакета данных, перед тем как не будут полностью созданы частичные битовые потоки, так как прежде неизвестны расположения начала разделов. Кроме того, как правило, декодеру приходится ожидать до тех пор, пока он не примет начало последнего сегмента данных, перед тем как он сможет начать декодирование пакета данных. Для применений в качестве систем видеоконференции эти задержки могут добавлять к дополнительной общей задержке системы нескольких изображений (в частности, для скоростей передачи битов, которые близки к скорости передачи битов и для кодеров/декодеров, которые требуют чуть ли не временной интервал между двумя изображениями для кодирования/декодирования изображения), что является критичным для таких приложений. Чтобы преодолеть недостатки для некоторых применений, кодер предпочтительного варианта осуществления изобретения может быть выполнен таким образом, что кодовые слова, которые генерируются двумя или более кодерами бинов, перемежаются в единственный битовый поток. Битовый поток с перемежаемыми кодовыми словами может непосредственно посылаться декодеру (при игнорировании малой задержки буфера, см. ниже). На стороне декодера два или более декодеров бинов считывают кодовые слова непосредственно из битового потока в порядке декодирования; декодирование может начинаться с первым принятым битом. Кроме того, не требуется никакая дополнительная информация для сигнализации мультиплексирования (или перемежения) частичных битовых потоков. Другой путь уменьшения сложности декодера может достигаться тогда, когда декодеры 322 бинов не считывают кодовые слова переменной длины из глобального буфера битов, но, вместо этого, они всегда считывают последовательности фиксированной длины битов из глобального буфера битов и добавляют эти последовательности фиксированной длины битов в локальный буфер битов, где каждый декодер 322 бинов соединен с отдельным локальным буфером битов. Кодовые слова переменной длины затем считываются из локального буфера битов. Следовательно, синтаксический анализ кодовых слов переменной длины может выполняться параллельно, только доступ к последовательностям фиксированной длины битов должен выполняться синхронизированным образом, но такой доступ к последовательностям фиксированной длины битов обычно является очень быстрым, так что общая сложность декодирования может быть уменьшена для некоторых архитектур. Фиксированное количество бинов, которые посылаются в конкретный локальный буфер битов, может быть разным для разных локальных буферов битов, и оно также может изменяться во времени в зависимости от некоторых параметров, таких как события в декодере бинов, буфере бинов или буфере битов. Однако количество битов, которые считываются посредством конкретного доступа, не зависит от фактических битов, которые считываются во время конкретного доступа, что представляет собой важное отличие от считывания кодовых слов переменной длины. Считывание последовательностей фиксированной длины битов запускается некоторыми событиями в буферах бинов, декодерах бинов или локальных буферах битов. В качестве примера, возможно выполнять запрос считывания новой последовательности фиксированной длины битов, когда количество битов, которые присутствуют в подсоединенном буфере битов, падает ниже заданного порога, когда разные пороговые значения могут использоваться для разных буферов битов. В кодере необходимо гарантировать, что последовательности фиксированной длины бинов вставляются в том же порядке в битовый поток, в котором они считываются из битового потока на стороне декодера. Также является возможным объединение этого перемежения последовательностей фиксированной длины с управлением с малой задержкой, подобно тем, которые описаны выше. Ниже описывается предпочтительный вариант осуществления для перемежения последовательностей фиксированной длины битов. В отношении дополнительных подробностей, касающихся последних схем перемежения, ссылка делается на WO2011/128268A1.For some applications, the above-described multiplexing of partial bit streams (for a certain number of syntax elements) in one data packet may have the following disadvantages: On the one hand, for small data packets, the number of bits for additional information that is required for split signaling can become significant relative to the actual data in partial bit streams, which ultimately reduces encoding efficiency. On the other hand, multiplexing may not be suitable for applications that require low latency (for example, videoconferencing applications). With the multiplexing described, the encoder cannot begin transmitting a data packet before the partial bitstreams have been completely created, since the locations of the start of the sections are previously unknown. Additionally, the decoder typically has to wait until it receives the beginning of the last data segment before it can begin decoding the data packet. For applications such as videoconferencing systems, these delays can add to the additional overall latency of a multi-image system (particularly for bit rates that are close to the bit rate and for encoders/decoders that require almost the time interval between two images to encode / image decoding), which is critical for such applications. To overcome the disadvantages for some applications, the encoder of a preferred embodiment of the invention may be configured such that codewords that are generated by two or more bin encoders are interleaved into a single bit stream. The bitstream with interleaved codewords can be sent directly to the decoder (ignoring the low buffer latency, see below). On the decoder side, two or more bin decoders read codewords directly from the bitstream in decoding order; decoding may begin with the first bit received. In addition, no additional information is required to signal the multiplexing (or interleaving) of the partial bit streams. Another way to reduce decoder complexity can be achieved when the
После описания вариантов осуществления, согласно которым даже ранее кодирование используется для сжатия видеоданных, описывается в качестве еще другого варианта осуществления для реализации вариантов осуществления настоящего изобретения, которое изображает реализацию, особенно эффективную в смысле хорошего компромисса между коэффициентом сжатия, с одной стороны, и таблицей поиска и издержками вычисления, с другой стороны. В частности, нижеследующие варианты осуществления позволяют использовать менее сложные в смысле вычисления коды переменной длины для энтропийного кодирования индивидуальных битовых потоков, и эффективно закрывают части оценки вероятности. В вариантах осуществления, описанных ниже, символы являются двоичной природы, и коды VLC (коды переменной длины), представленные ниже, эффективно закрывают оценку вероятности, представленную, например, посредством RLPS (наименее вероятный символ), проходящего в пределах [0; 0,5].After describing embodiments in which even earlier encoding is used to compress video data, another embodiment for implementing embodiments of the present invention is described, which depicts an implementation that is particularly effective in the sense of a good compromise between the compression ratio on the one hand and the lookup table and computational overhead, on the other hand. In particular, the following embodiments allow the use of less computationally complex variable length codes for entropy encoding of individual bit streams, and effectively close off the probability estimation portions. In the embodiments described below, the symbols are of a binary nature, and the VLC codes (variable length codes) presented below effectively cover the probability estimate represented, for example, by R LPS (least probable symbol) passing within [0; 0.5].
В частности, варианты осуществления, кратко описанные ниже, описывают возможные реализации для индивидуальных энтропийных кодеров 310 и декодеров 322 на фиг. 7-17 соответственно. Они подходят для кодирования бинов, т.е. двоичных символов, так как они имеют место в приложениях сжатия изображения или видео. Следовательно, эти варианты осуществления также применимы к кодированию изображения или видео, где такие двоичные символы разделяются на один или несколько потоков бинов 307, подлежащих кодированию, и битовые потоки 324, подлежащие декодированию соответственно, где каждый такой поток бинов может рассматриваться как реализация процесса Бернулли. Варианты осуществления, описанные ниже, используют один или несколько из объясняемых ниже различных так называемых переменный-в-переменный кодов (v2v-коды) для кодирования потоков бинов. v2v-код может рассматриваться как два беспрефиксных кода с одинаковым количеством кодовых слов. Первичный и вторичный беспрефиксный код. Каждое кодовое слово первичного беспрефиксного кода ассоциируется с одним кодовым словом вторичного беспрефиксного кода. В соответствии с ниже описанными кратко вариантами осуществления по меньшей мере некоторые из кодеров 310 и декодеров 322 работают следующим образом: Для кодирования конкретной последовательности бинов 307, всякий раз когда кодовое слово первичного беспрефиксного кода считывается из буфера 308, соответствующее кодовое слово вторичного беспрефиксного кода записывается в битовый поток 312. Эта же процедура используется для декодирования такого битового потока 324, но первичный и вторичный беспрефиксный код меняются местами. Т.е. для декодирования битового потока 324, всякий раз когда кодовое слово вторичного беспрефиксного кода считывается из соответствующего битового потока 324, соответствующее кодовое слово первичного беспрефиксного кода записывается в буфер 320.In particular, the embodiments briefly described below describe possible implementations for
Полезно, что коды, описанные ниже, не требуют таблиц поиска. Коды являются реализуемыми в виде конечных автоматов. v2v-коды, представленные здесь, могут генерироваться простыми правилами построения, такими как, что нет необходимости сохранять большие таблицы для кодовых слов. Вместо этого, простой алгоритм может использоваться для выполнения кодирования или декодирования. Ниже описываются три правила построения, где два из них могут параметризоваться. Они закрывают разные или даже непересекающиеся части вышеупомянутого интервала вероятностей и, следовательно, являются особенно полезными, если используются вместе, например, все три кода параллельно (каждый для разных кодеров/декодеров 11 и 22) или два из них. С описанными ниже правилами построения является возможным разрабатывать набор v2v-кодов, так что для процессов Бернулли с произвольной вероятностью p, один из кодов хорошо работает в отношении избыточной длины кода.Helpfully, the codes described below do not require lookup tables. The codes are implementable as finite state machines. The v2v codes presented here can be generated by simple construction rules, such as that there is no need to store large tables for codewords. Instead, a simple algorithm can be used to perform encoding or decoding. Three construction rules are described below, where two of them can be parameterized. They cover different or even non-overlapping parts of the above probability interval and are therefore particularly useful if used together, for example all three codes in parallel (each for different encoders/decoders 11 and 22) or two of them. With the construction rules described below, it is possible to design a set of v2v codes such that, for Bernoulli processes with arbitrary probability p, one of the codes performs well with respect to excess code length.
Как изложено выше, кодирование и декодирование потоков 312 и 324 соответственно может выполняться или независимо для каждого потока, или перемежаемым образом. Это, однако, не является характерным для представленных классов v2v-кодов, и, поэтому, только кодирование и декодирование конкретного кодового слова описывается для каждого из трех правил построения в нижеследующем. Однако подчеркивается, что все вышеупомянутые варианты осуществления, касающиеся решений с перемежением, также являются пригодными для объединения с описанными в настоящее время кодами или кодерами и декодерами 310 и 322 соответственно.As discussed above, encoding and decoding of
Правило построения 1: Коды «pipe (энтропия разделения интервала вероятностей) унарных бинов» или кодеры/декодеры 310 и 322Construction Rule 1: Unary Bin Pipe Codes or Encoders/
Коды энтропии разделения интервала вероятностей (pipe) унарных бинов представляют собой особую версию так называемых кодов «pipe бинов», т.е. кодов, пригодных для кодирования любого из индивидуальных битовых потоков 12 и 24, причем каждый переносит данные о статистике двоичных символов, принадлежащей некоторому вероятностному подынтервалу вышеупомянутого диапазона вероятности [0; 0,5]. Сначала описывается построение кодов pipe бинов. Код pipe бинов может быть построен из любого беспрефиксного кода с по меньшей мере тремя кодовыми словами. Для образования v2v-кода он использует беспрефиксный код в качестве первичного и вторичного кода, но меняются местами два кодовых слова вторичного беспрефиксного кода. Это означает, что за исключением двух кодовых слов бины записываются в битовый поток неизменными. С этим методом необходимо сохранять только один беспрефиксный код вместе с информацией, какие два кодовых слова меняются местами, и, таким образом, уменьшается потребление памяти. Отметьте, что это имеет смысл только для перестановки кодовых слов разной длины, так как, в противном случае, битовый поток будет иметь такую же длину, что и поток бинов (не учитывая эффекты, которые могут иметь место в конце потока бинов).Unary bin pipe entropy codes are a special version of the so-called “pipe bin” codes, i.e. codes suitable for encoding any of the individual bit streams 12 and 24, each carrying binary symbol statistics data belonging to some probability subinterval of the aforementioned probability range [0; 0.5]. First, the construction of pipe bean codes is described. The pipe bean code can be constructed from any prefix-free code with at least three codewords. To form a v2v code, it uses a prefix-free code as the primary and secondary code, but the two codewords of the secondary prefix-free code are swapped. This means that, with the exception of two codewords, the bins are written unchanged to the bitstream. With this method, only one prefix-free code needs to be stored along with the information which two codewords are swapped, and thus memory consumption is reduced. Note that this only makes sense for permuting codewords of different lengths, since otherwise the bitstream will be the same length as the binstream (ignoring effects that may occur at the end of the binstream).
Вследствие этого правила построения известным свойством кодов pipe бинов является, что, если первичный и вторичный беспрефиксный код переставляется (тогда как отображение кодовых слов сохраняется), результирующий v2v-код является идентичным исходному v2v-коду. Поэтому, алгоритм кодирования и алгоритм декодирования идентичны для кодов pipe бинов.Because of this construction rule, a known property of pipe bean codes is that if the primary and secondary unprefixed code are swapped (while the codeword mapping is preserved), the resulting v2v code is identical to the original v2v code. Therefore, the encoding algorithm and decoding algorithm are identical for pipe bin codes.
Код pipe унарных бинов составляется из специального беспрефиксного кода. Этот специальный беспрефиксный код составляется следующим образом. Сначала беспрефиксный код, состоящий из n унарных кодовых слов генерируется, начиная с «01», «001», «0001», …, пока не будет получено n кодовых слов. n представляет собой параметр для кода pipe унарных бинов. Из самого длинного кодового слова удаляется конечная 1. Это соответствует усеченному унарному коду (но без кодового слова «0»). Затем n-1 унарных кодовых слов генерируется, начиная с «10», «110», «1110», …, пока не будет получено n-1 кодовых слов. Из самого длинного из этих кодовых слов удаляется конечный 0. Множество объединения из этих двух беспрефиксных кодов используется в качестве ввода для генерирования кода pipe унарных бинов. Два кодовых слова, которые переставляются, представляют собой один, состоящий только из 0, и один, состоящий только из 1.The pipe code of unary bins is composed of a special prefix-free code. This special prefix-free code is composed as follows. First, a prefix-free code consisting of n unary codewords is generated, starting with "01", "001", "0001", ..., until n codewords are obtained. n is a parameter for the pipe code of unary bins. The trailing 1 is removed from the longest codeword. This corresponds to a truncated unary code (but without the codeword "0"). Then n-1 unary codewords are generated, starting with "10", "110", "1110", ..., until n-1 codewords are obtained. The longest of these codewords is stripped of the trailing 0. The union set of these two prefix-free codewords is used as input to generate the unary bin code pipe. The two codewords that are swapped are one consisting of only 0s and one consisting of only 1s.
Пример для n=4:Example for n=4:
№ Первичный ВторичныйNo. Primary Secondary
1 0000 1111 0000 111
2 001 00012 001 0001
3 001 0013 001 001
4 01 014 01 01
5 10 105 10 10
6 110 1106 110 110
7 111 00007 111 0000
Правило 2 построения: «Унарный-в-Райс»-коды и унарные-в-Райс-кодеры/декодеры 10 и 22:Construction rule 2: Unary-to-Rice codes and unary-to-Rice encoders/
Унарный-в-Райс-коды используют усеченный унарный код в качестве первичного кода. Т.е. унарные кодовые слова генерируются, начиная с «1», «01», «001», …, пока не будут сгенерированы 2n+1 кодовых слов и из самого длинного кодового слова удаляется конечная 1. n представляет собой параметр унарного-в-Райс-кода. Вторичный беспрефиксный код составляется из кодовых слов первичного беспрефиксного кода следующим образом. Первичному кодовому слову, состоящему только из 0, назначается кодовое слово «1». Все другие кодовые слова состоят из конкатенации кодового слова «0» с n-битовым двоичным представлением количества 0 соответствующего кодового слова первичного беспрефиксного кода.Unary-to-Rice codes use a truncated unary code as the primary code. Those. unary codewords are generated starting with "1", "01", "001", ..., until 2n +1 codewords have been generated and the trailing 1 is removed from the longest codeword. n is the unary-to-Rice parameter -code. The secondary prefix-free code is composed of the code words of the primary prefix-free code as follows. The primary codeword consisting of only 0s is assigned a codeword of "1". All other codewords consist of the concatenation of a codeword "0" with an n-bit binary representation of the number of 0s of the corresponding codeword of the primary unprefixed code.
Пример для n=3:Example for n=3:
№ Первичный ВторичныйNo. Primary Secondary
1 1 00001 1 0000
2 01 00012 01 0001
3 001 00103 001 0010
4 0001 00114 0001 0011
5 00001 01005 00001 0100
6 000001 01016 000001 0101
7 0000001 01107 0000001 0110
8 00000001 01118 00000001 0111
9 00000000 19 00000000 1
Отметьте, что это идентично отображению бесконечного унарного кода на код Райса с параметром Райса 2n.Note that this is identical to mapping an infinite unary code to a Rice code with a Rice parameter of 2 n .
Правило построения 3: «Трехбиновый» кодConstruction rule 3: “Three-bin” code
Трехбиновый код определяется как:The three-bin code is defined as:
№ Первичный ВторичныйNo. Primary Secondary
1 000 01 000 0
2 001 1002,001,100
3 010 1013 010 101
4 100 1104 100 110
5 110 111005 110 11100
6 101 111016 101 11101
7 011 111107 011 11110
8 111 111118 111 11111
Он имеет свойство, что первичный код (последовательность символов) имеет фиксированную длину (всегда три бина), и кодовые слова сортируются по возрастающим числам 1.It has the property that the primary code (sequence of symbols) has a fixed length (always three bins) and the codewords are sorted in ascending numbers of 1.
Ниже описывается эффективная реализация трехбинового кода. Кодер и декодер для трехбинового кода могут быть реализованы без хранения таблиц следующим образом.An efficient implementation of three-bin code is described below. An encoder and decoder for a three-bin code can be implemented without storing tables as follows.
В кодере (любой из 10) три бина считываются из потока бинов (т.е. 7). Если эти три бина содержат точно одну 1, кодовое слово «1» записывается в битовый поток, за которыми следует два бина, состоящие из двоичного представления позиции 1 (начиная справа с 00). Если три бина содержат точно один 0, кодовое слово «111» записывается в битовый поток, за которым следует два бина, состоящие из двоичного представления позиции 0 (начиная справа с 00). Остальные кодовые слова «000» и «111» отображаются на «0» и «11111» соответственно.In the encoder (any one of 10), three bins are read from a stream of bins (i.e. 7). If these three bins contain exactly one 1, the codeword "1" is written to the bitstream, followed by two bins consisting of the binary representation of the position 1 (starting on the right with 00). If three bins contain exactly one 0, the codeword "111" is written to the bitstream, followed by two bins consisting of the binary representation of the 0 position (starting at the right with 00). The remaining code words "000" and "111" are mapped to "0" and "11111" respectively.
В декодере (любом из 22) один бин или бит считывается из соответствующего битового потока 24. Если он равен «0», кодовое слово «000» декодируется в поток 21 бинов. Если он равен «1», еще два бина считываются из битового потока 24. Если эти два бита не равны «11», они интерпретируются как двоичное представление числа, и два 0 и одна 1 декодируются в битовый поток, так что позиция 1 определяется числом. Если два бита равны «11», еще два бита считываются и интерпретируются как двоичное представление числа. Если это число меньше 3, две 1 и один 0 декодируются, и число определяет позицию 0. Если оно равно 3, «111» декодируется в поток бинов.In a decoder (any one of 22), one bin or bit is read from the corresponding bitstream 24. If it is "0", the codeword "000" is decoded into a stream of 21 bins. If it is equal to "1", two more bins are read from bitstream 24. If these two bits are not equal to "11", they are interpreted as the binary representation of the number, and two 0s and one 1 are decoded into the bitstream, so that the position of 1 is determined by the number . If two bits are equal to "11", two more bits are read and interpreted as the binary representation of the number. If this number is less than 3, two 1s and one 0 are decoded, and the number defines the position of 0. If it is 3, "111" is decoded into a stream of bins.
Ниже описывается эффективная реализация кодов pipe унарных бинов. Кодер и декодер для кодов pipe унарных бинов могут эффективно реализоваться посредством использования счетчика. Вследствие структуры кодов pipe бинов, кодирование и декодирование кодов pipe бинов легко реализовать:The following describes an efficient implementation of pipe codes for unary beans. An encoder and decoder for pipe codes of unary bins can be efficiently implemented by using a counter. Due to the structure of pipe bean codes, encoding and decoding of pipe bean codes is easy to implement:
В кодере (любом из 10), если первый бин кодового слова равен «0», бины обрабатываются до тех пор, пока не встретится «1», или пока не будут считаны n 0 (включая первый «0» кодового слова). Если встретилась «1», считанные бины записываются в битовый поток неизменными. В противном случае, (т.е. были считаны n 0), n-1 1 записываются в битовый поток. Если первый бин кодового слова равен «1», бины обрабатываются до тех пор, пока не встретится «0», или пока не будут считаны n-1 1 (включая первую «1» кодового слова). Если встречается «0», считанные бины записываются в битовый поток неизменными. В противном случае, (т.е. были считаны n-1 1), n 0 записывается в битовый поток.In an encoder (any of 10), if the first bin of a codeword is "0", the bins are processed until a "1" is encountered, or until n 0s are read (including the first "0" of the codeword). If a “1” is encountered, the read bins are written unchanged to the bitstream. Otherwise, (i.e. n 0s have been read), n-1 1s are written to the bitstream. If the first bin of a codeword is a "1", the bins are processed until a "0" is encountered or until n-1 1s are read (including the first "1" of the codeword). If a "0" is encountered, the read bins are written unchanged to the bitstream. Otherwise, (ie n-1 1s have been read),
В декодере (любом из 322) используется этот же алгоритм, что и для кодера, так как он является одинаковым для кодов pipe бинов, как описано выше.The decoder (any of the 322) uses the same algorithm as the encoder, since it is the same for pipe bin codes as described above.
Ниже описывается эффективная реализация унарных-в-Райс-кодов. Кодер и декодер для унарных-в-Райс-кодов могут быть эффективно реализованы посредством использования счетчика, как описывается ниже.An efficient implementation of unary-to-Rice codes is described below. An encoder and decoder for unary-to-Rice codes can be efficiently implemented by using a counter, as described below.
В кодере (любом из 310) бины считываются из потока бинов (т.е. 7) до тех пор, пока не встретится 1, или пока не будут считаны 2n 0. Количество 0 подсчитывается. Если подсчитанное количество равно 2n, кодовое слово «1» записывается в битовый поток. В противном случае, записывается «0», за которым следует двоичное представление подсчитанного количества, записанное с n битами.In an encoder (any of the 310), bins are read from a stream of bins (ie 7) until a 1 is encountered, or until 2 n 0s are read. The number of 0s is counted. If the counted quantity is 2n , the codeword "1" is written to the bitstream. Otherwise, a "0" is written, followed by the binary representation of the counted quantity, written with n bits.
В декодере (любом из 322) считывается один бит. Если он равен «1», 2n 0 декодируется в строку бинов. Если он равен «0», еще n битов считывается и интерпретируется как двоичное представление количества. Это количество 0 декодируется в поток бинов, за которым следует «1».In the decoder (any of 322) one bit is read. If it is "1", 2 n 0 is decoded into a string of bins. If it is "0", another n bits are read and interpreted as a binary representation of the quantity. This number of 0's is decoded into a stream of bins followed by "1's".
Другими словами, только что описанные варианты осуществления описывают кодер для кодирования последовательности символов 303, содержащий средство 316 назначения, выполненное с возможностью назначения нескольких параметров 305 каждому символу последовательности символов, основываясь на информации, содержащейся в предыдущих символах последовательности символов; множество энтропийных кодеров 310, каждый из которых выполнен с возможностью преобразования символов 307, направляемых соответствующему энтропийному кодеру 310, в соответствующий битовый поток 312; и селектор 6, выполненный с возможностью направлять каждый символ 303 выбранному одному из множества энтропийных кодеров 10, причем выбор зависит от количества параметров 305, назначенных соответствующему символу 303. Согласно только что описанным вариантам осуществления по меньшей мере первое подмножество энтропийных кодеров может представлять собой кодер переменной длины, выполненный с возможностью отображения последовательностей символов переменной длины в потоке символов 307 на кодовые слова переменной длины, подлежащие вставлению в битовый поток 312 соответственно, причем каждый из энтропийных кодеров 310 первого подмножества использует правило биективного отображения, согласно которому кодовые слова первичного беспрефиксного кода с (2n-1)≥3 кодовыми словами отображаются на кодовые слова вторичного беспрефиксного кода, который идентичен первичному префиксному коду, так что все кроме двух из кодовых слов первичного беспрефиксного кода отображаются на идентичные кодовые слова вторичного беспрефиксного кода, тогда как два кодовых слова первичного и вторичного беспрефиксных кодов имеют разные длины и отображаются друг на друга попеременно, причем энтропийные кодеры могут использовать разные n, чтобы закрывать разные части интервала вышеупомянутого интервала вероятностей. Первый беспрефиксный код может составляться так, что кодовыми словами первого беспрефиксного кода являются (a,b)2, (a,a,b)3, …, (a, …, a,b)n, (a, …, a)n, (b,a)2, (b,b,a)3, …, (b, …, b,a)n-1, (b, …, b)n-1, и двумя кодовыми словами, отображаемыми друг на друга попеременно, являются (a, …, a)n и (b, …, b)n-1 с b≠a и a,b{0,1}. Однако возможны альтернативы.In other words, the embodiments just described describe an encoder for encoding a symbol sequence 303, comprising an
Другими словами, каждый из первого подмножества энтропийных кодеров может быть выполнен, при преобразовании символов, направляемых соответствующему энтропийному кодеру, в соответствующий битовый поток, с возможностью исследования первого символа, направляемого соответствующему энтропийному кодеру, для определения, (1) равен ли первый символ a{0,1}, в этом случае соответствующий энтропийный кодер выполняется с возможностью исследования следующих символов, направляемых соответствующему энтропийному кодеру, для определения, (1.1) встречается ли b с b≠a и b{0,1} в следующих n-1 символах, следующих за первым символом, в этом случае соответствующий энтропийный кодер выполняется с возможностью записи кодового слова в соответствующий битовый поток, который равен первому символу, за которым следуют последующие символы, направляемые соответствующему энтропийному кодеру, до символа b; (1.2) не встречается ли b в следующих n-1 символах, следующих за первым символом, в этом случае соответствующий энтропийный кодер выполняется с возможностью записи кодового слова в соответствующий битовый поток, который равен (b, …, b)n-1; или (2) равен ли первый символ b, в этом случае соответствующий энтропийный кодер выполняется с возможностью исследования последующих символов, направляемых соответствующему энтропийному кодеру, для определения, (2.1) встречается ли a в следующих n-2 символах, следующих за первым символом, в этом случае соответствующий энтропийный кодер выполняется с возможностью записи кодового слова в соответствующий битовый поток, которое равно первому символу, за которым следуют последующие символы, направляемые соответствующему энтропийному кодеру, до символа a; или (2.2) не встречается ли a в следующих n-2 символах, следующих за первым символом, в этом случае соответствующий энтропийный кодер выполняется с возможностью записи кодового слова в соответствующий битовый поток, которое равно (a, …, a)n.In other words, each of the first subset of entropy encoders may be executed by converting symbols sent to the corresponding entropy encoder to a corresponding bit stream, with the ability to examine the first symbol sent to the corresponding entropy encoder to determine whether (1) the first symbol is equal to a {0,1}, in which case the corresponding entropy encoder is executed with the ability to examine the next symbols sent to the corresponding entropy encoder to determine whether (1.1) b occurs with b≠a and b {0,1} in the next n-1 symbols following the first symbol, in which case the corresponding entropy encoder is configured to write a codeword into the corresponding bitstream, which is equal to the first symbol followed by subsequent symbols sent to the corresponding entropy encoder, before character b; (1.2) whether b occurs in the next n-1 symbols following the first symbol, in which case the corresponding entropy encoder is executed with the ability to write the codeword into the corresponding bitstream, which is equal to (b, ..., b) n-1 ; or (2) whether the first symbol is equal to b, in which case the corresponding entropy encoder is executed with the ability to examine subsequent symbols sent to the corresponding entropy encoder to determine whether (2.1) whether a occurs in the next n-2 symbols following the first symbol, in In this case, the corresponding entropy encoder is configured to write a codeword into the corresponding bit stream, which is equal to the first symbol, followed by subsequent symbols sent to the corresponding entropy encoder, up to the symbol a; or (2.2) whether a occurs in the next n-2 symbols following the first symbol, in which case the corresponding entropy encoder is executed with the ability to write a codeword into the corresponding bitstream, which is equal to (a, ..., a) n .
Дополнительно или альтернативно, второе подмножество энтропийных кодеров 10 может представлять собой кодер переменной длины, выполненный с возможностью отображения последовательностей символов переменной длины на кодовые слова фиксированной длины соответственно, причем каждый из энтропийных кодеров второго подмножества использует правило биективного отображения, согласно которому кодовые слова первичного усеченного унарного кода с 2n+1 кодовыми словами типа {(a), (ba), (bba), …, (b…ba), (bb…b)} с b≠a и a,b{0,1} отображаются на кодовые слова вторичного беспрефиксного кода, так что кодовое слово (bb…b) первичного усеченного унарного кода отображается на кодовое слово (c) вторичного беспрефиксного кода, и все другие кодовые слова {(a), (ba), (bba), …, (b…ba)} первичного усеченного унарного кода отображаются на кодовые слова, имеющие (d) с c≠d и c,d{0,1} в качестве префикса и n-битовое слово в качестве суффикса, причем энтропийные кодеры используют разные n. Каждый из второго подмножества энтропийных кодеров может быть выполнен так, что n-битовое слово представляет собой n-битовое представление количества b в соответствующем кодовом слове первичного усеченного унарного кода. Однако возможны альтернативы.Additionally or alternatively, the second subset of
Снова, с точки зрения режима работы соответствующего кодера 10, каждый из второго подмножества энтропийных кодеров может быть выполнен, при преобразовании символов, направляемых соответствующему энтропийному кодеру, в соответствующий битовый поток, с возможностью подсчета количества b в последовательности символов, направляемых соответствующему энтропийному кодеру до тех пор, пока не встретится, или пока количество последовательности символов, направляемых соответствующему энтропийному кодеру, не достигнет 2n, причем все 2n символов в последовательности равны b, и (1) если количество b равно 2n, записи c с c{0,1} в качестве кодового слова вторичного беспрефиксного кода в соответствующий битовый поток, и (2) если количество b меньше 2n, записи кодового слова вторичного беспрефиксного кода в соответствующий битовый поток, которое имеет (d) с c≠d и d{0,1} в качестве префикса и n-битовое слово, определенное в зависимости от количества b, в качестве суффикса.Again, in terms of the mode of operation of the corresponding
Также дополнительно или альтернативно, предварительно определенным одним из энтропийных кодеров 10 может быть кодер переменной длины, выполненный с возможностью отображения последовательностей символов фиксированной длины на кодовые слова переменной длины соответственно, причем предварительно определенный энтропийный кодер использует правило биективного отображения, согласно которому 23 кодовых слов длиной 3 первичного кода отображаются на кодовые слова вторичного беспрефиксного кода, так что кодовое слово (aaa)3 первичного кода с a{0,1}, отображается на кодовое слово (с) с c{0,1}, все три кодовых слова первичного кода, имеющие точно одну b с b≠a и b{0,1}, отображаются на кодовые слова, имеющие (d) с c≠d и d{0,1}, в качестве префикса и соответствующее первое 2-битовое слово из первого множества 2-битовых слов в качестве суффикса, все три кодовых слова первичного кода, имеющие точно одну a, отображаются на кодовые слова, имеющие (d) в качестве префикса и конкатенацию первого 2-битового слова, не являющегося элементом первого множества, и второго 2-битового слова из второго множества 2-битовых слов, в качестве суффикса, и в котором кодовое слово (bbb)3 отображается на кодовое слово, имеющее (d) в качестве префикса и конкатенацию первого 2-битового слова, не являющегося элементом первого множества, и второго 2-битового слова, не являющегося элементом второго множества, в качестве суффикса. Первым 2-битовым словом кодовых слов первичного кода, имеющим точно одну b, может быть 2-битовое представление позиции b в соответствующем кодовом слове первичного кода, и вторым 2-битовым словом из кодовых слов первичного кода, имеющим точно одно a, может быть 2-битовое представление позиции a в соответствующем кодовом слове первичного кода. Однако возможны альтернативы.Also additionally or alternatively, a predefined one of the entropy encoders 10 may be a variable length encoder configured to map sequences of fixed length symbols to variable length codewords, respectively, wherein the predefined entropy encoder uses a bijective mapping rule whereby 2 by 3 codewords of length The 3 primary codes map to codewords of the secondary prefix-free code, so that codeword (aaa) 3 of the primary code with a {0,1}, mapped to codeword (c) with c {0,1}, all three primary code words having exactly one b with b≠a and b {0,1}, are mapped to codewords having (d) with c≠d and d {0,1} as a prefix and the corresponding first 2-bit word of the first set of 2-bit words as a suffix, all three primary code codewords having exactly one a are mapped to codewords having (d) as prefix and concatenation of a first 2-bit word not a member of the first set and a second 2-bit word from the second set of 2-bit words as a suffix, and in which codeword (bbb) 3 is mapped to a codeword having (d ) as a prefix and the concatenation of the first 2-bit word that is not an element of the first set and the second 2-bit word that is not an element of the second set as a suffix. The first 2-bit word of the primary code codewords having exactly one b may be the 2-bit representation of the position of b in the corresponding primary code codeword, and the second 2-bit word of the primary code codewords having exactly one a may be 2 -bit representation of position a in the corresponding codeword of the primary code. However, alternatives are possible.
Снова предварительно определенный один из энтропийных кодеров может быть выполнен, при преобразовании символов, направляемых предварительно определенному энтропийному кодеру, в соответствующий битовый поток, с возможностью исследования символов на предварительно определенный энтропийный кодер в тройках, (1) состоит ли тройка из a, в этом случае предварительно определенный энтропийный кодер выполняется с возможностью записи кодового слова (c) в соответствующий битовый поток, (2) содержит ли тройка точно одну b, в этом случае предварительно определенный энтропийный кодер выполняется с возможностью записи кодового слова, имеющего (d) в качестве префикса и 2-битовое представление позиции b в тройке в качестве суффикса, в соответствующий битовый поток; (3) содержит ли тройка точно одно a, в этом случае предварительно определенный энтропийный кодер выполняется с возможностью записи кодового слова, имеющего (d) в качестве префикса и конкатенацию первого 2-битового слова, не являющегося элементом первого множества, и 2-битового представления позиции a в тройке в качестве суффикса, в соответствующий битовый поток; или (4) состоит ли тройка из b, в этом случае предварительно определенный энтропийный кодер выполняется с возможностью записи кодового слова, имеющего (d) в качестве префикса и конкатенацию первого 2-битового слова, не являющегося элементом первого множества, и первого 2-битового слова, не являющегося элементом второго множества, в качестве суффикса, в соответствующий битовый поток.Again, a predefined one of the entropy encoders can be performed by converting the symbols sent to the predefined entropy encoder into the corresponding bitstream, with the ability to examine the symbols per predefined entropy encoder in triplets, (1) whether the triplet consists of a, in which case a predefined entropy encoder is executable to write a codeword (c) into the corresponding bit stream, (2) whether the triple contains exactly one b, in which case the predefined entropy encoder is executable to write a codeword having (d) as a prefix, and a 2-bit representation of the position of b in the triple as a suffix, into the corresponding bitstream; (3) whether the triple contains exactly one a, in which case a predefined entropy encoder is executed with the ability to write a codeword having (d) as a prefix and the concatenation of the first 2-bit word not an element of the first set and the 2-bit representation the position of a in the triple as a suffix, into the corresponding bitstream; or (4) whether the triple consists of b, in which case a predefined entropy encoder is executed with the ability to write a codeword having (d) as a prefix and the concatenation of the first 2-bit word not an element of the first set and the first 2-bit a word that is not an element of the second set as a suffix into the corresponding bit stream.
Что касается декодирующей стороны, только что описанные варианты осуществления описывают декодер для восстановления последовательности символов 326, содержащий множество энтропийных декодеров 322, каждый из которых выполнен с возможностью преобразования соответствующего битового потока 324 в символы 321; средство 316 назначения, выполненное с возможностью назначения нескольких параметров каждому символу 326 последовательности символов, подлежащих восстановлению, основываясь на информации, содержащейся в ранее восстановленных символах последовательности символов; и селектор 318, выполненный с возможностью извлечения каждого символа 325 последовательности символов, подлежащих восстановлению, из выбранного одного из множества энтропийных декодеров, причем выбор зависит от количества параметров, определенных соответствующему символу. Согласно только что описанным вариантам осуществления по меньшей мере первое подмножество энтропийных декодеров 322 представляет собой декодеры переменной длины, выполненные с возможностью отображения кодовых слов переменной длины на последовательности символов переменной длины соответственно, причем каждый из энтропийных декодеров 22 первого подмножества использует правило биективного отображения, в соответствии с которыми кодовые слова первичного беспрефиксного кода с (2n-1)≥3 кодовыми словами отображаются на кодовые слова вторичного беспрефиксного кода, который идентичен первичному префиксному коду, так что все кроме двух из кодовых слов первичного беспрефиксного кода отображаются на идентичные кодовые слова вторичного беспрефиксного кода, тогда как два кодовых слова первичного и вторичного беспрефиксных кодов имеют разные длины и отображаются друг на друга попеременно, причем энтропийные кодеры используют разные n. Первый беспрефиксный код может быть построен так, что кодовыми словами первого беспрефиксного кода являются (a,b)2, (a,a,b)3, …, (a, …, a,b)n, (a, …, a)n, (b,a)2, (b,b,a)3, …, (b, …, b,a)n-1, (b, …, b)n-1, и двумя кодовыми словами, отображаемыми друг на друга попеременно, могут быть (a, …, a)n и (b, …, b)n-1 с b≠a и a,b{0,1}. Однако возможны альтернативы.On the decoding side, the embodiments just described describe a symbol
Каждый из первого подмножества энтропийных кодеров может быть выполнен, при преобразовании соответствующего битового потока в символы, с возможностью исследования первого бита соответствующего битового потока, для определения, (1) равен ли первый бит a 0 {0,1}, в этом случае соответствующий энтропийный кодер выполняется с возможностью исследования следующих битов соответствующего битового потока для определения, (1.1) встречается ли b с b≠a и b 0 {0,1} в следующих n-1 битах, следующих за первым битом, в этом случае соответствующий энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна первому биту, за которым следуют последующие биты соответствующего битового потока, до бита b; или (1.2) не встречается ли b в следующих n-1 битах, следующих за первым битом, в этом случае соответствующий энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна (b, …, b)n-1; или (2) равен ли первый бит b, в этом случае соответствующий энтропийный декодер выполняется с возможностью исследования последующих битов соответствующего битового потока для определения, (2.1) встречается ли a в следующих n-2 битах, следующих за первым битом, в этом случае соответствующий энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна первому биту, за которым следуют последующие биты соответствующего битового потока до символа a; или (2.2) не встречается ли a в следующих n-2 битах, следующих за первым битом, в этом случае соответствующий энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна (a, …, a)n.Each of the first subset of entropy encoders may be implemented, when converting the corresponding bit stream into symbols, with the ability to examine the first bit of the corresponding bit stream to determine (1) whether the first bit a 0 {0,1}, in which case the corresponding entropy the encoder is executed with the ability to examine the next bits of the corresponding bitstream to determine whether (1.1) b occurs with b≠a and b 0 {0,1} in the next n-1 bits following the first bit, in which case the corresponding entropy decoder is executed with the ability to restore a sequence of symbols that is equal to the first bit followed by subsequent bits of the corresponding bit stream, up to bit b; or (1.2) whether b occurs in the next n-1 bits following the first bit, in which case the corresponding entropy decoder is executed with the ability to recover a sequence of symbols that is equal to (b, ..., b) n-1 ; or (2) whether the first bit is equal to b, in which case the corresponding entropy decoder is executed with the ability to examine subsequent bits of the corresponding bitstream to determine whether (2.1) whether a occurs in the next n-2 bits following the first bit, in which case the corresponding the entropy decoder is configured to recover a sequence of symbols that is equal to the first bit followed by subsequent bits of the corresponding bit stream up to symbol a; or (2.2) whether a does not occur in the next n-2 bits following the first bit, in which case the corresponding entropy decoder is executed with the ability to recover a sequence of symbols that is equal to (a, ..., a) n .
Дополнительно или альтернативно, по меньшей мере второе подмножество энтропийных декодеров 322 может представлять собой декодер переменной длины, выполненный с возможностью отображения кодовых слов фиксированной длины на последовательности символов переменной длины соответственно, причем каждый из энтропийных декодеров второго подмножества использует правило биективного отображения, согласно которому кодовые слова вторичного беспрефиксного кода отображаются на кодовые слова первичного усеченного унарного кода с 2n+1 кодовыми словами типа {(a), (ba), (bba), …, (b…ba), (bb…b)} с b≠a и a,b{0,1}, так что кодовое слово (c) вторичного беспрефиксного кода отображается на кодовое слово (bb…b) первичного усеченного унарного кода, и кодовые слова, имеющие (d) с c≠d и c,d{0,1} в качестве префикса и n-битовое слово в качестве суффикса, отображаются на соответствующее одно из других кодовых слов {(a), (ba), (bba), …, (b…ba))} первичного усеченного унарного кода, причем энтропийные декодеры используют разные n. Каждый из второго подмножества энтропийных декодеров может быть выполнен так, что n-битовое слово представляет собой n-битовое представление количества b в соответствующем кодовом слове первичного усеченного унарного кода. Однако возможны альтернативы.Additionally or alternatively, at least the second subset of
Каждый из второго подмножества энтропийных декодеров может представлять собой декодер переменной длины, выполненный с возможностью отображения кодовых слов фиксированной длины на последовательности символов переменной длины соответственно, и выполненный, при преобразовании битового потока соответствующего энтропийного декодера в символы, с возможностью исследования первого бита соответствующего битового потока для определения, (1) равен ли он c с c{0,1}, в этом случае соответствующий энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна (bb…b)2 n с b{0,1}; или (2) равен ли он d с c≠d и c,d{0,1}, в этом случае соответствующий энтропийный декодер выполняется с возможностью определения n-битового слова из n дополнительных битов соответствующего битового потока, следующих за первым битом, и восстановления из них последовательности символов, которая является типа {(a), (ba), (bba), …, (b…ba), (bb…b)} с b≠a и b{0,1}, причем количество b зависит от n-битового слова.Each of the second subset of entropy decoders may be a variable-length decoder configured to map fixed-length codewords onto variable-length symbol sequences, respectively, and configured, when converting the bit stream of the corresponding entropy decoder into symbols, to examine the first bit of the corresponding bit stream for determining (1) whether it is equal to c with c {0,1}, in this case the corresponding entropy decoder is executed with the ability to restore a sequence of symbols that is equal to (bb...b) 2 n with b {0,1}; or (2) is it equal to d with c≠d and c,d {0,1}, in which case the corresponding entropy decoder is configured to determine an n-bit word from the n additional bits of the corresponding bit stream following the first bit, and recover from them a sequence of symbols that is of the type {(a), (ba ), (bba), …, (b…ba), (bb…b)} with b≠a and b {0,1}, and the number of b depends on the n-bit word.
Дополнительно или альтернативно, предварительно определенный один из энтропийных декодеров 322 может быть декодером переменной длины, выполненным с возможностью отображения кодовых слов переменной длины на последовательности символов фиксированной длины соответственно, причем предварительно определенный энтропийный декодер использует правило биективного отображения, согласно которому кодовые слова вторичного беспрефиксного кода отображаются на 23 кодовые слова длины 3 первичного кода, так что кодовое слово (c) с c{0,1} отображается на кодовое слово (aaa)3 первичного кода с a{0,1}, кодовые слова, имеющие (d) с c≠d и d{0,1} в качестве префикса и соответствующее первое 2-битовое слово из первого множества из трех 2-битовых слов в качестве суффикса, отображаются на все три кодовые слова первичного кода, имеющих точно одну b с b≠a и b{0,1}, кодовые слова, имеющие (d) в качестве префикса и конкатенацию первого 2-битового слова, не являющегося элементом первого множества, и второго 2-битового слова из второго множества из трех 2-битовых слов, в качестве суффикса, отображаются на все три кодовых слова первичного кода, имеющих точно одно a, и кодовое слово, имеющее (d) в качестве префикса и конкатенацию первого 2-битового слова, не являющегося элементом первого множества, и второго 2-битового слова, не являющегося элементом второго множества, в качестве суффикса, отображается на кодовое слово (bbb)3. Первое 2-битовое слово из кодовых слов первичного кода, имеющее точно одну b, может представлять собой 2-битовое представление позиции b в соответствующем кодовом слове первичного кода, и второе 2-битовое слово из кодовых слов первичного кода, имеющее точно одну a, может представлять собой 2-битовое представление позиции a в соответствующем кодовом слове первичного кода. Однако возможны альтернативы.Additionally or alternatively, a predefined one of the entropy decoders 322 may be a variable length decoder configured to map variable length codewords onto a fixed length symbol sequence, respectively, wherein the predefined entropy decoder uses a bijective mapping rule whereby codewords of a secondary prefix-free code are mapped by 2 3 codewords of length 3 primary code, so codeword (c) with c {0,1} maps to codeword (aaa) 3 of the primary code with a {0,1}, codewords having (d) with c≠d and d {0,1} as a prefix and the corresponding first 2-bit word from the first set of three 2-bit words as a suffix, map to all three primary code codewords having exactly one b with b≠a and b {0,1}, codewords having (d) as a prefix and the concatenation of the first 2-bit word not a member of the first set and the second 2-bit word from the second set of three 2-bit words as a suffix, are mapped to all three codewords of the primary code having exactly one a, and a codeword having (d) as a prefix and the concatenation of the first 2-bit word not an element of the first set and the second 2-bit word not an element of the second sets, as a suffix, is mapped to the code word (bbb) 3 . The first 2-bit word of the primary code codewords having exactly one b can be a 2-bit representation of the position of b in the corresponding primary code codeword, and the second 2-bit word of the primary code codewords having exactly one a can be a 2-bit representation of position a in the corresponding primary code word. However, alternatives are possible.
Предварительно определенный один из энтропийных декодеров может представлять собой декодер переменной длины, выполненный с возможностью отображения кодовых слов переменной длины на последовательности символов из трех символов каждая соответственно, и выполненный, при преобразовании битового потока соответствующего энтропийного декодера в символы, с возможностью исследования первого бита соответствующего битового потока для определения, (1) равен ли первый бит соответствующего битового потока c с c{0,1}, в этом случае заданный энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна (aaa)3 с a 0 {0,1}; или (2) равен ли первый бит соответствующего битового потока d с c≠d и d{0,1}, в этом случае предварительно определенный энтропийный декодер выполняется с возможностью определения первого 2-битового слова из 2 дополнительных битов соответствующего битового потока, который следует за первым битом, и с возможностью исследования первого 2-битового слова для определения, (2.1) не является ли первое 2-битовое слово элементом первого множества из трех 2-битовых слов, в этом случае предварительно определенный энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая имеет точно одну b с b≠a и b 0 {0,1}, причем позиция b в соответствующей последовательности символов зависит от первого 2-битового слова, или (2.2) является ли первое 2-битовое слово элементом первого множества, в этом случае предварительно определенный энтропийный декодер выполняется с возможностью определения второго 2-битового слова из 2 дополнительных битов соответствующего битового потока, следующих за двумя битами, из которых было определено первое 2-битовое слово, и с возможностью исследования второго 2-битового слова для определения, (3.1) не является ли второе 2-битовое слово элементом второго множества из трех 2-битовых слов, в этом случае предварительно определенный энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая имеет точно одну a, причем позиция a в соответствующей последовательности символов зависит от второго 2-битового слова, или (3.2) является ли второе 2-битовое слово элементом второго множества из трех 2-битовых слов, в этом случае предварительно определенный энтропийный декодер выполняется с возможностью восстановления последовательности символов, которая равна (bbb)3.A predetermined one of the entropy decoders may be a variable length decoder, configured to map variable length codewords onto a symbol sequence of three symbols each, respectively, and configured, when converting the bitstream of the corresponding entropy decoder into symbols, to examine the first bit of the corresponding bitstream stream to determine whether (1) the first bit of the corresponding bitstream c is equal to c {0,1}, in this case the given entropy decoder is executed with the ability to recover a sequence of symbols that is equal to (aaa) 3 with a 0 {0,1}; or (2) whether the first bit of the corresponding bitstream is equal to d with c≠d and d {0,1}, in this case the predefined entropy decoder is executed with the ability to determine the first 2-bit word of the 2 additional bits of the corresponding bitstream that follows the first bit, and with the ability to examine the first 2-bit word to determine, (2.1 ) whether the first 2-bit word is an element of the first set of three 2-bit words, in which case a predefined entropy decoder is executed with the ability to recover a sequence of symbols that has exactly one b with b≠a and b 0 {0,1} , where the position of b in the corresponding symbol sequence depends on the first 2-bit word, or (2.2) whether the first 2-bit word is an element of the first set, in which case a predefined entropy decoder is executed with the ability to determine the second 2-bit word from 2 additional bits of the corresponding bit stream following the two bits from which the first 2-bit word was defined, and with the possibility of examining the second 2-bit word to determine whether the second 2-bit word is an element of the second set of three 2-bits bit words, in which case the predefined entropy decoder is executed with the ability to recover a symbol sequence that has exactly one a, where the position of a in the corresponding symbol sequence depends on the second 2-bit word, or (3.2) whether the second 2-bit word is an element a second set of three 2-bit words, in which case a predefined entropy decoder is executed with the ability to recover a sequence of symbols that is equal to (bbb) 3 .
Теперь после описания общего принципа схемы видеокодирования описываются варианты осуществления настоящего изобретения в отношении вышеупомянутых вариантов осуществления. Другими словами, варианты осуществления, кратко описанные ниже, могут быть реализованы посредством использования вышеупомянутых схем, и наоборот, вышеупомянутые схемы кодирования могут быть реализованы с использованием и применением вариантов осуществления, кратко описанных ниже.Now that the general principle of a video coding scheme has been described, embodiments of the present invention will be described with respect to the above-mentioned embodiments. In other words, the embodiments briefly described below can be implemented by using the above-mentioned circuits, and conversely, the above encoding schemes can be implemented using and using the embodiments briefly described below.
В вышеупомянутых вариантах осуществления, описанных в отношении фиг. 7-9, энтропийный кодер и декодеры по фиг. 1-6, были реализованы в соответствии с принципом PIPE. Один особый вариант осуществления использовал кодеры/декодеры 310 и 322 с арифметическим одновероятностным состоянием. Как описано ниже, согласно альтернативному варианту осуществления объекты 306-310 и соответствующие объекты 318-322 могут быть заменены обычным механизмом энтропийного кодирования. В качестве примера, представим механизм арифметического кодирования, который управляет только одним общим состоянием R и L и кодирует все символы в один общий битовый поток, таким образом отказываясь от полезных аспектов настоящего принципа PIPE, касающегося параллельной обработки, но исключая необходимость перемежения частичных битовых потоков, как дополнительно описано ниже. Делая так, количество вероятностных состояний, посредством которых вероятности контекста оцениваются посредством обновления (такого как табличный поиск), может быть выше, чем количество вероятностных состояний, посредством которых выполняется подразделение интервала вероятностей. Т.е. аналогично квантованию значения ширины интервала вероятностей перед индексированием в таблицу Rtab, также может квантоваться индекс состояния вероятности. Вышеупомянутое описание для возможной реализации для единственных кодеров/декодеров 310 и 322, таким образом, может быть расширено для примера реализации энтропийных кодеров/декодеров 318-322/306-310 в качестве механизмов контекстно-адаптивного двоичного арифметического кодирования/декодирования.In the above embodiments described with respect to FIGS. 7-9, the entropy encoder and decoders of FIG. 1-6 were implemented in accordance with the PIPE principle. One particular embodiment used arithmetic single-probability state encoders/
Более точно, согласно варианту осуществления энтропийный кодер, подсоединенный к выходу средства назначения параметра (который служит здесь в качестве средства назначения контекста), может работать следующим образом:More specifically, according to an embodiment, an entropy encoder connected to the output of the parameter assigner (which here serves as the context assigner) may operate as follows:
0. Средство 304 назначения направляет значение бина вместе с параметром вероятности. Вероятность равна pState_current[bin].0. The assignor 304 forwards the bin value along with the probability parameter. The probability is pState_current[bin].
1. Таким образом, механизм энтропийного кодирования принимает: 1) valLPS, 2) бин и 3) оценку pState_current[bin] распределения вероятности. pState_current[bin] может иметь больше состояний, чем количество индексов различимых вероятностных состояний Rtab. Если это так, pState_current[bin] может квантоваться, так что, например, посредством игнорирования m младших значащих битов (LSB), при этом m больше или равно 1 или предпочтительно 2 или 3 для получения p_state, т.е. индекс, который затем используется для доступа к таблице Rtab. Квантование, однако, может быть исключено, т.е. p_state может быть pState_current[bin].1. Thus, the entropy encoding mechanism takes: 1) valLPS, 2) bin, and 3) probability distribution estimate pState_current[bin]. pState_current[bin] can have more states than the number of distinguishable probabilistic state indices Rtab. If this is the case, pState_current[bin] may be quantized so that, for example, by ignoring m least significant bits (LSB), with m greater than or equal to 1 or preferably 2 or 3 to obtain p_state, i.e. an index which is then used to access the Rtab table. Quantization, however, can be excluded, i.e. p_state can be pState_current[bin].
2. Затем выполняется квантование R (Как упомянуто выше: или один R (и соответствующий L с одним общим битовым потоком) используется/управляется для всех различимых значений p_state, или одно R (и соответствующий L с ассоциированным частичным битовым потоком на пару R/L) на различимое значение p_state, этот последний случай будет соответствовать тому, что имеется один кодер 310 бинов на такое значение)2. R quantization is then performed (As mentioned above: either one R (and corresponding L with one shared bitstream) is used/managed for all distinguishable p_state values, or one R (and corresponding L with associated partial bitstream per R/L pair ) to a distinguishable p_state value, this latter case would correspond to the fact that there is one 310 bin encoder for such a value)
q_index=Qtab[R>>q] (или некоторый другой вид квантования)q_index=Qtab[R>>q] (or some other kind of quantization)
3. Затем выполняется определение RLPS и R:3. Then the determination of R LPS and R is performed:
RLPS=Rtab[p_state][q_index]; Rtab сохранил в нем предварительно вычисленные значения для p[p_state]∙Q[q_index]R LPS =Rtab[p_state][q_index]; Rtab stored pre-calculated values for p[p_state]∙Q[q_index] in it
R=R-RLPS [т.е. R предварительно предобновляется, как если бы «бином» был MPS (наиболее вероятный символ)]R=RR LPS [i.e. R is pre-updated as if the "bin" were MPS (most probable symbol)]
4. Вычисление нового предварительного интервала:4. Calculate the new preliminary interval:
if (bin=1-valMPS) thenif (bin=1-valMPS) then
L ¬ L+RL ¬ L+R
R ¬ RLPS R ¬ R LPS
5. Ренормализация L и R, запись битов,5. L and R renormalization, bit recording,
Аналогично, энтропийный декодер, присоединенный к выходу средства назначения параметра (который служит здесь в качестве средства назначения контекста) может работать следующим образом:Likewise, an entropy decoder connected to the output of the parameter assigner (which serves here as the context assigner) can operate as follows:
0. Средство 304 назначения направляет значение бина вместе с параметром вероятности. Вероятностью является pState_current[bin].0. The assignor 304 forwards the bin value along with the probability parameter. The probability is pState_current[bin].
1. Таким образом, механизм энтропийного декодирования принимает запрос бина вместе с: 1) valLPS, и 2) оценкой распределения вероятности pState_current[bin]. pState_current[bin] может иметь больше состояний, чем количество индексов различимых вероятностных состояний Rtab. Если это так, pState_current[bin] может квантоваться так, например, пренебрегая m LSB, причем m больше или равен 1 и предпочтительно 2 или 3 для получения p_state, т.е. индекса, который затем используется для доступа к таблице Rtab. Квантование, однако, может исключаться, т.е. p_state может быть pState_current[bin].1. Thus, the entropy decoding engine accepts a bin request along with: 1) valLPS, and 2) an estimate of the probability distribution pState_current[bin]. pState_current[bin] can have more states than the number of distinguishable probabilistic state indices Rtab. If so, pState_current[bin] can be quantized like this, for example neglecting m LSB, with m greater than or equal to 1 and preferably 2 or 3 to obtain p_state, i.e. index, which is then used to access the Rtab table. Quantization, however, can be excluded, i.e. p_state can be pState_current[bin].
2. Затем выполняется квантование R (Как упомянуто выше: или один R (и соответствующий V с одним общим битовым потоком) используется/управляется для всех различимых значений p_state, или один R (и соответствующий V с ассоциированным частичным битовым потоком на пару R/L) на различимое значение p_state, этот последний случай соответствует тому, что имеется один кодер 310 бинов на такое значение)2. R quantization is then performed (As mentioned above: either one R (and corresponding V with one shared bitstream) is used/managed for all distinguishable p_state values, or one R (and corresponding V with associated partial bitstream per R/L pair ) to a distinguishable value of p_state, this last case corresponds to the fact that there is one encoder of 310 bins for such a value)
q_index=Qtab[R>>q] (или некоторый другой вид квантования)q_index=Qtab[R>>q] (or some other kind of quantization)
3. Затем выполняется определение RLPS и R:3. Then the determination of R LPS and R is performed:
RLPS=Rtab[p_state][q_index]; Rtab сохранила в себе предварительно вычисленные значения для p[p_state]∙Q[q_index]R LPS =Rtab[p_state][q_index]; Rtab stored pre-calculated values for p[p_state]∙Q[q_index]
R=R-RLPS [т.е. R предварительно предобновляется, как если бы «бином» был MPS]R=RR LPS [i.e. R is pre-updated as if the "bin" were MPS]
4. Определение бина в зависимости от позиции частичного интервала:4. Definition of a bin depending on the position of the partial interval:
if(V3R) thenif(V 3 R) then
bin ¬ 1 - valMPS (бин декодируется как LPS; селектор 18 буфера бинов получает фактическое значение бина посредством использования этой информации о бине и valMPS)bin ¬ 1 - valMPS (bin is decoded as LPS; bin buffer selector 18 obtains the actual value of the bin by using this bin information and valMPS)
V ¬ V-RV ¬ V-R
R ¬ RLPS R ¬ R LPS
elseelse
bin ¬ valMPS (бин декодируется как MPS; фактическое значение бина получается посредством использования этой информации о бине и valMPS)bin ¬ valMPS (the bin is decoded as MPS; the actual value of the bin is obtained by using this bin information and valMPS)
5. Ренормализация R, считывание одного бита и обновление V,5. Renormalize R, read one bit and update V,
Как описано выше, средство 4 назначения назначает pState_current[bin] каждому бину. Ассоциирование может выполняться на основе выбора контекста. Т.е. средство 4 назначения может выбирать контекст, используя индекс ctxIdx контекста, который, в свою очередь, имеет соответствующий pState_current, ассоциированный с ним. Обновление вероятности может выполняться каждый раз, когда вероятность pState_current[bin] была применена к текущему бину. Обновление состояния вероятности pState_current[bin] выполняется в зависимости от значения кодированного бита:As described above, the assigner 4 assigns pState_current[bin] to each bin. The association may be performed based on the selection of the context. Those. the destination engine 4 may select a context using the context index ctxIdx, which in turn has a corresponding pState_current associated with it. A probability update can be performed each time the probability pState_current[bin] has been applied to the current bin. The probability state update pState_current[bin] is performed depending on the value of the encoded bit:
Если обеспечивается более одного контекста, адаптация выполняется по контексту, т.е. pState_current[ctxIdx] используется для кодирования и затем обновления, используя текущее значение бина (кодированное или декодированное соответственно).If more than one context is provided, adaptation is performed by context, i.e. pState_current[ctxIdx] is used to encode and then update using the current value of the bin (encoded or decoded respectively).
Как более подробно изложено ниже, согласно вариантам осуществления, описываемым теперь, кодер и декодер могут необязательно быть реализованы для работы в разных режимах, а именно, режиме низкой сложности (LC) и высокой эффективности (HE). Это изображается, главным образом, касательно кодирования PIPE в нижеследующем (упоминая тогда режимы LC и HE PIPE), но описание подробностей масштабируемости сложности легко переносится на другие реализации механизмов энтропийного кодирования/декодирования, такие как вариант осуществления использования одного общего контекстно-адаптивного арифметического кодера/декодера.As discussed in more detail below, according to the embodiments now described, the encoder and decoder may optionally be implemented to operate in different modes, namely, a low complexity (LC) mode and a high efficiency (HE) mode. This is depicted primarily in relation to PIPE encoding in the following (mentioning then the LC and HE PIPE modes), but the description of the complexity scalability details easily transfers to other implementations of entropy encoding/decoding mechanisms, such as the embodiment of using a single general context-adaptive arithmetic encoder/ decoder
Согласно вариантам осуществления, кратко изложенным ниже, оба режима энтропийного кодирования могут совместно использоватьAccording to the embodiments summarized below, both entropy encoding modes can share
один и тот же синтаксис и семантику (для последовательности 301 и 327 синтаксических элементов соответственно)the same syntax and semantics (for a sequence of 301 and 327 syntactic elements, respectively)
одинаковые схемы бинаризации для всех синтаксических элементов (определенные в настоящее время для CABAC (контекстно-адаптивное двоичное арифметическое кодирование)) (т.е. бинаризаторы могут работать независимо от активизированного режима)same binarization schemes for all syntactic elements (currently defined for CABAC (Context-Adaptive Binary Arithmetic Coding)) (i.e. binarizers can operate regardless of the activated mode)
применение одинаковых кодов PIPE (т.е. кодеры/декодеры бинов могут работать независимо от активизированного режима)application of the same PIPE codes (i.e. bin encoders/decoders can operate regardless of the activated mode)
применение 8-битовых значений инициализации вероятностной модели (вместо 16-битовых значений инициализации, определенных в настоящее время для CABAC)using 8-bit probabilistic model initialization values (instead of the 16-bit initialization values currently defined for CABAC)
Вообще говоря, LC-PIPE отличается от HE-PIPE сложностью обработки, такой как сложность выбора тракта 312 PIPE для каждого бина.Generally speaking, LC-PIPE differs from HE-PIPE in processing complexity, such as the complexity of selecting the
Например, режим LC может работать при следующих ограничениях: Для каждого бина (binIdx) может быть точно одна вероятностная модель, т.е. один ctxIdx. Т.е. в LC PIPE не может обеспечиваться выбор/адаптация контекста. Конкретные синтаксические элементы, такие как те, которые используются для кодирования остатка, могут, однако, кодироваться с использованием контекстов, как дополнительно изложено ниже. Кроме того, все вероятностные модели могут быть неадаптивными, т.е. все модели могут инициализироваться в начале каждого слайса с соответствующими вероятностями модели (в зависимости от выбора типа слайса и QP (параметр квантования) слайса) и могут поддерживаться фиксированными во время обработки слайса. Например, может поддерживаться только 8 разных вероятностей модели, соответствующих 8 разным кодам 310/322 PIPE, как для моделирования, так и кодирования контекста. Конкретные синтаксические элементы для кодирования остатка, т.е. significance_coeff_flag и coeff_abs_level_greaterX (с X=1,2), семантика которых более подробно изложена ниже, могут назначаться вероятностным моделям, таким как (по меньшей мере) группы, например, из 4 синтаксических элементов, кодируются/декодируются с одинаковой вероятностью модели. По сравнению с CAVLC (контекстно-адаптивный код переменной длины) режим LC-PIPE достигает грубо таких же рабочих характеристик R-D и такую же производительность.For example, LC mode can work under the following restrictions: For each bin (binIdx) there can be exactly one probabilistic model, i.e. one ctxIdx. Those. LC PIPE cannot provide context selection/adaptation. Specific syntactic elements, such as those used to encode a remainder, may, however, be encoded using contexts, as further outlined below. In addition, all probabilistic models can be non-adaptive, i.e. all models can be initialized at the beginning of each slice with corresponding model probabilities (depending on the choice of slice type and QP (quantization parameter) of the slice) and can be kept fixed during slice processing. For example, only 8 different probabilities can be supported models corresponding to 8 different 310/322 PIPE codes for both modeling and context encoding. The specific syntactic elements for encoding the remainder, i.e. significance_coeff_flag and coeff_abs_level_greaterX (with X=1,2), the semantics of which are explained in more detail below, can be assigned to probabilistic models, such that (at least) groups of, for example, 4 syntactic elements are encoded/decoded with the same probability of the model. Compared to CAVLC (Context Adaptive Variable Length Code), LC-PIPE mode achieves roughly the same R-D performance and performance.
HE-PIPE может быть выполнен концептуально подобно CABAC в стандарте H.264 со следующими отличиями: Двоичное арифметическое кодирование (BAC) заменяется кодированием PIPE (таким же, что и в случае LC-PIPE). Каждая вероятностная модель, т.е. каждый ctxIdx, может быть представлена посредством pipeIdx и refineIdx, где pipeIdx со значениями в диапазоне 0-7 представляет вероятность модели 8 разных кодов PIPE. Это изменение оказывает влияние только на внутреннее представление состояний, а не на поведение самого конечного автомата (т.е. оценку вероятности). Как более подробно изложено ниже, инициализация вероятностных моделей может использовать 8-битовые значения инициализации, как изложено выше. Обратное сканирование синтаксических элементов coeff_abs_level_greaterX (с X=1,2), coeff_abs_level_minus3 и coeff_sign_flag (семантика которых станет ясной из нижеследующего описания) может выполняться по этому же пути сканирования, что и сканирование вперед (используемое, например, при кодировании карты значимостей). Вывод контекста для кодирования coeff_abs_level_greaterX (с X=1,2) также может быть упрощен. По сравнению с CABAC предложенный HE-PIPE достигает грубо таких рабочих характеристик R-D при лучшей производительности.HE-PIPE can be implemented conceptually similar to CABAC in the H.264 standard with the following differences: Binary Arithmetic Coding (BAC) is replaced by PIPE coding (same as LC-PIPE). Each probabilistic model, i.e. each ctxIdx can be represented by pipeIdx and refineIdx, where pipeIdx with values in the range 0-7 represents the probability of a model of 8 different PIPE codes. This change only affects the internal representation of states, and not the behavior of the state machine itself (i.e., probability estimation). As discussed in more detail below, initialization of probabilistic models may use 8-bit initialization values as outlined above. The backward scan of the syntactic elements coeff_abs_level_greaterX (with X=1,2), coeff_abs_level_minus3 and coeff_sign_flag (the semantics of which will become clear from the description below) can be performed along the same scan path as the forward scan (used, for example, when encoding a saliency map). The derivation of the context for encoding coeff_abs_level_greaterX (with X=1,2) can also be simplified. Compared with CABAC, the proposed HE-PIPE achieves roughly the same R-D performance characteristics with better performance.
Легко видеть, что только что упомянутые режимы легко генерируются посредством рендеринга, например, вышеупомянутого механизма контекстно-адаптивного двоичного арифметического кодирования/декодирования, так как он работает в разных режимах.It is easy to see that the modes just mentioned are easily generated by rendering, for example, the aforementioned context-adaptive binary arithmetic encoding/decoding engine, since it operates in different modes.
Таким образом, согласно варианту осуществления в соответствии с первым аспектом настоящего изобретения декодер для декодирования потока данных может быть выполнен так, как показано на фиг. 11. Декодер предназначен для декодирования потока 401 данных, такого как битовый поток 340 с перемежением, в какие медиаданные, такие как данные видео, кодируется. Декодер содержит переключатель 400 режима, выполненный с возможностью активизирования режима низкой сложности или режима высокой эффективности в зависимости от потока 401 данных. С этой целью, поток 401 данных может содержать синтаксический элемент, такой как двоичный синтаксический элемент, имеющий двоичное значение 1 в случае режима низкой сложности, являющегося тем, который необходимо активизировать, и имеющий двоичное значение 0 в случае режима высокой эффективности, являющегося тем, который необходимо активизировать. Очевидно, что ассоциирование между двоичным значением и режимом кодирования может переключаться, и также может использоваться недвоичный синтаксический элемент, имеющий более двух возможных значений. Так как фактический выбор между двумя режимами еще не ясен перед приемом соответствующего синтаксического элемента, этот синтаксический элемент может содержаться в некотором переднем заголовке потока 401 данных, кодированного, например, с фиксированной оценкой вероятности или вероятностной моделью или записываемого в поток 401 данных как есть, т.е. используя режим обхода.Thus, according to an embodiment according to the first aspect of the present invention, a decoder for decoding a data stream can be configured as shown in FIG. 11. The decoder is configured to decode
Кроме того, декодер по фиг. 11 содержит множество энтропийных декодеров 322, каждый из которых выполнен с возможностью преобразования кодовых слов в потоке 401 данных в частичные последовательности 321 символов. Как описано выше, деперемежитель 404 может быть подсоединен между входами энтропийных декодеров 322, с одной стороны, и входом декодера по фиг. 11, где подается поток 401 данных, с другой стороны. Кроме того, как уже описано выше, каждый из энтропийных декодеров 322 может ассоциироваться с соответствующим вероятностным интервалом, причем вероятностные интервалы различных энтропийных декодеров вместе покрывают весь интервал вероятностей от 0 до 1 - или 0-0,5 в случае энтропийных декодеров 322, имеющих дело с MPS и LPS, а не абсолютными значениями символов. Подробности, касающиеся этого вопроса, были описаны выше. Позже предполагается, что количество декодеров 322 равно 8, причем индекс PIPE назначается каждому декодеру, но также возможно любое другое количество. Кроме того, один из этих кодеров, ниже им является, в качестве примера, тот, который имеет pipe_id равный 0, оптимизируется для бинов, имеющих равновероятную статистику, т.е. их значение бина принимают 1 и 0 равновероятно. Этот декодер может просто пропускать бины. Соответствующий кодер 310 работает аналогичным образом. Могут быть исключены даже любые манипулирования бинами в зависимости от значения наиболее вероятного значения бина valMPS селекторами 402 и 502 соответственно. Другими словами, энтропия соответствующего частичного потока уже является оптимальной.Moreover, the decoder of FIG. 11 includes a plurality of
Кроме того, декодер на фиг. 11 содержит селектор 402, выполненный с возможностью извлечения каждого символа последовательности 326 символов из выбранного одного из множества энтропийных декодеров 322. Как упомянуто выше, селектор 402 может быть разделен на средство 316 назначения параметра и селектор 318. Десимволизатор 314 выполнен с возможностью десимволизирования последовательности 326 символов для получения последовательности 327 синтаксических элементов. Восстановитель 404 выполнен с возможностью восстановления медиаданных 405, основываясь на последовательности синтаксических элементов 327. Селектор 402 выполнен с возможностью выполнения выбора в зависимости от активизированного одного из режима низкой сложности и режима высокой эффективности, как указывается стрелкой 406.In addition, the decoder in FIG. 11 includes a
Как уже упомянуто выше, восстановитель 404 может быть частью видеодекодера на основе блоков предсказания, работающего с фиксированным синтаксисом и семантикой синтаксических элементов, т.е. фиксированными относительно выбора режима переключателем 400 режима. Т.е. конструкция восстановителя 404 не допускает переключаемости режимов. Более точно, восстановитель 404 не увеличивает издержки реализации из-за переключаемости режимов, предлагаемой переключателем 400 режима, и по меньшей мере функциональная возможность в отношении данных остатка и данных предсказания остается такой же независимо от режима, выбранного переключателем 400. Это также применимо, однако, в отношении энтропийных декодеров 322. Все эти декодеры 322 повторно используются в обоих режимах, и, следовательно, нет дополнительных издержек реализации, хотя декодер по фиг. 11 является совместимым с обоими режимами, режимами низкой сложности и высокой эффективности.As mentioned above, the
В качестве дополнительного аспекта необходимо отметить, что декодер по фиг. 11 не только способен работать с автономными потоками данных или в одном режиме, или в другом режиме. Вместо этого, декодер по фиг. 11, а также поток 401 данных могут быть выполнены так, что переключение между обоими режимами даже будет возможным в течение одной порции медиаданных, например, во время видео или некоторой порции аудио, чтобы, например, управлять сложностью кодирования на декодирующей стороне в зависимости от внешних или окружающих условий, таких как состояние батареи или т.п. с использованием канала обратной связи от декодера к кодеру, чтобы соответствующим образом управлять с замкнутой петлей выбором режима.As a further aspect, it should be noted that the decoder of FIG. 11 is not only capable of working with autonomous data streams either in one mode or in another mode. Instead, the decoder of FIG. 11 as well as the
Таким образом, декодер по фиг. 11 работает аналогично в обоих случаях, в случае, когда выбирается режим LC или когда выбирается режим HE. Восстановитель 404 выполняет восстановление с использованием синтаксических элементов и запрашивает текущий синтаксический элемент заданного типа синтаксического элемента посредством обработки или подчинения некоторому предписанию структуры синтаксиса. Десимволизатор 314 запрашивает несколько бинов, чтобы выдать достоверную бинаризацию для синтаксического элемента, запрашиваемого восстановителем 404. Очевидно, что в случае двоичного алфавита бинаризация, выполняемая десимволизатором 314 понижает до простого пропускания соответствующего бина/символа 326 на восстановитель 404 в качестве запрашиваемого в настоящий момент двоичного синтаксического элемента.Thus, the decoder of FIG. 11 works the same in both cases, when LC mode is selected or when HE mode is selected.
Селектор 402, однако, действует независимо от режима, выбранного переключателем 400 режима. Режим работы селектора 402 имеет тенденцию быть более сложным в случае режима высокой эффективности и менее сложным в случае режима низкой сложности. Кроме того, нижеследующее описание показывает, что режим работы селектора 402 в режиме низкой сложности также имеет тенденцию уменьшать частоту, с которой селектор 402 изменяет выбор среди энтропийных декодеров 322 при извлечении последовательных символов из энтропийных декодеров 322. Другими словами, в режиме низкой сложности существует повышенная вероятность, что непосредственно последующие символы извлекаются из одного и того же энтропийного декодера из числа множества энтропийных декодеров 322. Это, в свою очередь, позволяет получить более быстрое извлечение символов из энтропийных декодеров 322. В режиме высокой эффективности, в свою очередь, режим работы селектора 402 стремится привести к выбору из числа энтропийных декодеров 322, где интервал вероятностей, ассоциированный с соответствующим выбранным энтропийным декодером 322, более точно соответствует фактической статистике символов символа, извлекаемого в настоящий момент селектором 402, таким образом получая лучший коэффициент сжатия на кодирующей стороне при генерировании соответствующего потока данных в соответствии с режимом высокой эффективности.The
Например, разное поведение селектора 402 в обоих режимах может быть реализовано следующим образом. Например, селектор 402 может быть выполнен с возможностью выполнения для заданного символа выбора из числа множества энтропийных декодеров 322 в зависимости от ранее извлеченных символов последовательности 326 символов в случае активизированного режима высокой эффективности и независимо от любых ранее извлеченных символов последовательности символов в случае активизированного режима низкой сложности. Зависимость от ранее извлеченных символов последовательности 326 символов может происходить из контекстной адаптивности и/или вероятностной адаптивности. Обе адаптивности могут отключаться во время режима низкой сложности в селекторе 402.For example, the different behavior of
Согласно другому варианту осуществления поток 401 данных может быть структурирован в последовательные части, такие как слайсы, кадры, группы изображений, последовательности кадров или т.п., и каждый символ последовательности символов может ассоциироваться с соответствующим одним из множества типов символа. В данном случае, селектор 402 может быть выполнен с возможностью изменения, для символов заданного типа символа в текущей части, выбора в зависимости от ранее извлеченных символов последовательности символов заданного типа символа в текущей части в случае активизированного режима высокой эффективности и оставления выбора постоянным в текущей части в случае активизированного режима низкой сложности. Т.е. селектору 402 может быть предоставлена возможность изменять выбор среди энтропийных декодеров 322 для заданного типа символа, но эти изменения ограничены тем, что происходят между переходами между последовательными частями. Посредством этой меры оценки фактической статистики символов ограничиваются редко встречающимися временными случаями, тогда как сложность кодирования уменьшается в большей части времени.According to another embodiment,
Кроме того, каждый символ последовательности 326 символов может ассоциироваться с соответствующим одним из множества типов символа, и селектор 402 может быть выполнен, для заданного символа заданного типа символа, с возможностью выбора одного из множества контекстов в зависимости от ранее извлеченных символов последовательности 326 символов и выполнения выбора среди энтропийных декодеров 322 в зависимости от вероятностной модели, ассоциированной с выбранным контекстом вместе с обновлением вероятностной модели, ассоциированной с выбранным контекстом в зависимости от заданного символа в случае активизированного режима высокой эффективности, и выполнения выбора одного из множества контекстов в зависимости от ранее извлеченных символов последовательности 326 символов и выполнения выбора среди энтропийных декодеров 322 в зависимости от вероятностной модели, ассоциированной с выбранным контекстом вместе с оставлением вероятностной модели, ассоциированной с выбранным контекстом, постоянной в случае активизированного режима низкой сложности. Т.е. селектор 402 может использовать контекстную адаптивность в отношении некоторого типа синтаксического элемента в обоих режимах, в тоже время подавляя вероятностную адаптацию в случае режима LC.In addition, each character of the
Альтернативно, вместо полного подавления вероятностной адаптации селектор 402 может просто уменьшить частоту обновления вероятностной адаптации режима LC относительно режима HE.Alternatively, instead of completely suppressing probabilistic adaptation,
Кроме того, другими словами, возможные аспекты, характерные для LC-PIPE, т.е. аспекты режима LC, могут быть описаны следующим образом. В частности, неадаптивные вероятностные модели могут использоваться в режиме LC. Неадаптивная вероятностная модель может или иметь жестко закодированную, т.е. полную постоянную вероятность, или ее вероятность поддерживается фиксированной только во время обработки слайса и, таким образом, может устанавливаться в зависимости от типа слайса и QP, т.е. параметра квантования, который, например, сигнализируется в потоке 401 данных для каждого слайса. Предполагая, что последовательные бины, назначенные одному и тому же контексту, придерживаются фиксированной вероятностной модели, возможно декодирование нескольких из этих бинов на одном шаге, когда они кодируются с использованием одного и того же кода pipe, т.е. используя один и тот же энтропийный декодер, и опускается обновление вероятности после каждого декодированного бина. Опускание обновлений вероятности экономит операции во время процесса кодирования и декодирования и, таким образом, также приводит к уменьшению сложности и существенному упрощению аппаратной конструкции.Additionally, in other words, possible aspects specific to LC-PIPE, e.g. aspects of the LC mode can be described as follows. In particular, non-adaptive probabilistic models can be used in LC mode. A non-adaptive probabilistic model can either be hard-coded, i.e. full constant probability, or its probability is kept fixed only during slice processing and thus can be set depending on the slice type and QP, i.e. quantization parameter, which, for example, is signaled in
Неадаптивное ограничение может быть ослаблено для всех или некоторых выбранных вероятностных моделей таким образом, что обновления вероятности разрешаются после того, как некоторое количество бинов будет кодировано/декодировано с использованием этой модели. Соответствующий интервал обновления допускает вероятностную адаптацию, в тоже время имея возможность одновременного декодирования нескольких бинов.The non-adaptive constraint can be relaxed for all or some selected probability models such that probability updates are allowed after a number of bins have been encoded/decoded using that model. The corresponding update interval allows probabilistic adaptation, while at the same time being able to simultaneously decode multiple bins.
Ниже представлено более подробное описание возможных общих и с масштабируемой сложностью аспектов LC-pipe и HE-pipe. В частности, ниже описываются аспекты, которые могут использоваться для режима LC-pipe и режима HE-pipe одинаковым образом или с масштабируемой сложностью. Масштабируемая сложность означает, что случай LC выводится из случая HE посредством удаления конкретных частей или посредством замены их несколько менее сложными. Однако перед продолжением с ними необходимо упомянуть, что вариант осуществления на фиг.11 является легко переносимым на вышеупомянутый вариант осуществления контекстно-адаптивного двоичного арифметического кодирования/декодирования: селектор 402 и энтропийные декодеры 322 сосредотачиваются в контекстно-адаптивный двоичный арифметический декодер, который непосредственно принимает поток 401 данных и выбирает контекст для бина, подлежащего извлечению в настоящий момент из потока данных. Это особенно верно для контекстной адаптивности и/или вероятностной адаптивности. Обе функциональные возможности/адаптивности могут быть отключены, или разработаны более ослабленными, во время режима низкой сложности.Below is a more detailed description of possible common and scalable complexity aspects of LC-pipe and HE-pipe. In particular, aspects that can be used for LC-pipe mode and HE-pipe mode in the same manner or with scalable complexity are described below. Scalable complexity means that the LC case is derived from the HE case by removing specific parts or by replacing them with slightly less complex ones. However, before proceeding with them, it should be mentioned that the embodiment of FIG. 11 is easily transferable to the above-mentioned context-adaptive binary arithmetic encoding/decoding embodiment:
Например, при реализации варианта осуществления по фиг.11 ступень энтропийного кодирования pipe, включающая в себя энтропийные декодеры 322, может использовать восемь систематических переменный-в-переменный-кодов, т.е. каждый энтропийный декодер 322 может быть типа v2v, который был описан выше. Принцип PIPE-кодирования, использующий систематические v2v-коды, упрощается посредством ограничения количества v2v-кодов. В случае контекстно-адаптивного двоичного арифметического декодера он может управлять его вероятностными состояниями для разных контекстов и использовать его - или его квантованную версию - для подразделения вероятности. Отображение состояний CABAC или вероятностной модели, т.е. состояний, используемых для обновления вероятности, в PIPE id или индексы вероятности для поиска в Rtab, может быть таким, какое изображено в таблице A.For example, when implementing the embodiment of FIG. 11, the entropy encoding pipe stage including
Таблица A: Отображение состояний CABAC в индексы PIPETable A: Mapping CABAC States to PIPE Indexes
Эта модифицированная схема кодирования может использоваться в качестве основы для подхода видеокодирования с масштабируемой сложностью. При выполнении вероятностной адаптации режима селектор 402 или контекстно-адаптивный двоичный арифметический декодер соответственно выбирают декодер 322 PIPE, т.е. выводят индекс pipe, подлежащий использованию, и индекс вероятности в Rtab, соответственно, основываясь на индексе состояния вероятности - здесь в качестве примера диапазон составляет от 0 до 62 - ассоциированный с подлежащим декодированию текущим символом - например, при помощи контекста - используя отображение, показанное в таблице A, и обновляет этот индекс состояния вероятности в зависимости от декодируемого в настоящий момент символа, используя, например, конкретные значения перехода обхода таблицы, указывающие на следующий индекс состояния вероятности, подлежащий посещению в случае MPS и LPS соответственно. В случае режима LC обновление последнего может быть исключено. Даже отображение может быть исключено в случае глобально фиксированных вероятностных моделей.This modified coding scheme can be used as the basis for a complexity-scalable video coding approach. When performing probabilistic mode adaptation,
Однако может использоваться произвольное установление энтропийного кодирования, и методы в данном документе также могут использоваться с незначительной адаптацией.However, arbitrary entropy encoding may be used, and the methods in this document can also be used with minor adaptation.
Вышеупомянутое описание фиг. 11 скорее в общих чертах ссылалось на синтаксические элементы и типы синтаксических элементов. Ниже описывается кодирование с конфигурируемой сложностью уровней коэффициентов преобразования.The above description of FIG. 11 rather referred in general terms to syntactic elements and types of syntactic elements. Encoding with configurable complexity levels of transform coefficients is described below.
Например, восстановитель 404 может быть выполнен с возможностью восстановления блока 200 преобразования уровней 202 коэффициентов преобразования, основываясь на части последовательности синтаксических элементов независимо от активизированного режима высокой эффективности или режима низкой сложности, причем часть последовательности 327 синтаксических элементов содержит, без перемежения, синтаксические элементы карты значимостей, определяющие карту значимостей, указывающую позиции ненулевых уровней коэффициентов преобразования в блоке 200 преобразования, и затем (за которым следует) определение синтаксических элементов уровня, определяющих ненулевых уровни коэффициентов преобразования. В частности, следующие элементы могут быть включены: синтаксические элементы конечной позиции (last_significant_pos_x, last_significant_pos_y), указывающие позицию последнего ненулевого уровня коэффициентов преобразования в блоке преобразования; первые синтаксические элементы (coeff_significant_flag), определяющие вместе карту значимостей и указывающие, для каждой позиции по одномерному пути (274), ведущему от позиции DC (постоянного тока) в позицию последнего ненулевого уровня коэффициентов преобразования в блоке (200) преобразования, в отношении того, является ли ненулевым или нет уровень коэффициентов преобразования в соответствующей позиции; вторые синтаксические элементы (coeff_abs_greater1), указывающие, для каждой позиции одномерного пути (274), где, согласно первым двоичным синтаксическим элементам, располагается ненулевой уровень коэффициентов преобразования, в отношении того, является ли больше единицы уровень коэффициентов преобразования в соответствующей позиции; и третьи синтаксические элементы (coeff_abs_greater2, coeff_abs_minus3), показывающие, для каждой позиции одномерного пути, где, согласно первым двоичным синтаксическим элементам, располагается уровень коэффициентов преобразования больше единицы, величину, на которую соответствующий уровень коэффициентов преобразования в соответствующей позиции превышает единицу.For example, the
Порядок среди синтаксических элементов конечной позиции, первых, вторых и третьих синтаксических элементов может быть одинаковым для режима высокой эффективности и режима низкой сложности, и селектор 402 может быть выполнен с возможностью выполнения выбора из числа энтропийных декодеров 322 для символов, от которого десимволизатор 314 получает синтаксические элементы конечной позиции, первые синтаксические элементы, вторые синтаксические элементы и/или третьи синтаксические элементы, в разной зависимости от активизированного режима низкой сложности или режима высокой эффективности.The order among the final position syntax elements, the first, second and third syntax elements may be the same for the high efficiency mode and the low complexity mode, and the
В частности, селектор 402 может быть выполнен, для символов заданного типа символа из числа последовательности символов, из которой десимволизатор 314 получает первые синтаксические элементы и вторые синтаксические элементы, с возможностью выбора для каждого символа заданного типа символа одного из множества контекстов в зависимости от ранее извлеченных символов заданного типа символа из числа последовательности символов и выполнения выбора в зависимости от вероятностной модели, ассоциированной с выбранным контекстом в случае активизированного режима высокой эффективности, и выполнения выбора кусочно-постоянным образом, так что выбор является постоянным по последовательным непрерывным подчастям последовательности в случае активизированного режима низкой сложности. Как описано выше, подчасти могут измеряться количеством позиций, по которым простирается соответствующая подчасть при измерении по одномерному пути 274, или количеством синтаксических элементов соответствующего типа, уже кодированных с текущим контекстом. Т.е. двоичные синтаксические элементы coeff_significant_flag, coeff_abs_greater1 и coeff_abs_greater2, например, кодируются адаптивно к контексту с выбором декодера 322, основываясь на вероятностной модели выбранного контекста в режиме HE. Также используется вероятностная адаптация. В режиме LC также существуют разные контексты, которые используются для каждого из двоичных синтаксических элементов coeff_significant_flag, coeff_abs_greater1 и coeff_abs_greater2. Однако для каждого из этих синтаксических элементов контекст сохраняется статичным для первой части по пути 274 с изменением контекста только при переходе в следующую, непосредственно последующую часть по пути 274. Например, каждая часть может определяться длиной равной 4, 8, 16 позициям блока 200, независимо от того, присутствует ли или нет для соответствующей позиции соответствующий синтаксический элемент. Например, coeff_abs_greater1 и coeff_abs_greater2 просто присутствуют для значимых позиций, т.е. позиций, где - или для которых - coeff_significant_flag равен 1. Альтернативно, каждая часть может определяться длиной, равной 4, 8, 16 синтаксических элементов, независимо от того, простирается ли результирующая таким образом соответствующая часть по большему количеству позиций блока. Например, coeff_abs_greater1 и coeff_abs_greater2 просто присутствуют для значимых позиций, и, таким образом, части каждых из четырех синтаксических элементов могут проходить по более чем 4 позициям блока вследствие позиций между ними по пути 274, для которых не передается такой синтаксический элемент, такой как ни coeff_abs_greater1, ни coeff_abs_greater2, так как соответствующий уровень в этой позиции равен нулю.In particular,
Селектор 402 может быть выполнен, для символов заданного типа символа в последовательности символов, из которой десимволизатор получает первые синтаксические элементы и вторые синтаксические элементы, с возможностью выбора для каждого символа заданного типа символа одного из множества контекстов в зависимости от количества ранее извлеченных символов заданного типа символа в последовательности символов, которые имеют заданное значение символа и принадлежит к этой же подчасти, или количества ранее извлеченных символов заданного типа символа в последовательности символов, которые принадлежат этой же подчасти. Первая альтернатива была верной для coeff_abs_greater1, и вторая альтернатива была верной для coeff_abs_greater2 в соответствии с вышеупомянутыми конкретными вариантами осуществления.
Кроме того, третьи синтаксические элементы, показывающие, для каждой позиции одномерного пути, где, согласно первым двоичным синтаксическим элементам, располагается уровень коэффициентов преобразования больший единицы, величину, на которую соответствующий уровень коэффициентов преобразования в соответствующей позиции превышает единицу, могут содержать целочисленные синтаксические элементы, т.е. coeff_abs_minus3, и десимволизатор 314 может быть выполнен с возможностью использования функции отображения, управляемой параметром управления для отображения области определения слов последовательности символов на область значений целочисленных синтаксических элементов, и установления параметра управления на целочисленный синтаксический элемент в зависимости от целочисленных синтаксических элементов предыдущих третьих синтаксических элементов, если активизирован режим высокой эффективности, и выполнения установления кусочно-постоянным образом, так что установление является постоянным по последовательным непрерывным подчастям последовательности в случае активизированного режима низкой сложности, причем селектор 402 может быть выполнен с возможностью выбора заданного одного из энтропийных декодеров (322) для символов слов последовательности символов, отображаемых на целочисленные синтаксические элементы, которая ассоциируется с равно-вероятным распределением как в режиме высокой эффективности, так и в режиме низкой сложности. Т.е. даже если десимволизатор может работать в зависимости от режима, выбранного переключателем 400, как изображено пунктирной линией 407. Вместо кусочно-постоянного установления параметра управления десимволизатор 314 может поддерживать параметр управления постоянным во время текущего слайса, например, или постоянным глобально во времени.In addition, third syntactic elements indicating, for each position of the one-dimensional path where, according to the first binary syntactic elements, a level of transform coefficients greater than one is located, the amount by which the corresponding level of transform coefficients at the corresponding position exceeds one, may contain integer syntactic elements, those. coeff_abs_minus3, and the
Ниже описывается моделирование контекста с масштабируемой сложностью.Modeling context with scalable complexity is described below.
Оценка одного и того же синтаксического элемента верхнего и левого соседа для выведения индекса контекстной модели представляет собой общий подход и часто используется в случае HE, например, для синтаксического элемента разностей векторов движения. Однако эта оценка требует большего буферного накопителя и не позволяет выполнять прямое кодирование синтаксического элемента. Также, для достижения более высоких рабочих характеристик кодирования могут оцениваться более доступные соседи.Evaluating the same top and left neighbor syntactic element to infer the context model index is a common approach and is often used in the case of HE, for example, for the motion vector differences syntactic element. However, this evaluation requires more buffer storage and does not allow direct encoding of the syntactic element. Also, more accessible neighbors can be evaluated to achieve better coding performance.
В предпочтительном варианте осуществления все синтаксические элементы оценки ступени контекстного моделирования соседних квадратных или прямоугольных блоков или единиц предсказания являются фиксированными для одной контекстной модели. Это равнозначно запрещению адаптивности на ступени выбора контекстной модели. Для этого предпочтительного варианта осуществления выбор контекстной модели в зависимости от индекса бина строки бинов после бинаризации не модифицируется по сравнению с текущей разработкой для CABAC. В другом предпочтительном варианте осуществления дополнительно к фиксированной контекстной модели для синтаксических элементов применяют оценку соседей, также является фиксированной контекстная модель для другого индекса бина. Отметьте, что описание не включает бинаризацию и выбор контекстной модели для разностей векторов движения и синтаксических элементов, относящихся к кодированию уровней коэффициентов преобразования.In a preferred embodiment, all context modeling stage evaluation syntactic elements of adjacent square or rectangular blocks or prediction units are fixed to one context model. This is equivalent to prohibiting adaptability at the stage of choosing a context model. For this preferred embodiment, the selection of the context model depending on the bin index of the bin string after binarization is not modified compared to the current design for CABAC. In another preferred embodiment, in addition to the fixed context model for syntactic elements, neighbor estimation is applied, and the context model for another bin index is also fixed. Note that the description does not include binarization and context model selection for motion vector differences and syntactic elements related to encoding transform coefficient levels.
В предпочтительном варианте осуществления разрешается только оценка левого соседа. Это приводит к уменьшенному буферу в цепочке обработки, так как последний блок или строка единиц кодирования больше не должна сохраняться. В другом предпочтительном варианте осуществления оцениваются только соседи, лежащие в одной и той же единице кодирования.In the preferred embodiment, only the left neighbor is allowed to be evaluated. This results in a reduced buffer in the processing chain, since the last block or line of encoding units no longer has to be stored. In another preferred embodiment, only neighbors lying in the same coding unit are evaluated.
В предпочтительном варианте осуществления оцениваются все доступные соседи. Например, в дополнение к верхнему и левому соседу верхний левый, верхний правый и нижний левый соседи оцениваются в случае доступности.In a preferred embodiment, all available neighbors are evaluated. For example, in addition to the top and left neighbor, the top left, top right, and bottom left neighbors are evaluated if available.
Т.е. селектор 402 по фиг. 11 может быть выполнен с возможностью использования, для заданного символа, относящегося к заданному блоку медиаданных, ранее извлеченных символов последовательности символов, относящихся к большему количеству разных соседних блоков медиаданных в случае активизированного режима высокой эффективности, чтобы выбирать один из множества контекстов и выполнять выбор между энтропийными декодерами 322 в зависимости от вероятностной модели, ассоциированной с выбранным контекстом. Т.е. соседние блоки могут быть соседями во временной и/или пространственной области. Пространственно соседние блоки являются видимыми, например, на фиг. 1-3. Тогда селектор 402 может реагировать на выбор режима переключателем 400 режима и выполнять адаптацию контакта, основываясь на ранее извлеченных символах или синтаксических элементах, относящихся к большему количеству соседних блоков в случае режима HE по сравнению с режимом LC, таким образом уменьшая издержки хранения как только что описано.Those.
Ниже описывается кодирование с уменьшенной сложностью разностей векторов движения согласно варианту осуществления.The following describes the reduced complexity coding of motion vector differences according to an embodiment.
В стандарте видеокодека H.264/AVC вектор движения, ассоциированный с макроблоком, передается посредством сигнализации разности (разность вектора движения - mvd) между вектором движения текущего макроблока и предсказателем среднего вектора движения. Когда используется CABAC в качестве энтропийного кодера, mvd кодируется следующим образом. Целочисленная mvd разделяется на абсолютную и знаковую часть. Абсолютная часть бинаризуется с использованием комбинации усеченного унарного кода и экспоненциального кода Голомба 3-го порядка, упоминаемых как префикс и суффикс результирующей строки бинов. Бины, относящиеся к усеченной унарной бинаризации кодируются с использованием контекстных моделей, тогда как бины, относящиеся к экспоненциальной бинаризации Голомба, кодируются в режиме обхода, т.е. с фиксированной вероятностью 0,5 с CABAC. Унарная бинаризация работает следующим образом. Пусть абсолютным целочисленным значением mvd является n, тогда результирующая строка бинов состоит из n «1» и одного завершающего «0». В качестве примера, пусть n=4, тогда строкой бинов является «11110». В случае усеченного унарного существует предел, и, если значение превышает этот предел, строка бинов состоит из n+1 «1». Для случая mvd предел равен 9. Это означает, если кодируется абсолютная mvd, равная или больше 9, приводя к 9 «1», строка бинов состоит из префикса и суффикса с экспоненциальной бинаризацией Голомба. Контекстное моделирование для усеченной унарной части выполняется следующим образом. Для первого бина строки бинов берутся абсолютные значения mvd от верхних и левых соседних макроблоков, если доступны (если недоступны, значение подразумевается равным 0). Если сумма для конкретной составляющей (горизонтального или вертикального направления) больше 2, выбирается вторая контекстная модель, если абсолютная сумма больше 32, выбирается третья контекстная модель, в противном случае, (абсолютная сумма меньше 3) выбирается первая контекстная модель. Кроме того, контекстные модели являются разными для каждой составляющей. Для второго бина из строки бинов используется четвертая контекстная модель, и пятая контекстная модель применяется для остальных бинов унарной части. Когда абсолютная mvd равна или больше 9, например, все бины усеченной унарной части равны «1», разность между абсолютным значением mvd и 9 кодируется в режиме обхода при помощи экспоненциальной бинаризации Голомба 3 порядка. На последнем этапе кодируется знак mvd в режиме обхода.In the H.264/AVC video codec standard, the motion vector associated with a macroblock is transmitted by signaling a difference (motion vector difference - mvd) between the motion vector of the current macroblock and the average motion vector predictor. When CABAC is used as an entropy encoder, mvd is encoded as follows. The integer mvd is divided into an absolute and a signed part. The absolute part is binarized using a combination of truncated unary code and 3rd order exponential Golomb code, referred to as the prefix and suffix of the resulting string of bins. Bins related to truncated unary binarization are encoded using context models, while bins related to exponential Golomb binarization are encoded using traversal mode, i.e. with a fixed probability of 0.5 s CABAC. Unary binarization works as follows. Let the absolute integer value of mvd be n , then the resulting string of bins consists of n "1s" and one trailing "0". As an example, let n=4, then the bin string is "11110". In the case of a truncated unary, there is a limit, and if the value exceeds this limit, the string of bins consists of n+1 "1s". For the mvd case, the limit is 9. This means that if an absolute mvd equal to or greater than 9 is encoded, resulting in 9 "1", the bin string consists of a prefix and a suffix with Golomb exponential binarization. Contextual modeling for the truncated unary part is performed as follows. For the first bin of a row of bins, the absolute mvd values from the top and left adjacent macroblocks are taken, if available (if not available, the value is assumed to be 0). If the sum for a particular component (horizontal or vertical direction) is greater than 2, the second context model is selected, if the absolute sum is greater than 32, the third context model is selected, otherwise (absolute sum less than 3) the first context model is selected. In addition, the context models are different for each component. The fourth context model is used for the second bin of the bin string, and the fifth context model is used for the remaining bins of the unary part. When the absolute mvd is equal to or greater than 9, for example, all bins of the truncated unary part are "1", the difference between the absolute value of mvd and 9 is traversed using 3rd order Golomb exponential binarization. At the last stage, the mvd character is encoded in bypass mode.
Самым последним методом кодирования для mvd при использовании CABAC в качестве энтропийного кодера задается в текущей тестовой модели (HM) проекта высокоэффективного видеокодирования (HEVC). В HEVC размеры блока являются переменными, и форма, задаваемая вектором движения, упоминается как единица предсказания (PU). Размер PU верхнего и левого соседа может иметь другие формы и размеры, чем текущий PU. Поэтому, где это уместно, определение верхнего и левого соседа упоминается теперь как верхний и левый сосед верхнего-левого угла текущего PU. Для самого кодирования процесс выведения для первого бина может меняться согласно варианту осуществления. Вместо оценки абсолютной суммы MV из соседей, каждый сосед может оцениваться отдельно. Если абсолютный MV соседа является доступным и больше 16, индекс контекстной модели может быть увеличен, приводя к такому же количеству контекстных моделей для первого бина, тогда как кодирование оставшегося абсолютного уровня MVD и знака являются точно таким же, что и в H.264/AVC.The most recent encoding method for mvd using CABAC as the entropy encoder is specified in the current benchmark model (HM) of the High Efficiency Video Coding (HEVC) project. In HEVC, block sizes are variable and the shape given by the motion vector is referred to as prediction unit (PU). The size of the top and left neighbor PU may have different shapes and sizes than the current PU. Therefore, where appropriate, the definition of the top-left neighbor is now referred to as the top-left neighbor of the top-left corner of the current PU. For the encoding itself, the derivation process for the first bin may vary according to an embodiment. Instead of estimating the absolute sum of MVs from neighbors, each neighbor can be estimated separately. If the neighbor's absolute MV is available and is greater than 16, the context model index can be increased, resulting in the same number of context models for the first bin, while the remaining absolute MVD and sign level encodings are exactly the same as in H.264/AVC .
В вышеописанном кратко методе кодирования mvd до 9 бинов должны кодироваться с контекстной моделью, тогда как остальное значение mvd может кодироваться в режиме обхода низкой сложности вместе с информацией о знаке. Данный настоящий вариант осуществления описывает метод уменьшения количества бинов, кодируемых с контекстными моделями, приводя к увеличенному количеству обходов и уменьшает количество контекстных моделей, требуемых для кодирования mvd. Для этого, значение отсечки уменьшается с 9 до 1 или 2. Это означает, что только первый бин, задающий, является ли абсолютный mvd больше нуля, кодируется с использованием контекстной модели, или первый и второй бин, задающие, является ли абсолютный mvd больше нуля и единицы, кодируется с использованием контекстной модели, тогда как оставшееся значение кодируется в режиме обхода и/или используя код VLC (код переменной длины). Все бины, являющиеся результатом бинаризации с использованием кода VLC - не используя унарный или усеченный унарный код - кодируются с использованием режима обхода низкой сложности. В случае PIPE возможно непосредственное вставление в битовый поток и из него. Кроме того, если есть, может использоваться другое определение верхнего и левого соседа для выведения лучшего выбора контекстной модели для первого бина.In the mvd encoding method briefly described above, up to 9 bins must be encoded with the context model, while the rest of the mvd value can be encoded in a low complexity bypass mode along with the sign information. This present embodiment describes a method for reducing the number of bins encoded with context models, resulting in an increased number of traversals, and reduces the number of context models required for mvd encoding. To do this, the cutoff value is reduced from 9 to 1 or 2. This means that only the first bin specifying whether the absolute mvd is greater than zero is encoded using the context model, or the first and second bins specifying whether the absolute mvd is greater than zero and ones are encoded using the context model, while the remaining value is encoded in bypass mode and/or using VLC code (variable length code). All bins resulting from binarization using VLC code - not using unary or truncated unary - are encoded using low complexity traversal mode. With PIPE, direct insertion into and out of a bitstream is possible. Additionally, if present, a different definition of top and left neighbor can be used to infer the best choice of context model for the first bin.
В предпочтительном варианте осуществления экспоненциальные коды Голомба используются для бинаризации остальной части абсолютных составляющих MVD. Для этого, порядок экспоненциального кода Голомба является переменным. Порядок экспоненциального кода Голомба выводится следующим образом. После того как будет выведена и кодирована контекстная модель для первого бина, и, поэтому, индекс этой контекстной модели, индекс используется в качестве порядка для части экспоненциальной бинаризации Голомба. В этом предпочтительном варианте осуществления контекстная модель для первого бина находится в диапазоне 1-3, приводя к индексу 0-2, которые используются в качестве порядка экспоненциального кода Голомба. Этот предпочтительный вариант осуществления может использоваться для случая HE.In the preferred embodiment, exponential Golomb codes are used to binarize the remainder of the absolute components of the MVD. For this purpose, the order of the exponential Golomb code is variable. The order of the exponential Golomb code is derived as follows. Once the context model for the first bin has been inferred and encoded, and therefore the index of that context model, the index is used as the order for the Golomb exponential binarization portion. In this preferred embodiment, the context model for the first bin is in the range 1-3, resulting in an index of 0-2, which are used as the order of the exponential Golomb code. This preferred embodiment can be used for the case of HE.
В альтернативе вышеописанному кратко методу использования двух, умноженных на пять, контекстов при кодировании абсолютной MVD, чтобы кодировать 9 бинов бинаризации унарным кодом, также может использоваться 14 контекстных моделей (7 для каждой составляющей). Например, в то время как первый и второй бины унарной части могут кодироваться при помощи четырех разных контекстов, как описано ранее, пятый контекст может использоваться для третьего бина, и шестой контекст может использоваться в отношении четвертого бина, тогда как пятый-девятый бины кодируются с использованием седьмого контекста. Таким образом, в данном случае, будет требоваться даже 14 контекстов, и просто оставшееся значение может кодироваться в режиме обхода низкой сложности. Метод для уменьшения количества бинов, кодируемых при помощи контекстных моделей, приводя к увеличенному количеству обходов и уменьшению количества контекстных моделей, требуемых для кодирования MVD, должен уменьшать значение отсечки, например, с 9 до 1 или 2. Это означает, то только первый бин, задающий, является ли абсолютная MVD больше нуля, будет кодироваться с использованием контекстной модели, или первый и второй бины, задающие, является ли абсолютная MVD больше нуля и единицы, будет кодироваться с использованием соответствующей контекстной модели, тогда как оставшееся значение кодируется при помощи кода VLC. Все бины, являющиеся результатом бинаризации с использованием кода VLC, кодируются с использованием режима обхода низкой сложности. В случае PIPE, возможно непосредственное вставление в битовый поток и из него. Кроме того, представленный вариант осуществления использует другое определение верхнего и левого соседа для выведения выбора лучшей контекстной модели для первого бина. В дополнение к этому, контекстное моделирование модифицируется таким образом, что количество контекстных моделей, требуемых для первого или первого и второго бинов уменьшается, приводя к дальнейшему снижению объема памяти. Также, оценка соседей, таких как вышеприведенный сосед, может запрещаться, приводя к экономии объема памяти/буфера строк, требуемого для хранения значений mvd соседей. Наконец, порядок кодирования составляющих может быть разделен таким образом, который позволяет выполнять кодирование бинов префикса для обоих составляющих (т.е. бинов, кодированных контекстными моделями), за которым следует кодирование бинов обхода.An alternative to the briefly described above method of using two times five contexts when encoding an absolute MVD to encode 9 binarization bins with a unary code, 14 context models (7 for each component) can also be used. For example, while the first and second bins of the unary part may be encoded using four different contexts as described earlier, the fifth context may be used for the third bin, and the sixth context may be used with respect to the fourth bin, while the fifth through ninth bins are encoded with using the seventh context. Thus, in this case, even 14 contexts will be required, and simply the remaining value can be encoded in low complexity bypass mode. A method to reduce the number of bins encoded using context models, resulting in an increased number of traversals and a reduction in the number of context models required for MVD encoding, is to reduce the cutoff value, for example from 9 to 1 or 2. This means that only the first bin specifying whether the absolute MVD is greater than zero will be encoded using the context model, or the first and second bins specifying whether the absolute MVD is greater than zero and one will be encoded using the corresponding context model, while the remaining value is encoded using VLC code . All bins resulting from binarization using VLC code are encoded using low complexity traversal mode. In the case of PIPE, direct insertion into and out of a bitstream is possible. In addition, the presented embodiment uses a different definition of top and left neighbor to infer the selection of the best context model for the first bin. In addition to this, the context modeling is modified such that the number of context models required for the first or first and second bins is reduced, resulting in a further reduction in memory footprint. Also, evaluation of neighbors such as the above neighbor may be inhibited, resulting in saving the amount of memory/row buffer required to store the neighbors' mvd values. Finally, the encoding order of the constituents can be split in a manner that allows prefix bin encoding for both constituents (i.e., context model-encoded bins) followed by traversal bin encoding.
В предпочтительном варианте осуществления экспоненциальные коды Голомба используются для бинаризации остальной части абсолютных составляющих mvd. Для этого, порядок экспоненциального кода Голомба является переменным. Порядок экспоненциального кода Голомба может выводиться следующим образом. После того как будет получена контекстная модель для первого бина, и, поэтому, индекс этой контекстной модели, индекс используется в качестве порядка для экспоненциальной бинаризации Голомба. В данном предпочтительном варианте осуществления контекстная модель для первого бина находится в диапазоне 1-3, приводя к индексу 0-2, который используется в качестве порядка экспоненциального кода Голомба. Данный предпочтительный вариант осуществления может использоваться для случая HE, и количество контекстных моделей уменьшается до 6. Чтобы еще уменьшить количество контекстных моделей и, поэтому, сэкономить память, горизонтальные и вертикальные составляющие могут совместно использовать одни и те же контекстные модели в другом предпочтительном варианте осуществления. В этом случае, требуется только 3 контекстных модели. Кроме того, может учитываться только левый сосед для оценки в другом предпочтительном варианте осуществления изобретения. В данном предпочтительном варианте осуществления порог может не модифицироваться (например, только единственный порог 16, приводя к параметру экспоненциального кода Голомба 0 или 1, или единственный порог 32, приводя к параметру экспоненциального кода Голомба 0 или 2). Этот предпочтительный вариант осуществления экономит буфер строк, требуемый для хранения mvd. В другом предпочтительном варианте осуществления порог модифицируется и равен 2 и 16. Для этого предпочтительного варианта осуществления в сумме требуется 3 контекстных модели для кодирования mvd, и возможный параметр экспоненциального кода Голомба находится в диапазоне 0-2. В другом предпочтительном варианте осуществления порог равен 16 и 32. Снова, описанный вариант осуществления пригоден для случая HE.In the preferred embodiment, exponential Golomb codes are used to binarize the remainder of the absolute components of mvd. For this purpose, the order of the exponential Golomb code is variable. The order of the exponential Golomb code can be derived as follows. Once the context model for the first bin is obtained, and therefore the index of that context model, the index is used as the order for the Golomb exponential binarization. In this preferred embodiment, the context model for the first bin is in the range 1-3, resulting in an index of 0-2, which is used as the order of the exponential Golomb code. This preferred embodiment can be used for the HE case and the number of context models is reduced to 6. To further reduce the number of context models and therefore save memory, the horizontal and vertical components can share the same context models in another preferred embodiment. In this case, only 3 context models are required. Moreover, only the left neighbor may be considered for evaluation in another preferred embodiment of the invention. In this preferred embodiment, the threshold may not be modified (eg, only a single threshold 16, resulting in an exponential Golomb code parameter of 0 or 1, or a single threshold 32, resulting in an exponential Golomb code parameter of 0 or 2). This preferred embodiment saves the row buffer required to store the mvd. In another preferred embodiment, the threshold is modified to be 2 and 16. This preferred embodiment requires a total of 3 context models to encode the mvd, and the possible exponential Golomb code parameter is in the range of 0-2. In another preferred embodiment, the threshold is 16 and 32. Again, the described embodiment is suitable for the HE case.
В другом предпочтительном варианте осуществления изобретения значение отсечки уменьшается с 9 до 2. В данном предпочтительном варианте осуществления первый бин и второй бин могут кодироваться с использованием контекстных моделей. Выбор контекстной модели для первого бина может выполняться как в современном состоянии техники или в модифицированном виде таким образом, который описан в предпочтительном варианте осуществления выше. Для второго бина выбирается отдельная контекстная модель как в современном состоянии техники. В другом предпочтительном варианте осуществления контекстная модель для второго бина выбирается посредством оценки mvd левого соседа. Для этого случая, индекс контекстной модели является тем же, что и для первого бина, тогда как доступные контекстные модели являются другими, чем для первого бина. В итоге, требуется 6 контекстных моделей (отметьте, что составляющие совместно используют контекстные модели). Снова, параметр экспоненциального кода Голомба может зависеть от индекса выбранной контекстной модели первого бина. В другом предпочтительном варианте осуществления изобретения параметр экспоненциального кода Голомба зависит от индекса контекстной модели второго бина. Описанные варианты осуществления изобретения могут использоваться для случая HE.In another preferred embodiment of the invention, the cutoff value is reduced from 9 to 2. In this preferred embodiment, the first bin and the second bin may be encoded using context models. The selection of the context model for the first bin can be performed as is in the state of the art or in a modified form in the manner described in the preferred embodiment above. For the second bin, a separate context model is selected as in the current state of the art. In another preferred embodiment, the context model for the second bin is selected by estimating the mvd of the left neighbor. For this case, the context model index is the same as for the first bin, while the available context models are different than for the first bin. In total, 6 context models are required (note that the components share context models). Again, the exponential Golomb code parameter may depend on the index of the selected context model of the first bin. In another preferred embodiment of the invention, the exponential Golomb code parameter depends on the context model index of the second bin. The described embodiments of the invention can be used for the case of HE.
В другом предпочтительном варианте осуществления изобретения контекстные модели для обоих бинов являются фиксированными и не выводятся посредством оценки или левого, или верхнего соседей. Для этого предпочтительного варианта осуществления общее количество контекстных моделей равно 2. В другом предпочтительном варианте осуществления изобретения первый бин и второй бин совместно используют одну и ту же контекстную модель. В результате, только одна контекстная модель требуется для кодирования mvd. В обоих предпочтительных вариантах осуществления изобретения параметр экспоненциального кода Голомба может быть фиксированным и равным 1. Описанный предпочтительный вариант осуществления изобретения пригоден для обоих конфигураций HE и LC.In another preferred embodiment of the invention, the context models for both bins are fixed and are not inferred by estimating either the left or top neighbors. For this preferred embodiment, the total number of context models is 2. In another preferred embodiment of the invention, the first bin and the second bin share the same context model. As a result, only one context model is required to encode mvd. In both preferred embodiments of the invention, the exponential Golomb code parameter may be fixed to 1. The described preferred embodiment is suitable for both HE and LC configurations.
В другом предпочтительном варианте осуществления порядок экспоненциальной части кода Голомба выводится независимо из индекса контекстной модели первого бина. В данном случае, абсолютная сумма выбора обычной контекстной модели H.264/AVC используется для выведения порядка для экспоненциальной части кода Голомба. Этот предпочтительный вариант осуществления может использоваться для случая HE.In another preferred embodiment, the order of the exponential part of the Golomb code is derived independently from the context model index of the first bin. In this case, the absolute sum of the conventional H.264/AVC context model selection is used to derive the order for the exponential part of the Golomb code. This preferred embodiment can be used for the case of HE.
В другом предпочтительном варианте осуществления порядок экспоненциальных кодов Голомба является фиксированным и устанавливается на 0. В другом предпочтительном варианте осуществления порядок экспоненциальных кодов Голомба является фиксированным и устанавливается на 1. В предпочтительном варианте осуществления порядок экспоненциальных кодов Голомба фиксируется на 2. В другом варианте осуществления порядок экспоненциальных кодов Голомба фиксируется на 3. В другом варианте осуществления порядок экспоненциальных кодов Голомба фиксируется в соответствии с формой и размером текущего PU. Представленные предпочтительные варианты осуществления могут использоваться для случая LC. Отметьте, что фиксированный порядок части экспоненциального кода Голомба рассматривается с уменьшенным количеством бинов, кодированных с контекстными моделями.In another preferred embodiment, the order of exponential Golomb codes is fixed and is set to 0. In another preferred embodiment, the order of exponential Golomb codes is fixed and is set to 1. In a preferred embodiment, the order of exponential Golomb codes is fixed to 2. In another embodiment, the order of exponential Golomb codes are fixed to 3. In another embodiment, the order of exponential Golomb codes is fixed according to the shape and size of the current PU. The preferred embodiments presented may be used for the LC case. Note that the fixed order portion of the exponential Golomb code is considered with a reduced number of bins encoded with context models.
В предпочтительном варианте осуществления соседи определяются следующим образом. Для вышеупомянутого PU все PU, которые закрывают текущий PU, принимаются во внимание, и используется PU с наибольшим MV. Это также выполняется для левого соседа. Все PU, которые закрывают текущий PU, оцениваются, и используется PU с наибольшим MV. В другом предпочтительном варианте осуществления среднее абсолютное значение вектора движения от всех PU, которые закрывают верхнюю и левую границу текущего PU, используется для выведения первого бина.In a preferred embodiment, neighbors are defined as follows. For the above PU, all PUs that cover the current PU are taken into account and the PU with the largest MV is used. This also applies to the left neighbor. All PUs that cover the current PU are evaluated and the PU with the highest MV is used. In another preferred embodiment, the average absolute value of the motion vector from all PUs that cover the top and left border of the current PU is used to derive the first bin.
Для представленных выше предпочтительных вариантов осуществления является возможным изменять порядок кодирования следующим образом. mvd должен быть задан для горизонтального и вертикального направления один за другим (или наоборот). Таким образом, две строки бинов должны кодироваться. Чтобы минимизировать количество переключений режима для механизма энтропийного кодирования (т.е. переключение между режимом обхода и обычным режимом), является возможным кодировать бины, кодированные с контекстными моделями для обоих составляющих на первом этапе, за которым следует бины, кодированные в режиме обхода на втором этапе. Отметьте, что это представляет собой только переупорядочивание.For the above preferred embodiments, it is possible to change the encoding order as follows. mvd must be set for horizontal and vertical direction one after the other (or vice versa). Thus, two strings of beans must be encoded. To minimize the number of mode switches for the entropy encoding mechanism (i.e., switching between bypass mode and normal mode), it is possible to encode bins encoded with context models for both components in the first stage, followed by bins encoded in bypass mode in the second stage. Note that this represents only a reordering.
Необходимо отметить, что бины, являющиеся результатом унарной или усеченной унарной бинаризации, также могут представляться эквивалентной бинаризацией фиксированной длины одного флага на индекс бина, задающего, является ли значение больше индекса текущего бина. В качестве примера, значение отсечки для усеченной унарной бинаризации mvd устанавливается на 2, приводя к кодовым словам 0, 10, 11 для значений 0, 1, 2. При соответствующей бинаризации фиксированной длины с одним флагом на индекс бина, один флаг для индекса 0 бина (т.е. первого бина) задает, является ли абсолютное значение mvd больше 0 или нет, и один флаг для второго бина с индексом 1 бина задает, является ли абсолютное значение mvd больше 1 или нет. Когда второй флаг только кодируется, когда первый флаг равен 1, это приводит к таким же кодовым словам 0, 10, 11.It should be noted that bins resulting from a unary or truncated unary binarization can also be represented by an equivalent fixed-length binarization of one flag per bin index specifying whether the value is greater than the index of the current bin. As an example, the cutoff value for the truncated unary binarization mvd is set to 2, resulting in
Ниже описывается представление с масштабируемой сложностью внутреннего состояния вероятностных моделей согласно варианту осуществления.The following describes a scalable complexity representation of the internal state of probabilistic models according to an embodiment.
При установке HE-PIPE, внутреннее состояние вероятностной модели обновляется после кодирования бина с ним. Обновленное состояние выводится посредством табличного поиска перехода состояния, используя старое состояние и значение кодированного бина. В случае CABAC вероятностная модель может принимать 63 разных состояний, когда каждое состояние соответствует вероятности модели в интервале (0,0, 0,5). Каждое из этих состояний используется для реализации двух вероятностей модели. В дополнение к вероятности, назначенной состоянию, 1,0 минус вероятность также используется, и флаг, названный valMps, хранит информацию, используется ли вероятность или 1,0 минус вероятность. Это приводит к сумме в 126 состояний. Чтобы использовать такую вероятностную модель с принципом кодирования PIPE, каждое из 126 состояний необходимо отображать на один из доступных кодеров PIPE. В текущих реализациях кодеров PIPE это выполняется посредством использования таблицы поиска. Пример такого отображения описывается в таблице A.When setting HE-PIPE, the internal state of the probabilistic model is updated after encoding a bin with it. The updated state is inferred through a state transition table lookup using the old state and the value of the encoded bin. In the case of CABAC, the probabilistic model can assume 63 different states, where each state corresponds to a model probability in the interval (0.0, 0.5). Each of these states is used to implement two model probabilities. In addition to the probability assigned to the state, 1.0 minus probability is also used, and a flag called valMps stores information whether probability or 1.0 minus probability is used. This results in a total of 126 states. To use such a probabilistic model with the PIPE encoding principle, each of the 126 states must be mapped to one of the available PIPE encoders. Current implementations of PIPE encoders accomplish this by using a lookup table. An example of such a mapping is described in Table A.
Ниже описывается вариант осуществления, как внутреннее состояние вероятностной модели может быть представлено для исключения использования таблицы поиска для преобразования внутреннего состояния в индекс PIPE. Необходимы исключительно некоторые простые операции маскирования битов для извлечения индекса PIPE из переменной внутреннего состояния вероятностной модели. Это новое представление с масштабируемой сложностью внутреннего состояния вероятностной модели разработано двухуровневым образом. Для применений, где операция низкой сложности является обязательной, используется только первый уровень. Он описывает только индекс pipe и флаг valMps, который используется для кодирования или декодирования ассоциированных бинов. В случае описанной схемы энтропийного кодирования PIPE, первый уровень может использоваться для различения между 8 разными вероятностями моделей. Таким образом, первому уровню потребуется 3 бита для pipeIdx, и один дополнительный бит для флага valMps. Со вторым уровнем каждый из диапазонов грубой вероятности первого уровня уточняется в несколько меньшие интервалы, которые поддерживают представление вероятностей при более высоких разрешениях. Это более подробное представление позволяет получить более точную работу устройств оценки вероятности. В общем, оно подходит для применений кодирования, которые стремятся к высоким характеристикам RD. В качестве примера, это представление с масштабируемой сложностью внутреннего состояния вероятностных моделей с использованием PIPE изображается следующим образом:The following describes an embodiment of how the internal state of a probabilistic model can be represented to eliminate the use of a lookup table to transform the internal state into a PIPE index. All that is needed is some simple bit masking operations to extract the PIPE index from the internal state variable of the probabilistic model. This new representation with scalable internal state complexity of the probabilistic model is developed in a two-level manner. For applications where low complexity operation is mandatory, only the first level is used. It describes only the pipe index and the valMps flag, which is used to encode or decode associated bins. In the case of the described PIPE entropy encoding scheme, the first layer can be used to distinguish between 8 different model probabilities. Thus, the first layer will need 3 bits for pipeIdx, and one additional bit for the valMps flag. With the second level, each of the first level's crude probability ranges is refined into slightly smaller intervals that support the representation of probabilities at higher resolutions. This more detailed view allows for more accurate performance of probability estimators. In general, it is suitable for coding applications that strive for high RD performance. As an example, this scalable internal state complexity representation of probabilistic models using PIPE is depicted as follows:
Первый и второй уровни сохраняются в единственной 8-битовой памяти. 4 бита требуются для хранения первого уровня - индекс, который определяет индекс PIPE со значением MPS на самом старшем бите - и другие 4 бита используются для хранения второго уровня. Для реализации поведения устройства оценки вероятности CABAC, каждый индекс PIPE имеет конкретное количество разрешенных индексов уточнения в зависимости от того, сколько состояний CABAC было отображено на индекс PIPE. Например, для отображения в таблице A количество состояний CABAC на индекс PIPE изображается в таблице B.The first and second levels are stored in a single 8-bit memory. 4 bits are required to store the first level - the index that defines the PIPE index with the MPS value on the most significant bit - and the other 4 bits are used to store the second level. To implement the CABAC probability estimator behavior, each PIPE index has a specific number of refinement indexes allowed depending on how many CABAC states have been mapped to the PIPE index. For example, to display in table A, the number of CABAC states per PIPE index is depicted in table B.
Таблица B: Количество состояний CABAC на индекс PIPE для примера таблицы A.Table B: Number of CABAC states per PIPE index for example table A.
Во время процесса кодирования или декодирования бина к индексу PIPE и valMps можно обращаться непосредственно посредством применения простой битовой маски или операций сдвига бита. Процессы кодирования низкой сложности требуют 4 бита первого уровня, и процессы кодирования высокой эффективности могут дополнительно использовать 4 бита второго уровня для выполнения обновления вероятностной модели устройства оценки вероятности CABAC. Для выполнения этого обновления может быть разработана таблица поиска переходов состояния, которая делает такие же переходы состояния, что и исходная таблица, но используя двухуровневое представление с масштабируемой сложностью состояний. Исходная таблица переходов состояний состоит из двух, умноженных на 63 элементов. Для каждого состояния ввода она содержит два состояния вывода. При использовании представления с масштабируемой сложностью размер таблицы переходов состояний не превышает 2, умноженных на 128 элементов, что представляет собой допустимое увеличение размера таблицы. Это увеличение зависит от того, сколько битов используется для представления индекса уточнения и точного имитирования поведения устройства оценки вероятности CABAC, необходимо четыре бита. Однако могут использоваться другие устройства оценки вероятности, которые могут работать на уменьшенном наборе состояний CABAC, так что для каждого индекса pipe разрешается не более 8 состояний. Поэтому, потребление памяти может сопоставляться с данным уровнем сложности процесса кодирования посредством адаптации количества битов, используемых для представления индекса уточнения. По сравнению с внутренним состоянием вероятностей модели с CABAC - где существует 64 индекса состояния вероятности - исключается использование табличных поисков для отображения вероятностей модели на конкретный код PIPE, и не требуется дополнительного преобразования.During the encoding or decoding process of a bin, the PIPE index and valMps can be accessed directly through the use of a simple bit mask or bit shift operations. Low complexity encoding processes require 4 bits of the first level, and high efficiency encoding processes can additionally use 4 bits of the second level to perform an update of the probabilistic model of the CABAC probability estimator. To perform this update, a state transition lookup table can be designed that makes the same state transitions as the original table, but using a two-level representation with scalable state complexity. The original state transition table consists of two elements multiplied by 63. For each input state, it contains two output states. When using a scalable complexity representation, the size of the state transition table does not exceed 2 times 128 elements, which is an acceptable increase in table size. This increase depends on how many bits are used to represent the refinement index and accurately simulate the behavior of the CABAC probability estimator, four bits are needed. However, other probability estimators can be used that can operate on a reduced set of CABAC states such that no more than 8 states are allowed for each pipe index. Therefore, memory consumption can be matched to a given level of complexity of the encoding process by adapting the number of bits used to represent the refinement index. Compared to the internal state of model probabilities with CABAC - where there are 64 probability state indices - the use of table lookups to map model probabilities to a specific PIPE code is eliminated, and no additional transformation is required.
Ниже описывается обновление контекстной модели с масштабируемой сложностью согласно варианту осуществления.The following describes updating the context model with scalable complexity according to an embodiment.
Для обновления контекстной модели ее индекс состояния вероятности может обновляться на основе одного или нескольких ранее кодированных бинов. В установке HE-PIPE это обновление выполняется после кодирования или декодирования каждого бина. И наоборот, в установке LC-PIPE это обновление может никогда не выполняться.To update the context model, its probability state index may be updated based on one or more previously encoded bins. In a HE-PIPE setup, this update is performed after each bin is encoded or decoded. Conversely, in an LC-PIPE installation, this update may never be performed.
Однако является возможным выполнять обновление контекстных моделей с масштабируемой сложностью. Т.е. решение, обновлять ли контекстную модель или нет может основываться на различных аспектах. Например, установка кодера может не выполнять обновление только для конкретных контекстных моделей, подобно, например, контекстным моделям синтаксического элемента coeff_significant_flag и выполнять всегда обновления для всех других контекстных моделей.However, it is possible to update context models with scalable complexity. Those. The decision whether to update the context model or not can be based on various aspects. For example, an encoder installation may not perform updates only for specific context models, like, for example, the context models of the coeff_significant_flag syntax element, and always perform updates for all other context models.
Другими словами, селектор 402 может быть выполнен, для символов каждого из нескольких заданных типов символа, с возможностью выполнения выбора среди энтропийных декодеров 322 в зависимости от соответствующей вероятностной модели, ассоциированной с соответствующим заданным символом, так что количество заданных типов символа меньше в режиме низкой сложности по сравнению с режимом высокой эффективности.In other words, the
Кроме того, критериями для управления, обновлять ли контекстную модель или нет, могут быть, например, размер пакета битового потока, количество бинов, декодированных до сих пор, или обновление выполняется только после кодирования конкретного фиксированного или переменного количества бинов для контекстной модели.In addition, the criteria for controlling whether to update the context model or not may be, for example, the size of the bitstream packet, the number of bins decoded so far, or the update is performed only after encoding a specific fixed or variable number of bins for the context model.
С данной схемой для принятия решения, обновлять ли контекстные модели или нет, может быть реализовано обновление контекстной модели с масштабируемой сложностью. Это позволяет увеличивать или уменьшать долю бинов в битовом потоке, для которого выполняется обновления контекстной модели. Чем больше количество обновлений контекстной модели, тем лучше эффективность кодирования и выше вычислительная сложность. Таким образом, обновление контекстной модели с масштабируемой сложностью может достигаться с описанной схемой.With this scheme for deciding whether to update context models or not, context model updating with scalable complexity can be realized. This allows you to increase or decrease the proportion of bins in the bitstream for which context model updates are performed. The higher the number of context model updates, the better the coding efficiency and the higher the computational complexity. Thus, context model updating with scalable complexity can be achieved with the described scheme.
В предпочтительном варианте осуществления обновление контекстной модели выполняется для бинов всех синтаксических элементов за исключением синтаксических элементов coeff_significant_flag, coeff_abs_greater1 и coeff_abs_greater2.In the preferred embodiment, the context model update is performed on the bins of all syntax elements except the syntax elements coeff_significant_flag, coeff_abs_greater1 and coeff_abs_greater2.
В другом предпочтительном варианте осуществления обновление контекстной модели выполняется только для бинов синтаксических элементов coeff_significant_flag, coeff_abs_greater1 и coeff_abs_greater2.In another preferred embodiment, the context model update is performed only on the coeff_significant_flag, coeff_abs_greater1, and coeff_abs_greater2 syntax element bins.
В другом предпочтительном варианте осуществления обновление контекстной модели выполняется для всех контекстных моделей, когда начинается кодирование или декодирование слайса. После того как будет обработано конкретное заданное количество блоков преобразования, обновление контекстной модели запрещается для всех контекстных моделей до тех пор, пока не будет достигнут конец слайса.In another preferred embodiment, a context model update is performed for all context models when encoding or decoding of a slice begins. Once a specific specified number of transformation blocks have been processed, updating the context model is disabled for all context models until the end of the slice is reached.
Например, селектор 402 может быть выполнен, для символов заданного типа символа, с возможностью выполнения выбора из числа энтропийных декодеров 322 в зависимости от вероятностной модели, ассоциированной с заданным типом символа, вместе или без обновления ассоциированной вероятностной модели, так что длительность фазы обучения последовательности символов, по которой выполняется выбор символов заданного типа символа вместе с обновлением, является более короткой в режиме низкой сложности по сравнению с режимом высокой эффективности.For example,
Другой предпочтительный вариант осуществления идентичен ранее описанному предпочтительному варианту осуществления, но он использует представление с масштабируемой сложностью внутреннего состояния контекстных моделей таким образом, что одна таблица хранит «первую часть» (valMps и pipeIdx) всех контекстных моделей, и вторая таблица хранит «вторую часть» (refineIdx) всех контекстных моделей. Тогда, когда обновление контекстной модели запрещается для всех контекстных моделей (как описано в предыдущем предпочтительном варианте осуществления), больше не требуется таблица, хранящая «вторую часть», и она может быть отброшена.Another preferred embodiment is identical to the previously described preferred embodiment, but it uses a complexity-scalable representation of the internal state of context models such that one table stores the "first part" (valMps and pipeIdx) of all context models, and a second table stores the "second part" (refineIdx) of all context models. Then, when updating the context model is disabled for all context models (as described in the previous preferred embodiment), the table storing the "second part" is no longer required and can be discarded.
Ниже описывается обновление контекстной модели для последовательности бинов согласно варианту осуществления.The following describes updating the context model for a sequence of bins according to an embodiment.
В конфигурации LC-PIPE бины синтаксических элементов типа coeff_significant_flag, coeff_abs_greater1 и coeff_abs_greater2 группируются в подмножества. Для каждого подмножества используется единственная контекстная модель для кодирования ее бинов. В данном случае, обновление контекстной модели может выполняться после кодирования фиксированного количества бинов данной последовательности. Это обозначается многобиновым обновлением в нижеследующем. Однако это обновление может отличаться от обновления, использующего только последний кодированный бин и внутреннее состояние контекстной модели. Например, для каждого бина, который был кодирован, выполняется один этап обновления контекстной модели.In the LC-PIPE configuration, bins of syntax elements of type coeff_significant_flag, coeff_abs_greater1 and coeff_abs_greater2 are grouped into subsets. For each subset, a single context model is used to encode its bins. In this case, updating the context model can be performed after encoding a fixed number of bins of a given sequence. This is denoted by a multi-bin update in the following. However, this update may be different from an update that uses only the last encoded bin and the internal state of the context model. For example, for each bin that has been encoded, one context model update step is performed.
Ниже приведены примеры для кодирования примерного подмножества, состоящего из 8 бинов. Буква «b» обозначает декодирование бина, и буква «u» обозначает обновление контекстной модели. В случае LC-PIPE выполняется только декодирование бинов без выполнения обновлений контекстной модели:Below are examples for encoding an example subset of 8 bins. The letter “b” denotes bin decoding, and the letter “u” denotes updating the context model. In the case of LC-PIPE, only bin decoding is performed without performing updates to the context model:
b b b b b b b bb b b b b b b b
В случае HE-PIPE после декодирования каждого бина выполняется обновление контекстной модели:In the case of HE-PIPE, after decoding each bin, the context model is updated:
b u b u b u b u b u b u b u b ub u b u b u b u b u b u b u b u
Чтобы в некоторой степени уменьшить сложность, обновление контекстной модели может выполняться после последовательности бинов (в данном примере после каждых 4 бинов выполняются обновления этих 4 бинов):To reduce complexity to some extent, an update to the context model can be performed after a sequence of beans (in this example, after every 4 beans, updates to those 4 beans are performed):
b b b b u u u u b b b b u u u ub b b b u u u u b b b b u u u u
Т.е. селектор 402 может быть выполнен, для символов заданного типа символа, с возможностью выполнения выбора из числа энтропийных декодеров 322 в зависимости от вероятностной модели, ассоциированной с заданным типом символа вместе с или без обновления ассоциированной вероятностной модели, так что частота, с которой выполняется выбор символов заданного типа символа вместе с обновлением, меньше в режиме низкой сложности по сравнению с режимом высокой эффективности.Those.
В данном случае, после декодирования 4 бинов следует 4 этапа обновления, основанные на только что декодированных 4 бинах. Отметьте, что эти четыре этапа обновления могут выполняться одним единственным этапом посредством использования специальной таблицы поиска для поиска. Эта таблица поиска хранит для каждой возможной комбинации из 4 бинов и каждого возможного внутреннего состояния контекстной модели результирующее новое состояние после четырех обычных этапов обновления.In this case, after decoding the 4 bins, there are 4 update steps based on the 4 bins just decoded. Note that these four update steps can be performed in one single step by using a special lookup table for the lookup. This lookup table stores, for every possible combination of 4 bins and every possible internal state of the context model, the resulting new state after the normal four update steps.
В некотором режиме многобиновое обновление используется для синтаксического элемента coeff_significant_flag. Для бинов всех других синтаксических элементов не используется обновление контекстной модели. Количество бинов, которые кодируются перед этапом многобинового обновления, устанавливается на n. Когда количество бинов множества не является кратным n, 1-n-1 бинов остается в конце подмножества после последнего многобинового обновления. Для каждого из этих бинов выполняется обычное однобиновое обновление после кодирования всех этих бинов. Количество n может представлять собой любое положительное число больше 1. Другой режим может быть идентичным предыдущему режиму за исключением того, что многобиновое обновление выполняется для произвольных комбинаций coeff_significant_flag, coeff_abs_greater1 и coeff_abs_greater2 (только вместо coeff_significant_flag). Таким образом, этот режим будет более сложным, чем другой. Все другие синтаксические элементы (где не используется многобиновое обновление) могут быть разделены на два непересекающихся подмножеств, где для одного из подмножеств используется однобиновое обновление, и для другого подмножества не используется обновление контекстной модели. Любые возможные непересекающиеся подмножества являются действительными (включая пустое подмножество).In some mode, multi-bin update is used for the coeff_significant_flag syntax element. All other syntax element beans do not use context model updating. The number of bins that are encoded before the multi-bin update step is set to n. When the number of bins in a set is not a multiple of n, 1-n-1 bins remain at the end of the subset after the last multibin update. For each of these bins, a normal single-bin update is performed after encoding all of these bins. The number n can be any positive number greater than 1. Another mode can be identical to the previous mode except that a multi-bin update is performed for arbitrary combinations of coeff_significant_flag, coeff_abs_greater1 and coeff_abs_greater2 (only instead of coeff_significant_flag). So this mode will be more challenging than the other. All other syntax elements (where multi-bin update is not used) can be divided into two disjoint subsets, where one of the subsets uses single-bin update and the other subset does not use context model update. Any possible disjoint subsets are valid (including the empty subset).
В альтернативном варианте осуществления многобиновое обновление может основываться только на последних m бинах, которые кодируются непосредственно перед этапом многобинового обновления. m может представлять собой любое натуральное число меньше n. Таким образом, декодирование может выполняться подобно следующему:In an alternative embodiment, the multi-bin update may be based only on the last m bins that are encoded immediately before the multi-bin update step. m can represent any natural number less than n. So decoding can be done like the following:
b b b b u u b b b b u u b b b b u u b b b b …b b b b u u b b b b u u b b b b u u b b b b …
при n=4 и m=2.with n=4 and m=2.
Т.е. селектор 402 может быть выполнен, для символов заданного типа символа, с возможностью выполнения выбора из числа энтропийных декодеров 322 в зависимости от вероятностной модели, ассоциированной с заданным типом символа, вместе с обновлением ассоциированной вероятностной модели каждого n-го символа заданного типа, основываясь на m самых последних символах заданного типа символа, так что отношение n/m является более высоким в режиме низкой сложности по сравнению с режимом высокой эффективности.Those.
В другом предпочтительном варианте осуществления для синтаксического элемента coeff_significant_flag может использоваться схема контекстного моделирования, использующая местный шаблон, как описано выше для конфигурации HE-PIPE, для назначения контекстных моделей бинам синтаксического элемента. Однако для этих бинов не используется обновление контекстной модели.In another preferred embodiment, a context modeling scheme may be used for the coeff_significant_flag syntax element using a local template, as described above for the HE-PIPE configuration, to assign context models to the syntax element's bins. However, these beans do not use context model updating.
Кроме того, селектор 402 может быть выполнен, для символов заданного типа символа, с возможностью выбора одного из нескольких контекстов в зависимости от количества ранее извлеченных символов последовательности символов и выполнения выбора из числа энтропийных декодеров 322 в зависимости от вероятностной модели, ассоциированной с выбранным контекстом, так что количество контекстов, и/или количество ранее извлеченных символов, меньше в режиме низкой сложности по сравнению с режимом высокой эффективности.In addition, the
Инициализация вероятностной модели, использующая 8-битовые значения инициализацииProbabilistic model initialization using 8-bit initialization values
Этот раздел описывает процесс инициализации внутреннего состояния с масштабируемой сложностью вероятностных моделей, используя так называемое 8-битовое значение инициализации вместо двух 8-битовых значений, как в случае современного стандарта H.264/AVC видеокодирования. Оно состоит из двух частей, которые являются сравнимыми с парами значений инициализации, используемыми для вероятностных моделей в CABAC в H.264/AVC. Две части представляют два параметра линейного уравнения для вычисления исходного состояния вероятностной модели, представляющей конкретную вероятность (например, в виде индекса PIPE) из QP:This section describes the process of initializing internal state with scalable complexity of probabilistic models, using a so-called 8-bit initialization value instead of two 8-bit values, as is the case with the current H.264/AVC video encoding standard. It consists of two parts, which are comparable to the initialization value pairs used for probabilistic models in CABAC in H.264/AVC. The two parts represent the two parameters of a linear equation for calculating the initial state of a probabilistic model representing a specific probability (e.g. as a PIPE index) from the QP:
Первая часть описывает наклон, и он использует зависимость внутреннего состояния касательно параметра квантования (QP), который используется во время кодирования или декодирования.The first part describes the slope, and it uses the internal state relationship with respect to the quantization parameter (QP) that is used during encoding or decoding.
Вторая часть описывает индекс PIPE при данном QP, а также valMps.The second part describes the PIPE index at a given QP, as well as valMps.
Два разных режима являются доступными для инициализации вероятностной модели, используя данное значение инициализации. Первый режим обозначается как независимая от QP инициализация. Он использует только индекс PIPE и valMps, определенные во второй части значения инициализации для всех QP. Это идентично случаю, когда наклон равен 0. Второй режим обозначается как зависимая от QP инициализация, и он дополнительно использует наклон первой части значения инициализации для изменения индекса PIPE и определения индекса уточнения. Две части 8-битового значения инициализации изображаются следующим образом:Two different modes are available for initializing a probabilistic model using a given initialization value. The first mode is designated as QP-independent initialization. It only uses the PIPE index and valMps defined in the second part of the initialization value for all QPs. This is identical to the case when the slope is 0. The second mode is denoted as QP-dependent initialization, and it additionally uses the slope of the first part of the initialization value to change the PIPE index and determine the refinement index. The two parts of the 8-bit initialization value are depicted as follows:
Оно состоит из двух 4-битовых частей. Первая часть содержит индекс, который указывает на 1 из 16 разных заданных наклонов, которые хранятся в массиве. Заданные наклоны состоят из 7 отрицательных наклонов (индекс наклона 0-6), одного наклона, который равен нулю (индекс 7 наклона) и 8 положительных наклонов (индекс 8-15 наклона). Наклоны изображены в таблице C.It consists of two 4-bit parts. The first part contains an index that points to 1 of the 16 different specified slopes that are stored in the array. The specified slopes consist of 7 negative slopes (slope index 0-6), one slope that is zero (slope index 7), and 8 positive slopes (slope index 8-15). The slopes are shown in Table C.
Таблица CTable C
Все значения масштабируются коэффициентом 256, чтобы избежать использования операций с плавающей запятой. Вторая часть представляет собой индекс PIPE, который изображает восходящую вероятность valMps=1 между интервалом вероятности p=0 и p=1. Другими словами, кодер n PIPE должен работать при более высокой вероятности модели, чем кодер n-1 PIPE. Для каждой вероятностной модели доступен один индекс вероятности PIPE, и он идентифицирует кодер PIPE, интервал вероятностей которого содержит вероятность pvalMPs=1 для QP=26.All values are scaled by a factor of 256 to avoid the use of floating point operations. The second part is the PIPE index, which depicts the upward probability valMps=1 between the probability interval p=0 and p=1. In other words, the n PIPE encoder must operate at a higher model probability than the n-1 PIPE encoder. There is one PIPE probability index available for each probabilistic model, and it identifies a PIPE encoder whose probability interval contains the probability p valMPs=1 for QP=26.
Таблица D: Отображение второй части значения инициализации на кодеры PIPE и valMps: UR - унарный-в-Райс-код; TB - трехбиновый код, BP - бин-pipe-код, EP - равновероятность (не кодируется)Table D: Mapping of the second part of the initialization value to the PIPE and valMps encoders: UR - unary-to-Rice code; TB - three-bin code, BP - bin-pipe code, EP - equal probability (not coded)
QP и 8-битовое значение инициализации требуются для вычисления инициализации внутреннего состояния вероятностных моделей посредством вычисления простого линейного уравнения в виде y=m*(QP-QPref)+256*b. Отметьте, что m определяет наклон, который берется из таблицы C посредством использования индекса наклона (первая часть 8-битового значения инициализации), и b обозначает кодер PIPE при QPref=26 (вторая часть 8-битового значения инициализации: «Индекс вероятности PIPE»). Тогда valMPS равен 1, и pipeIdx равен (y-2048)>>8, если y больше 2047. В противном случае, valMPS равен 0, и pipeIdx равен (2047-y)>>8. Индекс уточнения равен (((y-2048)&255)*numStates)>>8, если valMPS равен 1. В противном случае, индекс уточнения равен (((2047-y)&255)*numStates)>>8. В обоих случаях, numStates равен количеству состояний CABAC в pipeIdx, как изображено в таблице B.A QP and an 8-bit initialization value are required to compute the initialization of the internal state of the probabilistic models by computing a simple linear equation of the form y=m*(QP-QPref)+256*b. Note that m specifies the slope, which is taken from table C by using the slope index (the first part of the 8-bit initialization value), and b denotes the PIPE encoder at QPref=26 (the second part of the 8-bit initialization value: "PIPE Probability Index") . Then valMPS is 1 and pipeIdx is (y-2048)>>8 if y is greater than 2047. Otherwise, valMPS is 0 and pipeIdx is (2047-y)>>8. The refinement index is (((y-2048)&255)*numStates)>>8 if valMPS is 1. Otherwise, the refinement index is (((2047-y)&255)*numStates)>>8. In both cases, numStates is equal to the number of CABAC states in pipeIdx, as depicted in Table B.
Вышеупомянутая схема не только может использоваться в комбинации с кодерами PIPE, но также в связи с вышеупомянутыми схемами CABAC. При отсутствии PIPE количество состояний CABAC, т.е. вероятностных состояний, между которыми выполняется переход состояния при обновлении вероятности (pState_current[bin]) на PIPE Idx (т.е. соответствующие самые старшие биты pState_current[bin]) представляют собой тогда только множество параметров, которые реализуют, фактически, кусочно-линейную интерполяцию состояния CABAC в зависимости от QP. Кроме того, эта кусочно-линейная интерполяция также может быть виртуально запрещена в случае, когда параметр numStates использует одинаковое значение для всех PIPE Idx. Например, установка numStates в 8 для всех случаев дает в сумме 16*8 состояний, и вычисление индекса уточнения упрощается до ((y-2048)&255)>>5 для valMPS равного 1 или ((2047-y)&255)>>5 для valMPS равного 0. Для этого случая является очень простым отображение представления, использующего valMPS, PIPE Idx и idx уточнения обратно к представлению, используемому исходным CABAC в H.264/AVC. Состояние CABAC определяется как (PIPE Idx<<3)+Idx уточнения. Этот аспект дополнительно описывается ниже в отношении фиг. 16.The above circuit can not only be used in combination with PIPE encoders, but also in connection with the above CABAC circuits. In the absence of PIPE, the number of CABAC states, i.e. probabilistic states between which a state transition is performed when updating the probability (pState_current[bin]) on PIPE Idx (i.e. the corresponding most significant bits of pState_current[bin]) then represent only a set of parameters that implement, in fact, piecewise linear interpolation CABAC states depending on QP. Additionally, this piecewise linear interpolation can also be virtually disabled in the case where the numStates parameter uses the same value for all PIPE Idx. For example, setting numStates to 8 for all cases results in a total of 16*8 states, and the refinement index calculation simplifies to ((y-2048)&255)>>5 for valMPS equal to 1 or ((2047-y)&255)>>5 for valMPS equal to 0. For this case, it is very simple to map the representation using valMPS, PIPE Idx and idx refiners back to the representation used by the original CABAC in H.264/AVC. The CABAC state is defined as (PIPE Idx<<3)+Idx refinement. This aspect is further described below in relation to FIG. 16.
Если наклон 8-битового значения инициализации не равен нулю, или если QP не равно 26, то необходимо вычислять внутреннее состояние применением линейного уравнения с QP процесса кодирования или декодирования. В случае наклона, равного нулю, или что QP текущего процесса кодирования равно 26, вторая часть 8-битового значения инициализации может использоваться непосредственно для инициализации внутреннего состояния вероятностной модели. В противном случае, десятичная часть результирующего внутреннего состояния может быть дополнительно использоваться для определения индекса уточнения в применениях высокоэффективного кодирования посредством линейной интерполяции между пределами конкретного кодера PIPE. В данном предпочтительном варианте осуществления линейная интерполяция выполняется простым умножением десятичной части на общее количество индексов уточнения, доступных для текущего кодера PIPE и отображением результата на ближайший целочисленный индекс уточнения.If the slope of the 8-bit initialization value is not zero, or if the QP is not equal to 26, then it is necessary to calculate the internal state by applying a linear equation with the QP of the encoding or decoding process. In the case of a slope equal to zero, or that the QP of the current encoding process is equal to 26, the second part of the 8-bit initialization value can be used directly to initialize the internal state of the probabilistic model. Otherwise, the decimal part of the resulting internal state can be further used to determine the refinement index in high performance coding applications by linear interpolation between the limits of a particular PIPE encoder. In this preferred embodiment, linear interpolation is performed by simply multiplying the decimal part by the total number of refinement indices available for the current PIPE encoder and mapping the result to the nearest integer refinement index.
Процесс инициализации внутреннего состояния вероятностных моделей может изменяться относительно количества состояний индекса вероятности PIPE. В частности, двойное присутствие равновероятного режима, использующего кодер E1 PIPE, т.е. использование двух разных индексов PIPE для различения между MPS, равным 1 или 0, можно избежать следующим образом. Снова, процесс может вызываться во время начала синтаксического разбора данных слайса, и вводом данного процесса может быть 8-битовое значение инициализации, как показано в таблице E, которое, например, передается в битовом потоке для каждой контекстной модели, подлежащей инициализации.The internal state initialization process of probabilistic models can vary with respect to the number of PIPE probability index states. In particular, the double presence of the equiprobable mode using the E1 PIPE encoder, i.e. using two different PIPE indices to differentiate between an MPS of 1 or 0 can be avoided as follows. Again, a process may be called at the time parsing of the slice data begins, and the input to this process may be an 8-bit initialization value, as shown in Table E, which, for example, is passed in the bitstream for each context model to be initialized.
Таблица E: Установка 8 битов initValue для вероятностной моделиTable E: Setting 8 initValue bits for the probabilistic model
Первые 4 бита определяют индекс наклона и извлекаются посредством маскирования битов b4-b7. Для каждого индекса наклона slope(m) задается и отображается в таблице F.The first 4 bits define the slope index and are extracted by masking bits b4-b7. For each slope index, slope(m) is specified and displayed in table F.
Таблица F: Значения переменной m для slopeIdxTable F: Variable m values for slopeIdx
Биты b0-b3, последние 4 бита 8-битового значения инициализации, идентифицируют probIdx и описывают вероятность при заданном QP. probIdx 0 указывает наибольшую вероятность для символов со значением 0 и, соответственно, probIdx 14 указывает наибольшую вероятность для символов со значением 1. Таблица G изображает для каждого probIdx соответствующий pipeCoder и его valMps.Bits b0-b3, the last 4 bits of the 8-bit initialization value, identify probIdx and describe the probability given the QP.
Таблица G: Отображение последней 4-битовой части значения инициализации на кодеры PIPE и valMps: UR - унарный-в-Райс-код, TB - трехбиновый код, BP - бин-pipe-код, EP - равновероятность (не кодируется)Table G: Mapping of the last 4-bit part of the initialization value to PIPE and valMps encoders: UR - unary-to-Rice code, TB - three-bin code, BP - bin-pipe code, EP - equiprobability (not encoded)
С обоими значениями вычисление внутреннего состояния может выполняться посредством использования линейного уравнения, подобного y=m*x+256*b, где m обозначает наклон, x обозначает QP текущего слайса, и b выводится из probIdx, как показано в последующем описании. Все значения в данном процессе масштабируются коэффициентом 256, чтобы избежать использование операций с плавающей запятой. Выходной результат (y) данного процесса представляет внутреннее состояние вероятностной модели при текущем QP и сохраняется в 8-битовой памяти. Как показано в G, внутреннее состояние состоит из valMPs, pipeIdx и refineIdx.With both values, calculation of the internal state can be performed by using a linear equation like y=m*x+256*b, where m denotes the slope, x denotes the QP of the current slice, and b is derived from probIdx, as shown in the following description. All values in this process are scaled by a factor of 256 to avoid the use of floating point operations. The output (y) of this process represents the internal state of the probabilistic model at the current QP and is stored in an 8-bit memory. As shown in G, the internal state consists of valMPs, pipeIdx and refineIdx.
Таблица H: Установка внутреннего состояния вероятностной моделиTable H: Setting the internal state of the probabilistic model
Назначение refineIdx и pipeIdx подобно внутреннему состоянию вероятностных моделей CABAC (pStateCtx) и представлено в H.The purpose of refineIdx and pipeIdx is similar to the internal state of probabilistic CABAC models (pStateCtx) and is presented in H.
Таблица I: Назначение pipeIdx, refineIdx и pStateCtxTable I: Purpose of pipeIdx, refineIdx and pStateCtx
В предпочтительном варианте осуществления probIdx определяется при QP26. Основываясь на 8-битовом значении инициализации, внутреннее состояние (valMps, pipeIdx и refineIdx) вероятностной модели обрабатывается так, как описано в следующем псевдокоде:In a preferred embodiment, probIdx is determined at QP26. Based on the 8-bit initialization value, the internal state (valMps, pipeIdx and refineIdx) of the probabilistic model is processed as described in the following pseudocode:
Как показано в псевдокоде, refineIdx вычисляется посредством линейной интерполяции между интервалом pipeIdx и квантованием результата в соответствующий refineIdx. Смещение задает общее количество refineIdx для каждого pipeIdx. Интервал [7, 8) fullCtxState/256 делится пополам. Интервал [7, 7,5) отображается на pipeIdx=0 и valMps=0, и интервал [7,5, 8) отображается на pipeIdx=0 и valMps=1. Фиг. 16 изображает процесс выведения внутреннего состояния и отображает отображение fullCtxState/256 на pStateCtx.As shown in the pseudocode, refineIdx is calculated by linear interpolation between the pipeIdx interval and quantizing the result into the corresponding refineIdx. The offset specifies the total number of refineIdx for each pipeIdx. The interval [7, 8) fullCtxState/256 is divided in half. The interval [7, 7,5) is mapped to pipeIdx=0 and valMps=0, and the interval [7,5, 8) is mapped to pipeIdx=0 and valMps=1. Fig. 16 depicts the internal state derivation process and shows the mapping of fullCtxState/256 to pStateCtx.
Отметьте, что наклон указывает зависимость probIdx и QP. Если slopeIdx 8-битового значения инициализации равно 7, результирующее внутреннее состояние вероятностной модели является одинаковым для всех QP слайса - следовательно процесс инициализации внутреннего состояния является независимым от текущего QP слайса.Note that the slope indicates the relationship between probIdx and QP. If slopeIdx of the 8-bit initialization value is 7, the resulting internal state of the probabilistic model is the same for all slice QPs - hence the internal state initialization process is independent of the current slice QP.
Т.е., селектор 402 может инициализировать индексы pipe, подлежащие использованию при декодировании следующей части потока данных, такой как полный поток или следующий слайс, используя синтаксический элемент, указывающий размер QP шага квантования, используемый для квантования данных этой части, таких как уровни коэффициентов преобразования, содержащиеся в нем, используя данный синтаксический элемент в качестве индекса в таблицу, которая может быть общей для обоих режимов, LC и HE. Таблица, такая как таблица D, может содержать индексы pipe для каждого типа символа, для соответствующего опорного значения QPref или других данных для каждого типа символа. В зависимости от фактического QP текущей части селектор может вычислять значение индекса pipe, используя соответствующий элемент a таблицы, индексированный фактическим QP или самим QP, например, умножением a на (QP-QPref). Единственное отличие в режиме LC и HE: Селектор вычисляет результат только при меньшей точности в случае LC по сравнению с режимом HE. Селектор, например, может просто использовать целочисленную часть результата вычисления. В режиме HE используется остаток более высокой точности, такой как дробная часть, для выбора одного из доступных индексов уточнения для соответствующего индекса pipe, как указывается частью с меньшей точностью или целочисленной частью. Индекс уточнения используется в режиме HE (потенциально менее редко также в режиме LC) для выполнения вероятностной адаптации, например, посредством использования вышеупомянутого обхода таблицы. Если оставлять доступные индексы для текущего индекса pipe на более верхней границе, тогда более высокий индекс pipe выбирается следующим с минимизированием индекса уточнения. Если оставлять доступные индексы для текущего индекса pipe при более низкой границе, тогда следующий более низкий индекс pipe выбирается следующим с максимизированием индекса уточнения до максимума, доступного для нового индекса pipe. Индекс pipe вместе с индексом уточнения определяют состояние вероятности, но для выбора из числа частичных потоков, селектор просто использует индекс pipe. Индекс уточнения служит просто для более точного отслеживания вероятности, или для более высокой точности.That is,
Вышеупомянутое описание также показало, однако, что масштабируемость сложности может достигаться независимо от принципа кодирования PIPE по фиг. 7-10 или CABAC, используя декодер, показанный на фиг. 12. Декодер по фиг.12 предназначен для декодирования потока 601 данных, в который кодируются медиаданные, и содержит переключатель 600 режима, выполненный с возможностью активизирования режима низкой сложности или режима высокой эффективности в зависимости от потока 601 данных, а также десимволизатор 602, выполненный с возможностью десимволизирования последовательности 603 символов, полученных - или прямо или посредством энтропийного декодирования, например - из потока 601 данных для получения целочисленных синтаксических элементов 604, используя функцию отображения, управляемую параметром управления, для отображения области определения слов последовательности символов в область значений целочисленных синтаксических элементов. Восстановитель 605 выполнен с возможностью восстановления медиаданных 606, основываясь на целочисленных синтаксических элементах. Десимволизатор 602 выполнен с возможностью выполнения десимволизирования, так что параметр управления изменяется в соответствии с потоком данных с первой скоростью в случае активизированного режима высокой эффективности, и параметр управления является постоянным независимо от потока данных или изменяется в зависимости от потока данных, но со второй скоростью, которая меньше первой скорости, в случае активизированного режима низкой сложности, как показано стрелкой 607. Например, параметр управления может изменяться в соответствии с ранее десимволизированными символами.The above description also showed, however, that complexity scalability can be achieved regardless of the PIPE encoding principle of FIG. 7-10 or CABAC using the decoder shown in FIG. 12. The decoder of FIG. 12 is configured to decode a
Некоторые из вышеупомянутых вариантов осуществления использовали аспект фиг. 12. Синтаксические элементы coeff_abs_minus3 и MVD в последовательности 327, например, бинаризировались в десимволизаторе 314 в зависимости от выбранного режима, как указано позицией 407, и восстановитель 605 использовал эти синтаксические элементы для восстановления. Очевидно, оба аспекта по фиг. 11 и 19 являются легко объединяемыми, но аспект фиг. 12 также может объединяться с другими средами кодирования.Some of the above embodiments used an aspect of FIG. 12. The coeff_abs_minus3 and MVD syntax elements in
См., например, отмеченное выше кодирование разностей векторов движения. Десимволизатор 602 может быть выполнен так, что функция отображения использует усеченный унарный код для выполнения отображения в первом интервале области определения целочисленных синтаксических элементов ниже значения отсечки и комбинацию префикса в виде усеченного унарного кода для значения отсечки и суффикса в виде кодового слова VLC во втором интервале области определения целочисленных синтаксических элементов, включая и выше значения отсечки, причем декодер может содержать энтропийный декодер 608, выполненный с возможностью выведения количества первых бинов усеченного унарного кода из потока 601 данных, используя энтропийное декодирование с оценкой изменяющейся вероятности, и количества вторых бинов кодового слова VLC, используя режим обхода с постоянной равновероятностью. В режиме HE энтропийное кодирование может быть более сложным, чем при кодировании LC, как показано стрелкой 609. Т.е. контекстная адаптивность и/или вероятностная адаптация могут применяться в режиме HE и подавляться в режиме LC, или сложность может масштабироваться в других показателях, как изложено выше в отношении различных вариантов осуществления.See, for example, the coding of motion vector differences noted above. The
Кодер, соответствующий декодеру по фиг. 11, для кодирования медиаданных в поток данных показан на фиг. 13. Он может содержать устройство 500 вставки, выполненное с возможностью сигнализации в потоке 501 данных активизирования режима низкой сложности или режима высокой эффективности, конструктор 504, выполненный с возможностью предкодирования медиаданных 505 в последовательность 506 синтаксических элементов, символизатор 507, выполненный с возможностью символизирования последовательности 506 синтаксических элементов в последовательность 508 символов, множество энтропийных кодеров 310, каждый из которых выполнен с возможностью преобразования частичных последовательностей символов в кодовые слова потока данных, и селектор 502, выполненный с возможностью направления каждого символа последовательности 508 символов на выбранный один из множества энтропийных кодеров 310, причем селектор 502 выполнен с возможностью выполнения выбора в зависимости от активизированного одного из режима низкой сложности и режима высокой эффективности, как показано стрелкой 511. Перемежитель 510 может необязательно обеспечиваться для перемежения кодовых слов кодеров 310.An encoder corresponding to the decoder of FIG. 11, for encoding media data into a data stream is shown in FIG. 13. It may include an
Кодер, соответствующий декодеру по фиг. 12, для кодирования медиаданных в поток данных показан на фиг. 14, содержащий устройство 700 вставки, выполненное с возможностью сигнализации в потоке 701 данных активизирования режима низкой сложности или режима высокой эффективности, конструктор 704, выполненный с возможностью предкодирования медиаданных 705 в последовательность 706 синтаксических элементов, содержащую целочисленный синтаксический элемент, и символизатор 707, выполненный с возможностью символизирования целочисленного синтаксического элемента, используя функцию отображения, управляемую параметром управления, для отображения области определения целочисленных синтаксических элементов в область значений слов последовательности символов, причем символизатор 707 выполнен с возможностью выполнения символизирования, так что параметр управления изменяется в соответствии с потоком данных с первой скоростью в случае активизированного режима высокой эффективности, и параметр управления является постоянным независимо от потока данных или изменяется в зависимости от потока данных, но со второй скоростью, которая меньше первой скорости, в случае активизированного режима низкой сложности, как показано стрелкой 708. Результат символизирования кодируется в поток 701 данных.An encoder corresponding to the decoder of FIG. 12, for encoding media data into a data stream is shown in FIG. 14, comprising an
Снова, необходимо упомянуть, что вариант осуществления по фиг. 14 легко переносится на вышеупомянутый вариант осуществления контекстно-адаптивного двоичного арифметического кодирования/декодирования: селектор 509 и энтропийные кодеры 310 сводятся вместе в контекстно-адаптивный двоичный арифметический кодер, который будет выводить поток 401 данных непосредственно и выбирать контекст для бина, подлежащего выведению в настоящий момент из потока данных. Это особенно верно для контекстной адаптивности и/или вероятностной адаптивности. Обе функциональные возможности/адаптивности могут отключаться, или могут быть разработаны более ослабленными, во время режима низкой сложности.Again, it should be mentioned that the embodiment of FIG. 14 easily transfers to the above context-adaptive binary arithmetic encoding/decoding embodiment:
Выше было кратко отмечено, что возможность переключения режима, описанная в отношении некоторых вышеупомянутых вариантов осуществления, согласно альтернативным вариантам осуществления, может быть исключена. Чтобы сделать это ясным, ссылка делается на фиг. 16, которая суммирует вышеупомянутое описание в той мере, в какой только исключение возможности переключения режима отличает вариант осуществления по фиг. 16 от вышеупомянутых вариантов осуществления. Кроме того, последующее описание показывает преимущества, являющиеся результатом инициализации оценок вероятности контекстов, используя менее точные параметры для наклона и смещения по сравнению, например, с H.264.It was briefly noted above that the mode switching capability described with respect to some of the above-mentioned embodiments may, according to alternative embodiments, be omitted. To make this clear, reference is made to FIG. 16, which summarizes the above description to the extent that only the elimination of the possibility of mode switching distinguishes the embodiment of FIG. 16 from the above embodiments. In addition, the following description shows the benefits resulting from initializing context probability estimates using less precise parameters for slope and offset compared to, for example, H.264.
В частности, фиг. 16 изображает декодер для декодирования видео 405 из потока 401 данных, для которого кодируются горизонтальные и вертикальные составляющие разностей векторов движения, используя бинаризации горизонтальных и вертикальных составляющих, причем бинаризации равны усеченному унарному коду горизонтальных и вертикальных составляющих соответственно в первом интервале области определения горизонтальных и вертикальных составляющих ниже значения отсечки, и комбинации префикса в виде усеченного унарного кода. Значение отсечки и суффикс в виде экспоненциального кода Голомба горизонтальных и вертикальных составляющих соответственно во втором интервале области определения горизонтальных и вертикальных составляющих включительно и выше значения отсечки, причем значение отсечки равно 2, и экспоненциальный код Голомба имеет порядок 1. Декодер содержит энтропийный декодер 409, выполненный, для горизонтальных и вертикальных составляющих разностей векторов движения, с возможностью выведения усеченного унарного кода из потока данных, используя контекстно-адаптивное двоичное энтропийное декодирование с точно одним контекстом на каждую позицию бина усеченного унарного кода, который является общим для горизонтальных и вертикальных составляющих разностей векторов движения, и экспоненциального кода Голомба, используя режим обхода с постоянной равновероятностью для получения бинаризаций разностей векторов движения. Более точно, как описано выше, энтропийный декодер 409 может быть выполнен с возможностью выведения количества бинов 326 бинаризаций из потока 401 данных, используя бинарное энтропийное декодирование, такое как вышеупомянутая схема CABAC, или бинарное декодирование PIPE, т.е. использование конструкции, включающей в себя несколько параллельно работающих энтропийных декодеров 322 вместе с соответствующим селектором/средством назначения. Десимволизатор 314 дебинаризирует бинаризации синтаксических элементов разностей векторов движения для получения целочисленных значений горизонтальных и вертикальных составляющих разностей векторов движения, и восстановитель 404 восстанавливает видео, основываясь на целочисленных значениях горизонтальных и вертикальных составляющих разностей векторов движения.In particular, FIG. 16 depicts a decoder for decoding
Чтобы объяснить это более подробно, ссылка кратко делается на фиг. 18. Позиция 800 представительно изображает одну разность вектора движения, т.е. вектор, представляющий остаток предсказания между предсказанным вектором движения и фактическим/восстановленным вектором движения. Также показаны горизонтальные и вертикальные составляющие 802x и 802y. Они могут передаваться в единицах позиций пикселя, т.е. шага пикселя, или позиций субпикселя, таких как половина шага пикселя или его четвертая часть или т.п. Горизонтальные и вертикальные составляющие 802x,y являются целочисленными. Их область простирается от нуля до бесконечности. Значение знака может обрабатываться отдельно и здесь больше не рассматривается. Другими словами, описание, кратко изложенное в данном документе, сосредоточено на величине разностей 802x,y вектора движения. Область определения изображена позицией 804. На правой стороне оси 804 области определения фиг. 19 изображает, ассоциированные с положительными значениями составляющей 802x,y, вертикально расположенными друг на друге, бинаризации, в которую отображается (бинаризируется) соответствующее возможное значение. Как можно видеть, ниже значения отсечки, равное 2, имеет место только усеченный унарный код 806, тогда как бинаризация имеют, в качестве суффикса, также экспоненциальный код Голомба порядка 808 из возможных значений, равных или больше значения отсечки 2, чтобы продолжать бинаризацию для остатка целочисленного значения выше значения отсечки минус 1. Для всех бинов обеспечивается только два контекста: один для позиции первого бина бинаризаций горизонтальных и вертикальных составляющих 802x,y, и другой один для позиции второго бина усеченного унарного кода 806 как горизонтальной, так и вертикальной составляющих 802x,y. Для позиции бина экспоненциального кода 808 Голомба режим обхода с равновероятностью используется энтропийным декодером 409. Т.е. оба значения бина, как предполагается, происходят равновероятно. Оценка вероятности для этих бинов является фиксированной. В сравнении с ней, оценка вероятности, ассоциированная с только что упомянутыми двумя контекстами бинов усеченного унарного кода 806, адаптируется непрерывно при декодировании.To explain this in more detail, reference is briefly made to FIG. 18.
Перед описанием более подробно, в отношении того, как может быть реализован энтропийный декодер 409, в соответствии с вышеупомянутым описанием, чтобы выполнять только что упомянутые задачи, описание теперь сосредотачивается на возможной реализации восстановителя 404, который использует разности 800 вектора движения и его целочисленные значения, полученные десимволизатором 314 посредством ребинаризации бинов кодов 106 и 108, причем ребинаризация изображается на фиг. 18, используя стрелки 810. В частности, восстановитель 404, как описано выше, может извлекать из потока 401 данных информацию, касающуюся подразделения восстановленного в настоящий момент изображения в блоки, среди которых по меньшей мере некоторые подвергаются предсказанию с компенсацией движения. Фиг. 19 изображает изображение, подлежащий восстановлению, представительно в позиции 820 и блоки только что упомянутого подразделения изображения 120, для которого предсказание с компенсацией движения используется для предсказания в нем содержимого изображения в позиции 822. Как описано в отношение фиг. 2A-2C, имеются разные возможности для подразделения и размеров блоков 122. Чтобы избежать передачи разности 800 вектора движения для каждого из этих блоков 122, восстановитель 404 может использовать принцип слияния, согласно которому поток данных дополнительно передает информацию о слиянии в дополнение к информации о подразделении или, при отсутствии информации о подразделении, в дополнение к тому факту, что подразделение является фиксированным. Информация слияния сигнализирует восстановителю 404, в отношении какого из блоков 822 сформировать группы слияния. Посредством этой меры, является возможным для восстановителя 404 применить некоторую разность 800 вектора движения ко всей группе слияния блоков 822. Конечно, на кодирующей стороне передача информации о слиянии подвержена компромиссу между издержками передачи подразделения (если присутствует), издержками передачи информации о слиянии и издержками передачи разности векторов движения, которые уменьшаются с увеличением размера групп слияния. С другой стороны, увеличение количества блоков на группу слияния уменьшает адаптацию разности векторов движения для этой группы слияния к фактическим потребностям индивидуальных блоков соответствующей группы слияния, тем самым получая менее точные предсказания с компенсацией движения разностей векторов движения этих блоков и делая необходимым более высокие издержки передачи для передачи остатка предсказания в виде, например, уровня коэффициентов преобразования. Следовательно, находится компромисс на кодирующей стороне соответствующим образом. В любом случае, однако, принцип слияния приводит к разностям вектора движения для групп слияния, изображая меньшую пространственную взаимную корреляцию. См., например, фиг. 19, которая изображает штриховкой членство в некоторой группе слияния. Очевидно, что фактическое движение содержимого изображения в этих блоках было настолько подобным, что кодирующая сторона решила выполнить слияние соответствующих блоков. Однако является малой корреляция с движением содержимого изображения в других группах слияния. Следовательно, ограничение на использование просто одного контекста на бин усеченного унарного кода 806 не оказывает отрицательного влияния на эффективность энтропийного кодирования, так как принцип слияния уже в достаточной степени обеспечивает пространственную взаимную корреляцию между движением содержимого соседних изображений. Контекст может просто выбираться на основе того факта, что бин является частью бинаризации составляющей 802x,y разности векторов движения и позиции бина, которой является или 1 или 2 вследствие того, что значением отсечки является два. Следовательно, другие уже декодированные бины/синтаксические элементы/составляющие 802x,y mvd не оказывают влияние на выбор контекста.Before describing in more detail how the
Аналогично, восстановитель 404 может быть выполнен с возможностью дополнительного уменьшения информационного содержимого, подлежащего пересылке, посредством разностей векторов движения (кроме пространственного и/или временного предсказания векторов движения) посредством использования принципа многогипотезного предсказания, согласно которому, сначала, генерируется список предикторов вектора движения для каждого блока или группы слияния, затем явной или неявной передачи в потоке данных информации об индексе предиктора, подлежащего фактическому использованию для предсказания разностей векторов движения. См., например, незаштрихованный блок 122 на фиг. 20. Восстановитель 404 может обеспечивать разные предикторы для вектора движения данного блока, например, посредством предсказания вектора движения пространственно, например, из левого, из верхнего, комбинации обоих и т.п., и временного предсказания вектора движения из вектора движения совместно размещенной части ранее декодированного изображения видео и дополнительных комбинаций вышеупомянутых предикторов. Эти предикторы сортируются восстановителем 404 предсказуемым образом, который является прогнозируемым на кодирующей стороне. Некоторая информация передается с этой целью в потоке данных и используется восстановителем. Т.е. некоторая рекомендация содержится в потоке данных, в отношении того, какой предиктор из данного упорядоченного списка предикторов будет фактически использоваться в качестве предиктора для вектора движения данного блока. Этот индекс может явно передаваться в потоке данных для этого блока. Однако также является возможным, что индекс сначала предсказывается и затем передается только его предсказание. Также существуют другие возможности. В любом случае, только что упомянутая схема предсказания позволяет получить очень точное предсказание вектора движения текущего блока и, следовательно, уменьшается требование к информационному содержимому, накладываемое на разность вектора движения. Следовательно, ограничение контекстно-адаптивного энтропийного кодирования на только два бина усеченного унарного кода и уменьшение значения отсечки до 2, как описано в отношении фиг. 18, а также выбор порядка экспоненциального кода Голомба равным 1, не оказывает отрицательного эффекта на эффективность кодирования, так как разности векторов движения показывают, вследствие высокой эффективности предсказания, частотную гистограмму, согласно которой более высокие значения составляющих 802x,y разности векторов движения посещаются менее часто. Даже пропуск любого отличия между горизонтальной и вертикальной составляющими подходит для эффективного предсказания, так как являются высокими тенденции предсказания работы с одинаковым успехом по обеим направлениям точности предсказания.Likewise,
Необходимо отметить, что в вышеупомянутом описании все подробности, обеспечиваемые с фиг. 1-15, также являются переносимыми на объекты, показанные на фиг. 16, такие как, например, которые касаются функциональности десимволизатора 314, восстановителя 404 и энтропийного декодера 409. Тем не менее, для полноты, некоторые из этих подробностей снова кратко описываются ниже.It should be noted that in the above description, all the details provided with FIGS. 1-15 are also transferable to the objects shown in FIG. 16, such as, for example, which relate to the functionality of
Для лучшего понимания только что кратко изложенной схемы предсказания, см. фиг. 20. Как только что описано, конструктор 404 может получать разные предикторы для текущего блока 822 или текущей группы слияния блоков, причем эти предикторы показаны векторами 824 со сплошными линиями. Предикторы могут быть получены посредством пространственного и/или временного предсказания, причем, кроме того, могут использоваться операции арифметического среднего или т.п., так что индивидуальные предикторы могут быть получены восстановителем 404 таким образом, что они коррелируют друг с другом. Независимо от способа, которым были получены векторы 826, восстановитель 404 представляет последовательно или сортирует эти предикторы 126 в упорядоченный список. Это изображается числами 1-4 на фиг. 21. Предпочтительно, если процесс сортировки является уникально определяемым, так что кодер и декодер могут работать синхронно. Тогда только что упомянутый индекс может быть получен восстановителем 404 для текущего блока, или группы слияния, из потока данных, явно или неявно. Например, второй предиктор «2» может быть выбран, и восстановитель 404 добавляет разность 800 вектора движения к этому выбранному предсказателю 126, таким образом получая окончательно восстановленный вектор 128 движения, который затем используется для предсказания, посредством предсказания с компенсацией движения, содержимого текущего блока/группы слияния. В случае группы слияния будет возможным, что восстановитель 404 содержит дополнительные разности векторов движения, обеспечиваемые для блоков группы слияния, чтобы дополнительно уточнять вектор 128 движения в отношении индивидуальных блоков группы слияния.For a better understanding of the prediction scheme just briefly outlined, see FIG. 20. As just described, constructor 404 may obtain different predictors for the
Таким образом, продолжая далее с описанием реализаций объектов, показанных на фиг. 16, может быть, что энтропийный декодер 409 выполняется с возможностью выведения усеченного унарного кода 806 из потока 401 данных, используя бинарное арифметическое декодирование или бинарное кодирование PIPE. Оба принципа были описаны выше. Кроме того, энтропийный декодер 409 может быть выполнен с возможностью использования разных контекстов для двух позиций бина усеченного унарного кода 806 или, альтернативно, даже одного и того же контекста для обоих бинов. Энтропийный декодер 409 может быть выполнен с возможностью выполнения обновления состояния вероятности. Энтропийный декодер 409 может это делать, для бина, выведенного на данный момент из усеченного унарного кода 806, посредством перехода из текущего состояния вероятности, ассоциированного с контекстом, выбранным для выведенного в данный момент бина, в новое состояние вероятности в зависимости от бина, выведенного в данный момент. См. вышеприведенные таблицы Next_State_LPS и Next_State_MPS, табличный поиск в отношении которого выполняется энтропийным декодером в дополнение к другим этапам 0-5, перечисленным выше. В вышеприведенном описании текущее состояние вероятности было упомянуто посредством pState_current. Оно определяется для соответствующего контекста, представляющего интерес. Энтропийный декодер 409 может быть выполнен с возможностью двоичного арифметического декодирования бина, подлежащего в данный момент выведению из усеченного унарного кода 806 посредством квантования значения ширины текущего интервала вероятностей, т.е. R, представляющего текущий интервал вероятностей для получения индекса интервала вероятностей, q_index, и выполнения подразделения интервала посредством индексирования элемента таблицы среди элементов таблицы, используя индекс интервала вероятностей и индекс состояния вероятности, т.е. p_state, который, в свою очередь, зависит от текущего состояния вероятности, ассоциированного с контекстом, выбранным для бина, подвергаемого выведению в данный момент, для получения подразделения текущего интервала вероятностей на два частичных интервала. В вышеупомянутых кратко описанных вариантах осуществления эти частичные интервалы ассоциировались с наиболее вероятным и наименее вероятным символом. Как описано выше, энтропийный декодер 409 может быть выполнен с возможностью использования восьмибитового представления для значения R ширины текущего интервала вероятностей с захватыванием, например, двух или трех самых старших битов восьмибитового представления и квантованием значения ширины текущего интервала вероятностей. Энтропийный декодер 409 дополнительно может быть выполнен с возможностью выбора из числа двух частичных интервалов, основываясь на значении состояния смещения из внутренней части текущего интервала вероятностей, а именно V, обновления значения R ширины интервала вероятностей и значения состояния смещения и предположения значения бина, подлежащего выводу в данный момент, используя выбранный частичный интервал, и выполнения ренормализации обновленного значения R ширины интервала вероятностей и значения V состояния смещения, включая продолжение считывания битов из потока 401 данных. Энтропийный декодер 409, например, может быть выполнен с возможностью двоичного арифметического декодирования бина из экспоненциального кода Голомба посредством деления пополам значения ширины текущего интервала вероятностей для получения подразделения текущего интервала вероятностей на два частичных интервала. Деление пополам соответствует оценке вероятности, которая является фиксированной и равной 0,5. Оно может быть реализовано простым сдвигом битов. Энтропийный декодер дополнительно может быть выполнен, для каждой разности вектора движения, с возможностью выведения усеченного унарного кода горизонтальной и вертикальной составляющих соответствующей разности векторов движения из потока 401 данных, перед экспоненциальным кодом Голомба горизонтальной и вертикальной составляющих соответствующей разности векторов движения. Посредством этой меры энтропийный декодер 409 может использовать, что большее количество бинов вместе формируют серию бинов, для которых оценка вероятности является фиксированной, а именно 0,5. Это может ускорить процедуру энтропийного декодирования. С другой стороны, энтропийный декодер 409 может предпочитать поддерживать порядок среди разностей векторов движения посредством сначала выведением горизонтальной и вертикальной составляющих одной разности вектора движения, переходя затем просто к выведению горизонтальной и вертикальной составляющих следующей разности вектора векторов движения. Посредством этой меры, снижаются требования к памяти, налагаемые на декодирующий объект, т.е. декодер по фиг. 16, так как десимволизатор 314 может продолжать дебинаризацию разностей векторов движения непосредственно без необходимости ожидания сканирования других разностей векторов движения. Это делается возможным посредством выбора контекста: так как только точно один контекст является доступным на каждую позицию бина кода 806, не нужно инспектировать пространственную взаимосвязь.Thus, continuing further with the description of implementations of the objects shown in FIG. 16, it may be that
Восстановитель 404, как описано выше, может пространственно и/или временно предсказывать горизонтальные и вертикальные составляющие векторов движения, чтобы получать предикторы 126 для горизонтальной и вертикальной составляющих вектора движения и восстанавливать горизонтальные и вертикальные составляющие векторов движения посредством уточнения предикторов 826, используя горизонтальные и вертикальные составляющие разностей векторов движения, например, просто добавлением разности векторов движения к соответствующему предсказателю.
Кроме того, восстановитель 404 может быть выполнен с возможностью предсказания горизонтальных и вертикальных составляющих векторов движения разным образом, чтобы получать упорядоченный список предикторов для горизонтальной и вертикальной составляющей векторов движения, получать индекс списка из потока данных и восстанавливать горизонтальные и вертикальные составляющие векторов движения посредством уточнения предиктора, тем предиктором списка, на который указывает индекс списка, используя горизонтальные и вертикальные составляющие разностей векторов движения.In addition,
Кроме того, как уже было описано выше, восстановитель 404 может быть выполнен с возможностью восстановления видео, используя предсказание с компенсацией движения посредством применения горизонтальных и вертикальных составляющих 802x,y векторов движения при пространственной степени разбиения, определяемой подразделением изображений видео в блоки, причем восстановитель 404 может использовать синтаксические элементы слияния, присутствующие в потоке 401 данных, чтобы группировать блоки в группы слияния и применять целочисленные значения горизонтальных и вертикальных составляющих 802x,y разностей векторов движения, полученных бинаризатором 314 в единицах групп слияния.In addition, as described above,
Восстановитель 404 может выводить подразделение изображений видео в блоки из части потока 401 данных, который исключает синтаксические элементы слияния. Восстановитель 404 также может адаптировать горизонтальную и вертикальную составляющие предопределенного вектора движения для всех блоков ассоциированной группы слияния, или уточнять их посредством горизонтальных и вертикальных составляющих разностей векторов движения, ассоциированных с блоками группы слияния.
Только для полноты, фиг. 17 изображает кодер, соответствующий декодеру по фиг. 16. Кодер по фиг. 17 содержит конструктор 504, символизатор 507 и энтропийный кодер 513. Кодер содержит конструктор 504, выполненный с возможностью кодирования с предсказанием видео 505 посредством предсказания с компенсацией движения, используя векторы движения, и кодирования с предсказанием векторов движения посредством предсказания векторов движения и установки целочисленных значений 506 горизонтальных и вертикальных составляющих разностей векторов движения для представления ошибки предсказания предсказываемых векторов движения; символизатор 507, выполненный с возможностью бинаризации целочисленных значений для получения бинаризаций 508 горизонтальных и вертикальных составляющих разностей векторов движения, причем бинаризации равны усеченному унарному коду горизонтальных и вертикальных составляющих соответственно в первом интервале области определения горизонтальных и вертикальных составляющих ниже значения отсечки и комбинации префикса в виде усеченного унарного кода для значения отсечки и суффикса в виде экспоненциального кода Голомба горизонтальных и вертикальных составляющих соответственно во втором интервале области определения горизонтальных и вертикальных составляющих включительно и выше значения отсечки, причем значение отсечки равно двум, и экспоненциальный код Голомба имеет порядок, равный единице; и энтропийный кодер 513, выполненный, для горизонтальных и вертикальных составляющих разностей векторов движения, с возможностью кодирования усеченного унарного кода в поток данных, используя контекстно-адаптивное двоичное энтропийное кодирование с точно одним контекстом на каждую позицию бина усеченного унарного кода, который является общим для горизонтальных и вертикальных составляющих разностей векторов движения, и экспоненциального кода Голомба, используя режим обхода с постоянной равновероятностью. Другие возможные подробности реализации являются непосредственно переносимыми из описания, касающегося декодера по фиг. 16, в кодер по фиг. 17.For completeness only, fig. 17 shows an encoder corresponding to the decoder of FIG. 16. Encoder according to FIG. 17 includes a
Хотя некоторые аспекты были описаны в контексте устройства, ясно, что эти аспекты также представляют описание соответствующего способа, где блок или устройство соответствует этапу способа или признаку этапа способа. Аналогично, аспекты, описанные в контексте этапа способа, также представляют описание соответствующего блока или элемента или признака соответствующего устройства. Некоторые или все из этапов способа могут выполняться аппаратным устройством (или использовать их), подобных, например, микропроцессору, программируемому компьютеру или электронной схеме. В некоторых вариантах осуществления некоторый один или несколько из наиболее важных этапов способа могут выполняться таким устройством.Although some aspects have been described in the context of a device, it is clear that these aspects also represent a description of the corresponding method, where the block or device corresponds to a method step or a feature of a method step. Likewise, aspects described in the context of a method step also provide a description of a corresponding block or element or feature of a corresponding device. Some or all of the method steps may be performed by (or use) a hardware device, such as, for example, a microprocessor, a programmable computer, or an electronic circuit. In some embodiments, some one or more of the most critical steps of the method may be performed by such a device.
Обладающий признаками изобретения кодированный сигнал может сохраняться на цифровой запоминающей среде или может передаваться по среде передачи, такой как беспроводная среда передачи или проводная среда передачи, такая как Интернет.The inventive encoded signal may be stored on a digital storage medium or may be transmitted over a transmission medium such as a wireless transmission medium or a wired transmission medium such as the Internet.
В зависимости от некоторый требований к реализации варианты осуществления изобретения могут быть реализованы аппаратными средствами или программными средствами. Реализация может выполняться с использованием цифровой запоминающей среды, например, гибкого диска, цифрового многофункционального диска (DVD), диска Blue-Ray, компакт-диска, постоянного запоминающего устройства (ROM), программируемого ROM (PROM), стираемого программируемого ROM (EPROM), электрически стираемого программируемого ROM (EEPROM) или флэш-памяти, имеющих электронно-считываемые сигналы управления, хранимые на них, которые взаимодействуют (или способны взаимодействовать) с программируемой компьютерной системой, так что выполняется соответствующий способ. Поэтому, цифровая запоминающая среда может быть считываемая компьютером.Depending on certain implementation requirements, embodiments of the invention may be implemented in hardware or software. Implementation may be performed using a digital storage medium, such as a floppy disk, digital versatile disc (DVD), Blue-Ray disc, compact disc, read-only memory (ROM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory having electronically readable control signals stored thereon that interact (or are capable of interacting) with a programmable computer system such that the corresponding method is performed. Therefore, the digital storage medium can be read by a computer.
Некоторые варианты осуществления согласно изобретению содержат носитель данных, имеющий электронно-считываемые сигналы управления, которые способны взаимодействовать с программируемой компьютерной системой, так что выполняется один из способов, описанных в данном документе.Some embodiments of the invention include a storage medium having electronically readable control signals that are capable of interfacing with a programmable computer system such that one of the methods described herein is performed.
В общем, варианты осуществления настоящего изобретения могут быть реализованы в виде продукта компьютерной программы с программным кодом, причем программный код действует для выполнения одного из способов, когда продукт компьютерной программы выполняется на компьютере. Программный код, например, может сохраняться на машиносчитываемом носителе.In general, embodiments of the present invention may be implemented as a computer program product with program code, wherein the program code operates to perform one of the methods when the computer program product is executed on a computer. The program code, for example, may be stored on a machine-readable medium.
Другие варианты осуществления содержат компьютерную программу для выполнения одного из способов, описанных в данном документе, хранимых на машиносчитываемом носителе.Other embodiments comprise a computer program for performing one of the methods described herein stored on a machine-readable medium.
Другими словами, вариантом осуществления обладающего признаками изобретения способа, поэтому, является компьютерная программа, имеющая программный код для выполнения одного из способов, описанных в данном документе, когда компьютерная программа выполняется на компьютере.In other words, an embodiment of the inventive method is therefore a computer program having program code for performing one of the methods described herein when the computer program is executed on a computer.
Другим вариантом осуществления обладающих признаками изобретения способов, поэтому, является носитель данных (или цифровая запоминающая среда или считываемая компьютером среда), содержащий записанную на нем компьютерную программу для выполнения одного из способов, описанных в данном документе. Носитель данных, цифровая запоминающая среда или записанная среда являются обычно материальными и/или непереходными.Another embodiment of the inventive methods, therefore, is a storage medium (or digital storage medium or computer readable medium) containing a computer program stored thereon for performing one of the methods described herein. A storage medium, digital storage medium, or recorded medium is typically tangible and/or intransitive.
Другим вариантом осуществления обладающего признаками изобретения способа, поэтому, является поток данных или последовательность сигналов, представляющих компьютерную программу для выполнения одного из способов, описанных в данном документе. Поток данных или последовательность сигналов, например, могут быть выполнены с возможностью пересылки по соединению передачи данных, например, по Интернету.Another embodiment of the inventive method, therefore, is a stream of data or a sequence of signals representing a computer program for executing one of the methods described herein. The data stream or signal sequence, for example, may be configured to be sent over a data connection, such as the Internet.
Дополнительный вариант осуществления содержит средство обработки, например, компьютер, или программируемое логическое устройство, выполненное с возможностью или адаптируемое к выполнению одного из способов, описанных в данном документе.An additional embodiment comprises processing means, such as a computer or programmable logic device, configured or adaptable to perform one of the methods described herein.
Дополнительный вариант осуществления содержит компьютер, имеющий установленную на нем компьютерную программу для выполнения одного из способов, описанных в данном документе.A further embodiment comprises a computer having a computer program installed thereon for performing one of the methods described herein.
Дополнительный вариант осуществления согласно изобретению содержит устройство или систему, выполненную с возможностью пересылки (например, электронным или оптическим образом) на приемник компьютерной программы для выполнения одного из способов, описанных в данном документе. Приемником, например, может быть компьютер, мобильное устройство, устройство памяти или т.п. Устройство или система, например, может содержать файловый сервер для пересылки компьютерной программы на приемник.A further embodiment of the invention comprises a device or system configured to transmit (eg, electronically or optically) to a receiver a computer program to perform one of the methods described herein. The receiver, for example, may be a computer, mobile device, memory device, or the like. The device or system, for example, may include a file server for transferring a computer program to a receiver.
В некоторых вариантах осуществления программируемое логическое устройство (например, программируемая вентильная матрица) может использоваться для выполнения некоторых или всех функциональных возможностей способов, описанных в данном документе. В некоторых вариантах осуществления программируемая вентильная матрица может взаимодействовать с микропроцессором для выполнения одного из способов, описанных в данном документе. В общем, способы, предпочтительно, выполняются любым аппаратным устройством.In some embodiments, a programmable logic device (eg, a programmable gate array) may be used to perform some or all of the functionality of the methods described herein. In some embodiments, the field programmable gate array may interface with a microprocessor to perform one of the methods described herein. In general, the methods are preferably performed by any hardware device.
Вышеописанные варианты осуществления являются просто иллюстративными для принципов настоящего изобретения. Понятно, что модификации и изменения устройств и деталей, описанных в данном документе, очевидны для специалиста в данной области техники. Предполагается, что они, поэтому, ограничиваются только объемом находящейся на рассмотрении формулы изобретения и не конкретными деталями, представленными посредством описания и объяснения вариантов осуществления в данном документе.The above-described embodiments are merely illustrative of the principles of the present invention. It will be appreciated that modifications and changes to the devices and parts described herein will be apparent to one skilled in the art. They are, therefore, intended to be limited only by the scope of the pending claims and not by the specific details provided by the description and explanation of the embodiments herein.
Claims (34)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/497,794 | 2011-06-16 | ||
US61/508,506 | 2011-07-15 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2021131724A Division RU2776910C1 (en) | 2011-06-16 | 2021-10-29 | Entropy encoding of differences in motion vectors |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2024114803A Division RU2839971C1 (en) | 2011-06-16 | 2024-05-30 | Entropy coding of motion vector differences |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2022119574A RU2022119574A (en) | 2024-01-18 |
RU2820857C2 true RU2820857C2 (en) | 2024-06-11 |
Family
ID=
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900748B2 (en) * | 2003-07-17 | 2005-05-31 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Method and apparatus for binarization and arithmetic coding of a data value |
WO2007032861A1 (en) * | 2005-08-22 | 2007-03-22 | Streaming Networks (Pvt.) Ltd. | Method and system for fast context based adaptive binary arithmetic coding |
RU2371881C1 (en) * | 2005-07-08 | 2009-10-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Method of modelling video signal coding information for information compression/decompression |
EP1294193B1 (en) * | 2001-09-12 | 2010-06-23 | Thomson Licensing | Method and apparatus for changing received streaming content channels |
RU2406258C2 (en) * | 2006-03-27 | 2010-12-10 | Квэлкомм Инкорпорейтед | Method and system for coding and decoding of information related to compression of video signal |
US7932843B2 (en) * | 2008-10-17 | 2011-04-26 | Texas Instruments Incorporated | Parallel CABAC decoding for video decompression |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1294193B1 (en) * | 2001-09-12 | 2010-06-23 | Thomson Licensing | Method and apparatus for changing received streaming content channels |
US6900748B2 (en) * | 2003-07-17 | 2005-05-31 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Method and apparatus for binarization and arithmetic coding of a data value |
RU2371881C1 (en) * | 2005-07-08 | 2009-10-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Method of modelling video signal coding information for information compression/decompression |
WO2007032861A1 (en) * | 2005-08-22 | 2007-03-22 | Streaming Networks (Pvt.) Ltd. | Method and system for fast context based adaptive binary arithmetic coding |
RU2406258C2 (en) * | 2006-03-27 | 2010-12-10 | Квэлкомм Инкорпорейтед | Method and system for coding and decoding of information related to compression of video signal |
US7932843B2 (en) * | 2008-10-17 | 2011-04-26 | Texas Instruments Incorporated | Parallel CABAC decoding for video decompression |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2758981C2 (en) | Entropy encoding of motion vector differences | |
HK1248434A1 (en) | Decoder, encoder, method and storage media for decoding and encoding a video | |
HK1248948A1 (en) | Decoder, encoder, method and storage media for decoding and encoding a video | |
HK1249313A1 (en) | Decoder, method for decoding and encoding a video | |
AU2024201207A1 (en) | Context initialization in entropy coding | |
RU2820857C2 (en) | Entropy coding of motion vector differences | |
RU2839971C1 (en) | Entropy coding of motion vector differences | |
RU2776910C1 (en) | Entropy encoding of differences in motion vectors | |
RU2839276C2 (en) | Context initialization in entropy coding |