RU2784198C1 - Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов - Google Patents
Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов Download PDFInfo
- Publication number
- RU2784198C1 RU2784198C1 RU2022104875A RU2022104875A RU2784198C1 RU 2784198 C1 RU2784198 C1 RU 2784198C1 RU 2022104875 A RU2022104875 A RU 2022104875A RU 2022104875 A RU2022104875 A RU 2022104875A RU 2784198 C1 RU2784198 C1 RU 2784198C1
- Authority
- RU
- Russia
- Prior art keywords
- diffusion coefficient
- point
- sensor
- time
- galvanic
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 25
- 239000011148 porous material Substances 0.000 title claims abstract description 14
- 239000002904 solvent Substances 0.000 claims abstract description 32
- 239000007790 solid phase Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 8
- 230000000875 corresponding Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 4
- 238000004078 waterproofing Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 230000003068 static Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000010755 BS 2869 Class G Substances 0.000 description 1
- 230000001174 ascending Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000001066 destructive Effects 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000011394 gypsum concrete Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening Effects 0.000 description 1
Images
Abstract
Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса для определения коэффициента диффузии в строительных изделиях из капиллярно-пористых материалов, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов заключается в том, что в исследуемом изделии создают равномерное начальное содержание распределенного в твердой фазе растворителя, гидроизолируют верхнюю плоскую поверхность образца, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксируют момент времени достижения заданного значения сигнала гальванического датчика и рассчитывают коэффициент диффузии. При этом измеряют изменение во времени сигнала дополнительного гальванического датчика, электроды которого располагают на этой поверхности по концентрической окружности относительно точки импульсного воздействия на другом расстоянии от нее, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E 1 и второго датчика E 2 из диапазона (0,7–0,9) E e на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков. Техническим результатом является повышение точности измерения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов. 1 ил.
Description
Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса для определения коэффициента диффузии в строительных изделиях из капиллярно-пористых материалов, а также в пищевой, химической и других отраслях промышленности.
Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (А.С. 174005, кл. G 01 k N 421, 951, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатком этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, невозможность определения коэффициента диффузии других растворителей, кроме воды, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.
Наиболее близким является способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов (патент РФ на изобретение № 2492457, G 01 N 27/26, 15/08, 10.09.2013, Бюл. № 25), заключающийся в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, определении времени достижения максимума ЭДС гальванического преобразователя и расчете по нему коэффициента диффузии по установленной зависимости.
Недостатком этого способа являются невысокая точность определения момента достижения максимума ЭДС, где производная сигнала преобразователя по времени близка к нулю, и наблюдается недостаточная чувствительность измеряемого параметра к изменению времени.
Техническая задача предлагаемого технического решения предполагает повышение точности измерения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов.
Техническая задача достигается тем, что в способе определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), включающем создание в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксировании момента времени достижения заданного значения сигнала гальванического датчика и расчета коэффициента диффузии.
В отличие от прототипа (патент РФ на изобретение № 2492457, G 01 N 27/26, 15/08, 10.09.2013 Бюл. № 25) измеряют изменение во времени сигнала дополнительного гальванического датчика, электроды которого располагают на этой поверхности по концентрической окружности относительно точки импульсного воздействия на другом расстоянии от нее, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E 1 и второго датчика E 2 из диапазона (0,7–0,9) E e на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков, а расчет коэффициента диффузии производят по формуле:
где r 1 и r 2 – расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; E e - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.
Сущность предлагаемого способа заключается в следующем: к плоской поверхности изделия с равномерным начальным распределением растворителя (в том числе и нулевым) прижимается зонд с импульсным точечным источником дозы растворителя и расположенными на двух концентрических окружностях разного диаметра относительно точки импульсного воздействия на изделие электродами двух гальванических преобразователей. После импульсной подачи дозы растворителя в точку на поверхности изделия зонд обеспечивает гидроизоляцию поверхности изделия в зоне действия источника растворителя и прилегающей к ней области контроля распространения диффузанта. После подачи импульса растворителя (мгновенного увлажнения точки на поверхности изделия) фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя на нисходящих ветвях кривых изменения сигналов во времени двух датчиков, рассчитывают коэффициент диффузии растворителя в исследуемом материале по установленной зависимости, что обеспечивает повышение точности контроля.
Процесс распространения растворителя в массивном изделии из капиллярно-пористых материалов (при условии, что минимальные размеры изделия относительно точки импульсного воздействия превышают 10 r 2, где r 2 - расстояние от точки импульсного воздействия до электродов наиболее удаленного от нее гальванического преобразователя) после нанесения такого импульса описывается краевой задачей массопереноса в неограниченной среде при нанесении импульсного воздействия от точечного источника массы.
В этом случае изменение концентрации растворителя в капиллярно-пористом материале в зоне действия источника описывается функцией:
где - концентрация растворителя на поверхности сферы радиусом r относительно точки импульсного подвода дозы растворителя к образцу в момент времени τ; D - коэффициент диффузии растворителя; – плотность абсолютно сухого исследуемого материала; Q – количество жидкой фазы, подведенной из дозатора к плоской поверхности изделия исследуемого капиллярно-пористого материала.
Коэффициент диффузии растворителя D при организации данного процесса массопереноса в изделии связан соотношением:
где τ max – время, соответствующее максимуму на кривой U(r 0,τ) изменения концентрации на расстоянии r 0 от источника.
Расчетная зависимость для определения искомого коэффициента диффузии получена на основании следующих исследований. После импульсного воздействия дозой растворителя на заданном расстоянии r 0 от точечного источника наблюдается изменение концентрации в виде характерных кривых, имеющих восходящую ветвь от начала импульсного воздействия до момента τmax и нисходящую ветвь, наблюдаемую после наступления момента τmax. При этом одинаковые значения концентрации U *, достигаемые в моменты времени τ1 и τ2 на нисходящих ветвях кривых изменения концентрации во времени на расстояниях соответственно r 1 и r 2 могут быть определены из выражения (1) с учетом (2):
Деление (3) на (4) приводит к следующему выражению:
Из (5), с учетом выражения (2) для каждого из r 1 и r 2, получено расчетное выражение для определения искомого коэффициента диффузии:
Для определения искомого коэффициента диффузии в предлагаемом способе измерению в моменты времени τ1 и τ2 подлежат не значения концентрации и , а связанные с ними одинаковые значения ЭДС применяемого гальванического преобразователя в отсутствие предварительно найденной в результате градуировки статической характеристики. Для повышения точности необходимо, чтобы в данные моменты времени τ1 и τ2 измеряемое значение ЭДС находилось на среднем (рациональном) участке статической характеристики, характеризующегося стабильным сигналом преобразователя и высокой чувствительностью к изменению концентрации. Исследования показывают, что рациональный участок статической характеристики соответствует изменению ЭДС преобразователя в диапазоне:
(0,7–0,9) E e, (7)
где E e – сигнал преобразователя, соответствующий переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния (максимальный сигнал на плато насыщения статической характеристики). При значениях ЭДС преобразователя свыше 0,9 E e существенно возрастает разброс экспериментальных значений из-за существенной нелинейности статической характеристики и потери чувствительности преобразователя к изменению концентрации растворителя вблизи зоны насыщения из-за существенного ослабления связи молекул растворителя с твердой фазой контролируемого капиллярно-пористого материала. При значениях ЭДС преобразователя ниже 0,7 E e существенно возрастает разброс экспериментальных значений за счет нестабильности сигнала преобразователя, вызванного возрастанием электрического сопротивления контролируемого капиллярно-пористого материала в области низких значений концентрации растворителя.
Пример. Были проведены исследования коэффициента диффузии этанола в плитах, отформованных из пеногипсобетона, толщиной 50 мм, плотностью в сухом состоянии 600 кг/м3. Расстояние от точки нанесения дозы растворителя до расположения электродов гальванических преобразователей: x 1=4 мм и x 2=5 мм. Вносимая доза влаги составляла приблизительно 2×10-5 кг. Расчетное значение ЭДС, соответствующее моментам времени τ1 и τ2, выбиралось приблизительно равным 0,8 E e (фигура 1). В результате получены следующие значения: τ1=3995 с и τ2=3437 с. Рассчитанное по (6) значение коэффициента диффузии равно ≈ 3.62×10-9 м2/с.
Claims (3)
- Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом изделии создают равномерное начальное содержание распределенного в твердой фазе растворителя, гидроизолируют верхнюю плоскую поверхность образца, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксируют момент времени достижения заданного значения сигнала гальванического датчика и рассчитывают коэффициент диффузии, отличающийся тем, что измеряют изменение во времени сигнала дополнительного гальванического датчика, электроды которого располагают на этой поверхности по концентрической окружности относительно точки импульсного воздействия на другом расстоянии от нее, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E 1 и второго датчика E 2 из диапазона (0,7–0,9) E e на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков, а расчет коэффициента диффузии производят по формуле:
- где r 1 и r 2 – расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; E e – максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2784198C1 true RU2784198C1 (ru) | 2022-11-23 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2797140C1 (ru) * | 2023-03-06 | 2023-05-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7039527B2 (en) * | 2003-10-01 | 2006-05-02 | Caliper Life Sciences, Inc. | Method for measuring diffusivities of compounds using microchips |
RU2492457C1 (ru) * | 2012-04-03 | 2013-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ | Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов |
RU2677259C1 (ru) * | 2018-03-07 | 2019-01-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах |
RU2705651C1 (ru) * | 2019-03-13 | 2019-11-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах |
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7039527B2 (en) * | 2003-10-01 | 2006-05-02 | Caliper Life Sciences, Inc. | Method for measuring diffusivities of compounds using microchips |
RU2492457C1 (ru) * | 2012-04-03 | 2013-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ | Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов |
RU2677259C1 (ru) * | 2018-03-07 | 2019-01-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах |
RU2705651C1 (ru) * | 2019-03-13 | 2019-11-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2797140C1 (ru) * | 2023-03-06 | 2023-05-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов |
RU2819561C1 (ru) * | 2024-03-07 | 2024-05-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2492457C1 (ru) | Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов | |
Quinones et al. | Comparison of three calibration procedures for TDR soil moisture sensors | |
RU2549613C1 (ru) | Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов | |
Irvine et al. | Non-destructive measurement of stem water content by time domain reflectometry using short probes | |
Trtnik et al. | Measurement of setting process of cement pastes using non-destructive ultrasonic shear wave reflection technique | |
Lourenço et al. | Calibrations of a high-suction tensiometer | |
RU2436066C1 (ru) | Способ измерения коэффициента диффузии влаги в капиллярно-пористых листовых материалах | |
Peng et al. | Field evaluation and improvement of the plate method for measuring soil heat flux density | |
RU2784198C1 (ru) | Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов | |
Akram et al. | Fringing field impedance sensor for hydration monitoring and setting time determination of concrete material | |
Belyaev et al. | Implementation of nondestructive testing of massive products in measuring the diffusivity of solvents | |
Western et al. | A calibration and temperature correction procedure for the water‐content reflectometer | |
RU2643174C1 (ru) | Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах | |
RU2782682C1 (ru) | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах | |
RU2782850C1 (ru) | Способ определения коэффициента диффузии в массивных изделиях из ортотропных капиллярно-пористых материалов | |
RU2756665C1 (ru) | Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах | |
RU2677259C1 (ru) | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах | |
RU2797140C1 (ru) | Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов | |
RU2682837C1 (ru) | Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах | |
RU2705651C1 (ru) | Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах | |
Freitas et al. | Time Domain Reflectometry (TDR) technique–A solution to monitor moisture content in construction materials | |
Belyaev et al. | Method of non-destructive control of the solvent diffusion coefficient in products made from anisotropic porous materials | |
RU2739749C1 (ru) | Способ определения коэффициента диффузии в массивных изделиях из ортотропных капиллярно-пористых материалов | |
RU2737065C1 (ru) | Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах | |
Belyaev et al. | Study of the diffusion coefficient in thin articles made of porous materials |