[go: up one dir, main page]

RU2791151C1 - Способ некогерентного накопления импульсных светолокационных сигналов - Google Patents

Способ некогерентного накопления импульсных светолокационных сигналов Download PDF

Info

Publication number
RU2791151C1
RU2791151C1 RU2022116046A RU2022116046A RU2791151C1 RU 2791151 C1 RU2791151 C1 RU 2791151C1 RU 2022116046 A RU2022116046 A RU 2022116046A RU 2022116046 A RU2022116046 A RU 2022116046A RU 2791151 C1 RU2791151 C1 RU 2791151C1
Authority
RU
Russia
Prior art keywords
signal
threshold
channel
accumulation
range
Prior art date
Application number
RU2022116046A
Other languages
English (en)
Inventor
Валерий Григорьевич Вильнер
Михаил Михайлович Землянов
Евгений Викторович Кузнецов
Александр Ефремович Сафутин
Надежда Валентиновна Седова
Original Assignee
Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" filed Critical Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Application granted granted Critical
Publication of RU2791151C1 publication Critical patent/RU2791151C1/ru

Links

Images

Abstract

Изобретение относится к приему оптических сигналов, в частности к технике приема сигналов посредством лавинных фотодиодов. Сущность заявленного способа некогерентного накопления импульсных светолокационных сигналов состоит в следующем. В каждом K-м цикле зондирования осуществляют прием отраженного сигнала в N каналах дальности, в которых проводится сравнение принятого сигнала с одним или несколькими аналоговыми пороговыми уровнями, а также накопление суммы превышений этих уровней с учетом весового коэффициента уровня. Наличие сигнала в конкретном канале детектируется путем сравнения суммы превышений с пороговым числом. Затем осуществляют приём отраженных сигналов посредством лавинного фотодиода, в подготовительном режиме в отсутствие зондирующих лазерных импульсов устанавливают для рабочего режима оптимальный коэффициент лавинного умножения Мопт фотодиода, при котором отношение сигнал/шум максимально. Далее в режиме Мопт выявляют наличие импульсов микроплазм и определяют минимальную амплитуду импульсов микроплазм UMmin, устанавливают дополнительный пороговый уровень UM, после чего переходят в рабочий режим накопления сигнала, при котором в каждом j-м канале дальности накапливают взвешенные суммы Σj превышений рабочих порогов. При этом параллельно в каждом j-м канале дальности накапливают суммы ΣMj превышений уровня UM. По окончании серии циклов зондирования в каждом канале дальности вычисляют разностные величины ΔΣjj-EMj. В том случае, если ΔΣj превышает установленное пороговое число, то принимают решение о наличии сигнала в данном канале дальности и по номеру этого канала дальности судят о дальности до цели. Технический результат предлагаемого способа заключается в обеспечении максимальной вероятности обнаружения светолокационных сигналов методом накопления независимо от возникающих при лавинном умножении сигнала в фотодиоде микроплазм. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии.
Известен способ некогерентного накопления импульсов при их многократном повторении, например, для обнаружения принимаемых сигналов при лазерном или радиолокационном зондировании удаленных объектов [1-5]. Указанный способ заключается в том, что производят серию циклов зондирования, в каждом цикле зондирования принятый сигнал сравнивают с аналоговым порогом (осуществляют бинарное квантование), подсчитывают количество превышений аналогового порога и принимают решение о наличии сигнала, если это количество превышает заданное число. Этот способ не позволяет реализовать потенциальную вероятность обнаружения сигналов вследствие потери информации при бинарном квантовании принимаемого сигнала.
Наиболее близким по технической сущности к предлагаемому способу является способ некогерентного накопления сигналов, включающий серию циклов зондирования, в каждом цикле зондирования прием отраженного сигнала и сравнение принятого сигнала с одним или несколькими аналоговыми пороговыми уровнями, накопление суммы превышений аналоговых пороговых уровней, по которой после завершения серии судят о наличии сигнала путем сравнения суммы превышений с пороговым числом [6].
Преимущества этого способа максимально реализуются, если прием отраженного сигнала производят с помощью лавинного фотодиода, обладающего по сравнению с другими приемниками наилучшей пороговой чувствительностью [7]. Однако в оптимальном по чувствительности режиме лавинного умножения возможно образование взрывных («телеграфных») шумов, обусловленных микроплазменными пробоями (микроплазмами) в полупроводниковом переходе фотодиода [8]. Микроплазменные импульсы тока имеют прямоугольную форму и постоянную амплитуду, которая возрастает по мере увеличения обратного напряжения. Увеличение амплитуды сопровождается увеличением длительности импульсов и уменьшением скважности [9]. В таком режиме шум лавинного фотодиода состоит из двух независимых составляющих - нормального шума [7] и взрывного шума микроплазм. Микроплазменная составляющая шума фотодиода не сопоставима по статистическим характеристикам с нормальной составляющей, и ее участие в процессе регулирования смещения фотодиода непредсказуемо [10].
Задачей изобретения является обеспечение максимальной вероятности обнаружения светолокационных сигналов методом накопления при наличии микроплазм, возникающих при лавинном умножении сигнала в фотодиоде.
Указанная задача решается за счет того, что в известном способе некогерентного накопления импульсных светолокационных сигналов, включающем K циклов зондирования цели лазерными импульсами, в каждом цикле зондирования прием отраженного сигнала в N каналах дальности, где N=Rmax/ΔR, Rmax - диапазон измеряемых дальностей, ΔR=с τ/2, с - скорость света, τ - тактовый период измерителя задержки отраженного сигнала, в каждом канале дальности сравнение принятого сигнала с одним или несколькими аналоговыми рабочими пороговыми уровнями, накопление суммы превышений аналоговых пороговых уровней с учетом весового коэффициента уровня, по которой судят о наличии сигнала в этом канале путем сравнения суммы превышений с пороговым числом, принимают отраженные сигналы с помощью лавинного фотодиода, в подготовительном режиме в отсутствие зондирующих лазерных импульсов устанавливают для рабочего режима оптимальный коэффициент лавинного умножения Мопт фотодиода, при котором отношение сигнал/шум максимально, в режиме Мопт выявляют наличие импульсов микроплазм и определяют минимальную амплитуду импульсов микроплазм UMmin, устанавливают дополнительный пороговый уровень UM в пределах Ucmax<UM<UMmin, где Ucmax - максимальная ожидаемая амплитуда сигнала, после чего переходят в рабочий режим накопления сигнала, в каждом j-м канале дальности накапливают взвешенные суммы Σj превышений рабочих порогов, параллельно в каждом j-м канале дальности накапливают суммы ΣMj превышений уровня UM, по окончании серии циклов зондирования в каждом канале дальности вычисляют разностные величины ΔΣjjMj и, если ΔΣj превышает заранее установленное пороговое число, то принимают решение о наличии сигнала в данном канале дальности и по номеру этого канала дальности судят о дальности до цели.
Оптимальный режим Mopt устанавливают, включая безлавинный режим смещения фотодиода М=1, затем устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства f<<f0, где f0 - частота пересечения шумом нулевого уровня, после этого увеличивают порог в
Figure 00000001
раз, где α - параметр шум-фактора лавинного умножения F=Мα, порог
Figure 00000002
фиксируют и с помощью напряжения смещения фотодиода устанавливают такой коэффициент лавинного умножения М=Мопт, при котором частота fM шумовых превышений порога UM становится равной частоте f в безлавинном режиме М=1 при пороге U, по достижении частоты fM=f фиксируют достигнутый коэффициент лавинного умножения М=Мопт и включают рабочий режим приема сигналов.
Если амплитуда сигнала в рабочем режиме превышает пороговый уровень UM, то уменьшают коэффициент лавинного умножения до уровня 1≤М≤Мопт, при котором нелинейные искажения сигнала минимальны.
Если в каком-либо из каналов дальности регистрируется сигнал в двух циклах накопления подряд, то принимают решение о наличии цели в данном канале и прекращают накопление, при этом вероятность появления двух подряд микроплазм в любом канале дальности не должна превышать величины W2N=W2⋅N<(1-D), где W2 - вероятность двух подряд микроплазм в одном канале дальности; N - число каналов дальности; D - заданная вероятность правильного обнаружения сигнала.
На фиг. 1 представлена циклограмма способа. На фиг. 2 - характер смеси сигнала и флуктуационного шума на входе двухпорогового амплитудного анализатора. На фиг. 3 показана схема возможной аппаратурной реализации.
На первой стадии подготовительного режима (фиг. 1) напряжение смещения фотодиода соответствует коэффициенту лавинного умножения М=1. При этом преобладают флуктуационные шумы предусилителя со средним квадратом шумового тока I0 2. По частоте f превышения имеющихся пороговых уровней выбросами шума можно судить о среднеквадратическом значении шума. Для порога U известно соотношение
Figure 00000003
, где
Figure 00000004
- частота пересечения шумом нулевого порога; R''(0) - вторая производная корреляционной функции шума на входе порогового устройства R(t) при задержке t=0; σ2 - дисперсия шума I0 2 в размерности порога U.
Из этого следует, что если в безлавинном режиме М=1 порогу U соответствует частота f, то при повышении порога в
Figure 00000005
раз и установлении лавинного режима, при котором увеличенному порогу соответствует та же частота f шумовых превышений, коэффициент лавинного умножения М=Мопт, обеспечивает максимальное отношение сигнал/шум [14]. В первой стадии подготовительного режима в течение времени Тподг1 устанавливают порог U (фиг. 1) Во второй стадии подготовительного режима устанавливают порог
Figure 00000006
и увеличивают напряжение смещения фотодиода до тех пор, пока частота шумовых превышений снова не станет равна f. Тем самым, устанавливают оптимальный коэффициент лавинного умножения Мопт, после чего включают рабочий режим приема светолокационных сигналов.
В режиме приема в каждом канале дальности накапливают взвешенные суммы Σj превышений порогов с весовыми коэффициентами, соответствующими превышенным пороговым уровням [11]. Одновременно с этим процессом производят аналогичное многоканальное накопление превышений высокого порога UM, соответствующих выбросам большой амплитуды, идентифицируемым как микроплазмы. В каждом канале дальности накапливаются суммы этих превышений ΣMj. Разность этих сумм ΔΣjjMj характеризует уровень полезного сигнала, и при превышении величиной ΔΣj порогового значения принимают решение о наличии светолокационного сигнала в j-м канале дальности.
В соответствии с предлагаемым решением ложные срабатывания от микроплазм исключаются из смеси сигнал + шум. Особенности дальнейшего выделения сигнала исследованы в [11]. Существенным критерием является эффективность Е накопления, представляющая собой улучшение отношения сигнал/шум на входе и выходе накопителя:
Figure 00000007
где М(k) - средняя величина накопленной суммы;
σK - среднеквадратическое отклонение накопленной суммы после К циклов накопления;
А - амплитуда сигнала на входе накопителя;
σ - среднеквадратическое значение входного шума.
Исследована [11] зависимость эффективности накопления от относительной величины пороговых уровней Δu/σ при их симметричном положении от нулевого уровня (фиг. 2). При оптимальном положении порогов двухуровневый и четырехуровневый режимы накопления с симметричным размещением пороговых уровней по эффективности приближаются к теоретическому пределу
Существует оптимальное значение коэффициента лавинного умножения М, которое в отсутствие микроплазм можно определить следующим образом. На выходе лавинного фотодиода действует эквивалентный квадрат шумового тока:
Figure 00000008
где I0 2 - квадрат неумножаемого эквивалентного шумового тока;
Figure 00000009
е - заряд электрона;
I1 - первичный обратный ток фотодиода;
Δf - полоса пропускания приемного тракта до входа порогового устройства;
М - коэффициент лавинного умножения;
Мα - шум-фактор лавинного умножения;
α - коэффициент, определяемый материалом фотодиода.
Квадрат W отношения шум/сигнал:
Figure 00000010
где JM 2=2eI1Δƒ.
Figure 00000011
Условие нуля производной:
Figure 00000012
или
Figure 00000013
откуда
Figure 00000014
Figure 00000015
Задача настоящего изобретения решается благодаря аппаратной интерпретации микроплазм не как ложных тревог, а как факторов пропуска сигнала. За счет этого приема можно допустить более высокую вероятность микроплазм и, тем самым, поддерживать коэффициент лавинного умножения ближе к оптимальному уровню (6).
На фиг. 3 показан пример многопороговой (например, двухпороговой) структуры для реализации способа.
Эта локационная структура содержит передающий канал 1, фотоприемный канал 2 со схемой стабилизации лавинного режима фотодиода 3, рабочее многопороговое устройство 4 и дополнительное пороговое устройство 5, подключенные к многоканальным накопителям 6 и 7. Выходные данные накопителей поступают в решающее устройство 8. На выходе фотоприемного канала включен анализатор шума 9, выход которого через схему управления 10 подключен к управляющему входу схемы стабилизации лавинного режима фотодиода 3. Схема управления подключена также к передающему каналу 1 и накопителям 6 и 7, а также к решающему устройству 8.
Перед приемом сигналов включают фотоприемный канал и выводят его в оптимальный режим. Для этого включают анализатор шума 9. Анализатор шума представляет собой пороговое устройство с низким порогом U, таким, что частота его превышений выбросами шума f>>fM*, где fM* - ожидаемая частота микроплазм. При таком условии микроплазмы не влияют на режим фотодиода. По достижении установившегося значения f схема 9 увеличивает порог в
Figure 00000016
раз и повышает напряжение смещения фотодиода до тех пор, пока не восстановится частота f, при которой коэффициент лавинного умножения М соответствует уровню Мопт. После этого переходят в рабочий режим. По команде от блока управления 10 передающий канал 1 излучает на цель серию K зондирующих импульсов. Одновременно блок управления запускает синхронизацию многоканальных накопителей 6 и 7, переключая их ячейки накопления с периодом τ (фиг. 2). Отраженные целью сигналы принимаются фотоприемным каналом 2, на выходе которого образуется смесь отраженного сигнала, флуктуационного шума и импульсов микроплазм. С выходов порогового устройства 4 сигналы поступают поочередно в ячейки накопителя 6, соответствующие текущему каналу дальности, включаемому тактовым сигналом блока управления 10. Сигналы в накопителе 6 суммируются с весом, соответствующим превышенному порогу. Например, при двухуровневом преобразовании с симметричным положением порогов относительно нуля при пересечении шумовым выбросом верхнего порога вверх в накопитель заносится «+1», а при пересечении нижнего порога вниз заносится «-1». При таком построении аппаратуры обеспечивается выигрыш Е в улучшении отношения сигнал/шум, близкий к теоретическому пределу
Figure 00000017
где K - количество циклов (объем) накопления [2]. В накопителе 7 содержится информация о количестве микроплазм в каждом канале дальности. Решающее устройство 8 вычисляет разность накопленных сумм ΔΣjjMj, компенсируя наличие микроплазм.
Пропуск сигнала вследствие маскировки шумом, характеризуемый вероятностью Qш, и пропуск сигнала вследствие блокировки микроплазмы, характеризуемое вероятностью QM, представляют собой взаимно независимые события [3], поэтому заданную вероятность пропуска сигнала Q=1-D за одно измерение можно представить в виде суммы Q=Qш+QM, где D - вероятность правильного обнаружения сигнала.
При выборе условий:
Figure 00000018
и
Figure 00000019
можно практически полностью устранить влияние микроплазм на обнаружительные характеристики.
Условие (8) равносильно соотношению:
Figure 00000020
где m - допустимое количество микроплазм в одном канале дальности за время накопления;
Kпор - пороговое значение накопленной суммы в одном канале, при котором принимается решение о наличии сигнала;
Figure 00000021
обеспечивающий условие (7).
Накопленная сумма K является случайной величиной с математическим ожиданием, соответствующим уровню принимаемого сигнала и при пороговом значении этой величины K=Kпор со среднеквадратическим отклонением
Figure 00000022
.
Критическое количество микроплазм в одном канале накопления m не должно существенно влиять на статистику накопленной суммы, обусловленной сигналом, что отмечается выражением (9).
Пример 1.
Объем накопления K=200; среднее значение накопленной суммы в отсутствие сигнала Kcp(0)=0; установленный порог
Figure 00000023
; количество каналов накопления N=104; ширина канала τ=10-8 с; коэффициент
Figure 00000024
При этих условиях среднее количество микроплазм на канал за время накопления:
Figure 00000025
Среднее количество микроплазм на канал дальности за один цикл:
Figure 00000026
Длительность цикла накопления Т=Nτ=104⋅10-8=10-4 с.
Допустимая частота микроплазм
Figure 00000027
Вероятность появления микроплазмы в одном канале в двух циклах подряд - W2=m1 2.
При указанных ограничениях такое событие означает, что с большой вероятностью имеет место сигнал большой амплитуды. Поэтому принимают решение о приеме сигнала в данном канале дальности и останавливают процесс накопления.
Пример 2.
В условиях предыдущего примера вероятность W2=m1 2=4⋅10-6. При этом вероятность двух подряд микроплазм в любом канале дальности W2N=W2⋅N=4⋅10-2. В существующей практике пропуск сигнала с такой вероятностью считается допустимым.
Таким образом, обеспечивается задача изобретения - достижение теоретически предельной чувствительности во всех условиях эксплуатации независимо от микроплазменных пробоев, следующих с частотой до 200 кГц.
Предлагаемый способ некогерентного накопления сигналов обеспечивает максимальную вероятность обнаружения сигналов при минимальном объеме аппаратуры и может быть реализован в портативных лазерных дальномерах.
Источники информации
1 Я.Д. Ширман, В.Н. Голиков «Основы теории обнаружения радиолокационных сигналов и измерения их параметров». Изд. «Советское радио», М, 1963 г., с. 179.
2 Я.Д. Ширман, В.Н. Манжос «Теория и техника обработки радиолокационной информации на фоне помех». Изд. «Радио и связь», М., 1981 г., с. 81-83.
3 В.Е. Гмурман «Теория вероятностей и математическая статистика». Изд. «Высшая школа», М., 1977 г., 479 с.
4 В.Г. Вильнер Проектирование пороговых устройств с шумовой стабилизацией порога. Оптико-механическая промышленность, 1984 г., №5.
5 Патент WO 2005/006016 Al "Laser rangefinder and method thereof.
6 Патент РФ №2359226 по з-ке №2007137271 от 10.10.2007. «Способ некогерентного накопления светолокационных сигналов». - Прототип.
7 Тихонов В. И. Выбросы случайных процессов. Изд. «Наука», М, 1970 г., 392 с.
8 Филачев A.M., Таубкин И.И., Тришенков М.А. Твердотельная фотоэлектроника. Физические основы. Москва, Физматгиз. 2007.
9 Вишневский А.И., Руденко В.С, Платонов А. П. Силовые ионные и полупроводниковые приборы. Учебное пособие для вузов. Под ред. В.С. Руденко. Москва, Высшая школа, 1975.
10 Шашкина А.С. и др. Лавинный пробой p-n-перехода в задачах радиотехники. - Научно-технический вестник информационных технологий, механики и оптики, 2016, том 16, №5, с. 864-871.
11 Вильнер В. Г. и др. Оценка возможностей светолокационного импульсного измерителя дальности с накоплением. Фотоника, 2007, №6, с. 22-27.
12 Патент РФ №2390724. «Способ светолокационного определения дальности методом некогерентного накопления».
13 Патент РФ №2469269. «Способ определения дальности».
14 Патент РФ №2755603. «Способ порогового обнаружения оптических сигналов».

Claims (4)

1. Способ некогерентного накопления импульсных светолокационных сигналов, включающий K циклов зондирования цели лазерными импульсами, в каждом цикле зондирования прием отраженного сигнала в N каналах дальности, где N=Rmax/ΔR, Rmax - диапазон измеряемых дальностей, ΔR=с τ/2, с - скорость света, τ - тактовый период измерителя задержки отраженного сигнала, в каждом канале дальности сравнение принятого сигнала с одним или несколькими аналоговыми пороговыми уровнями, накопление суммы превышений аналоговых пороговых уровней с учетом весового коэффициента уровня, по которой судят о наличии сигнала в этом канале путем сравнения суммы превышений с пороговым числом, отличающийся тем, что принимают отраженные сигналы с помощью лавинного фотодиода, в подготовительном режиме в отсутствие зондирующих лазерных импульсов устанавливают для рабочего режима оптимальный коэффициент лавинного умножения Мопт фотодиода, при котором отношение сигнал/шум максимально, в режиме Мопт выявляют наличие импульсов микроплазм и определяют минимальную амплитуду импульсов микроплазм UMmin, устанавливают дополнительный пороговый уровень UM в пределах Ucmax<UM<UMmin, где Ucmax - максимальная ожидаемая амплитуда сигнала, после чего переходят в рабочий режим накопления сигнала, в каждом j-м канале дальности накапливают взвешенные суммы Σj превышений рабочих порогов, параллельно в каждом j-м канале дальности накапливают суммы ΣMj превышений уровня UM, по окончании серии циклов зондирования в каждом канале дальности вычисляют разностные величины ΔΣjjMj, и если ΔΣj превышает заранее установленное пороговое число, то принимают решение о наличии сигнала в данном канале дальности и по номеру этого канала дальности судят о дальности до цели.
2. Способ по п. 1, отличающийся тем, что оптимальный режим Mopt устанавливают, включая безлавинный режим смещения фотодиода М=1, затем устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства f<<f0, где f0 - частота пересечения шумом нулевого уровня, после этого увеличивают порог в
Figure 00000028
раз, где α - параметр шум-фактора лавинного умножения F=Мα, порог
Figure 00000029
фиксируют и с помощью напряжения смещения фотодиода устанавливают такой коэффициент лавинного умножения М=Мопт, при котором частота fM шумовых превышений порога UM становится равной частоте f в безлавинном режиме М=1 при пороге U, по достижении частоты fM=f фиксируют достигнутый коэффициент лавинного умножения М=Мопт и включают рабочий режим приема сигналов.
3. Способ по п. 1, отличающийся тем, что если амплитуда сигнала в рабочем режиме превышает максимальный из пороговых уровней Umax, то уменьшают коэффициент лавинного умножения до уровня 1≤М<Мопт, при котором нелинейные искажения сигнала минимальны.
4. Способ по п. 1, отличающийся тем, что если в каком-либо из каналов дальности регистрируется сигнал в двух циклах накопления подряд, то принимают решение о наличии цели в данном канале и прекращают накопление, при этом вероятность появления двух подряд микроплазм в любом канале дальности не должна превышать величины W2N=W2⋅N<(1-D), где W2 - вероятность двух подряд микроплазм в одном канале дальности; N - число каналов дальности; D - заданная вероятность правильного обнаружения сигнала.
RU2022116046A 2022-06-15 Способ некогерентного накопления импульсных светолокационных сигналов RU2791151C1 (ru)

Publications (1)

Publication Number Publication Date
RU2791151C1 true RU2791151C1 (ru) 2023-03-03

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2810710C1 (ru) * 2023-10-11 2023-12-28 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ накопления светолокационных сигналов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2359226C1 (ru) * 2007-10-10 2009-06-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ некогерентного накопления светолокационных сигналов
RU2560011C1 (ru) * 2014-06-09 2015-08-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный дальномер
RU2653558C1 (ru) * 2017-06-06 2018-05-11 Владимир Владиславович Имшенецкий Оптическое устройство для определения расстояний до объекта

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2359226C1 (ru) * 2007-10-10 2009-06-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ некогерентного накопления светолокационных сигналов
RU2560011C1 (ru) * 2014-06-09 2015-08-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный дальномер
RU2653558C1 (ru) * 2017-06-06 2018-05-11 Владимир Владиславович Имшенецкий Оптическое устройство для определения расстояний до объекта

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2810710C1 (ru) * 2023-10-11 2023-12-28 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ накопления светолокационных сигналов

Similar Documents

Publication Publication Date Title
US10585174B2 (en) LiDAR readout circuit
US9835490B2 (en) Discriminating photo counts and dark counts in an avalanche photodiode
US7499829B2 (en) Laser rangefinder and method thereof
US6650404B1 (en) Laser rangefinder receiver
IL195988A (en) Automatic avalanche photodiode bias setting system based on unity-gain noise measurement
RU2791151C1 (ru) Способ некогерентного накопления импульсных светолокационных сигналов
EP0058703A1 (en) DEVICE FOR INCREASING THE DYNAMIC RANGE ON THE INPUT STAGE OF A RECEIVER IN A FIBER OPTIC INFORMATION TRANSMISSION SYSTEM.
US7184130B1 (en) Method for improving the received signal to noise ratio of a laser rangefinder
RU2788940C1 (ru) Способ некогерентного накопления светолокационных сигналов
CN114706058A (zh) 一种激光接收系统以及激光测距系统
US20210088661A1 (en) Photodetector and optical ranging apparatus using the same
US20220221563A1 (en) Method for operating a photodiode and device for carrying out the method
RU2810710C1 (ru) Способ накопления светолокационных сигналов
RU2359226C1 (ru) Способ некогерентного накопления светолокационных сигналов
US10473521B2 (en) Analog photon counting
RU2791186C1 (ru) Лазерный импульсный дальномер
RU2792086C1 (ru) Способ импульсного локационного измерения дальности
EP4382944A1 (en) Measurement apparatus and measurement method
US11061137B2 (en) Proximity detection device and method comprising a pulse transmission circuit to transmit into a scene plural optical pulses with different pulse durations during a detection period
RU2778047C1 (ru) Способ приема оптических сигналов
CN114594494A (zh) 激光雷达系统及其环境光去噪方法
CN112363148A (zh) 光电检测电路及光电探测器
RU2778048C1 (ru) Способ приема импульсных оптических сигналов
JPH06201828A (ja) レーザ測距装置
RU2778629C1 (ru) Способ порогового обнаружения оптических сигналов