RU2754110C1 - Способ радиоподавления спутниковых каналов управления - Google Patents
Способ радиоподавления спутниковых каналов управления Download PDFInfo
- Publication number
- RU2754110C1 RU2754110C1 RU2020136728A RU2020136728A RU2754110C1 RU 2754110 C1 RU2754110 C1 RU 2754110C1 RU 2020136728 A RU2020136728 A RU 2020136728A RU 2020136728 A RU2020136728 A RU 2020136728A RU 2754110 C1 RU2754110 C1 RU 2754110C1
- Authority
- RU
- Russia
- Prior art keywords
- earth
- kar
- signal
- frequency
- spacecraft
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radio Relay Systems (AREA)
Abstract
Изобретение относится к области радиотехники, а именно к технике создания искусственных радиопомех, и, в частности, может быть использовано для радиоподавления (РП) спутниковых командно-программных радиолиний (КПРЛ) управления космическими аппаратами (КА), расположенными на низких околоземных орбитах (НОО), функционирующих через каналы ретрансляции данных космических аппаратов (КА) космических систем ретрансляции данных (КСРД). Технический результат состоит в разработке способа РП спутниковых КУ, обеспечивающего избирательное РП спутниковых КУ подавляемых КА, находящихся вне зоны прямой радиовидимости автоматизированной станции помех. Для этого принимают сигналы от установленного на подавляемом КА источника излучения, ретранслированные через космический аппарат-ретранслятор (КАр) во всех рабочих частотных диапазонах. Идентифицируют обнаруженный сигнал как сигнал КУ "Земля-КАр-КА". Определяют принадлежность обнаруженного сигнала КУ "Земля-КАр-КА" к подавляемому КА. Определяют и запоминают значение частоты КУ "КА-КАр-Земля". Формируют, модулируют, усиливают и излучают помеховый сигнал на частоте, соответствующей ранее запомненному значению частоты КУ "КА-КАр-Земля". Оценивают эффективность РП КУ, для чего непрерывно контролируют информацию о счетчике номеров кадров телекоманд с наземной станции управления. Если в сигнале источника излучения принимаемые значения счетчика номеров кадров имеют пропуски, то РП считают эффективным, в обратном случае итеративно увеличивают эффективную изотропно излучаемую мощность помехового сигнала и оценивают эффективность РП КУ до тех пор, пока при очередной итерации в принятом сигнале КУ "Земля-КАр-КА" не появятся пропуски в номерах кадров телекоманд. 1 з.п. ф-лы, 3 ил.
Description
Изобретение относится к области радиотехники, а именно к технике создания искусственных радиопомех, и, в частности, может быть использовано для радиоподавления (РП) спутниковых командно-программных радиолиний (КПРЛ) управления космическими аппаратами (КА), расположенными на низких околоземных орбитах (НОО), функционирующих через каналы ретрансляции данных космических аппаратов (КА) космических систем ретрансляции данных (КСРД) [1]. При этом КА ретрансляции (КАр) данных располагается на геостационарной (ГСО) или высокоэллиптической орбите (ВЭО).
КПРЛ - радиолиния, обеспечивающая служебную связь между космическим аппаратом (КА) и наземной станцией управления (НСУ).
Известен способ формирования радиопомех: Европатент ЕР 0293167 А2, опубликованный 30.11.88, бюл. 88/48, МПК Н04K 3/00. Аналог включает прием сигнала источника излучения, определение частотных и структурных параметров этого сигнала (несущей частоты, длительности передачи, момента начала и окончания передачи соседнего "дружественного" передатчика), формирование структуры модулирующего помехового напряжения, модуляцию несущего колебания полученным модулирующим напряжением, усиление промодулированного помехового сигнала и излучение его в эфир только после окончания работы соседнего передатчика. Однако указанный аналог не обеспечивает подавление радиопомехами современных систем связи, использующих разнесение по частоте каналов приема и передачи сообщений.
Известен способ РП каналов связи по патенту РФ №2104616 С1 от 10.02.98, МПК Н04K 3/00, опубл. 10.02.98, бюлл. №4. Аналог включает прием сигналов источников излучения, определение их параметров, измерение суммарного времени, в течение которого отсутствует прием сигналов на рабочих частотах источников излучения в заданном промежутке времени, распределение временного ресурса подавления между рабочими частотами источников излучения, подлежащих РП. Формирование структуры управляющих сигналов, задающих режим работы устройства управления передачей и структуру модулирующих напряжений. Модуляцию сигналов возбудителей, усиление их в передатчике помех и излучение в эфир в режиме, заданном сигналом устройства управления передачей согласно временному ресурсу подавления, в течение интервала, равного времени отсутствия приема на подавляемой частоте. Однако указанный аналог позволяет осуществлять РП только тех систем связи, где используют ограниченное количество рабочих частот и информация о степени их загруженности полностью априори известна.
Наиболее близким аналогом по своей технической сущности (прототипом) к заявляемому является способ РП спутниковых каналов управления (КУ) по патенту РФ №2677261 С1 от 06.10.2017, МПК Н04K 3/00, опубл. 16.01.2019, бюлл. №2.
Способ-прототип включает в себя прием сигналов источника излучения во всех поддиапазонах работы, идентификацию обнаруженного сигнала, как сигнала КУ "КА-Земля", определение и запоминание значение частоты КУ "Земля-КА", формирование сигналов управления режимом передачи и излучение помехового сигнала на частоте, соответствующей ранее запомненному значению частоты КУ "Земля-КА". Оценку эффективности РП КУ, для чего повторно осуществляют прием сигналов источника излучения на частоте КУ "КА-Земля" и фиксируют наличие в них информации, передаваемой в целях квитирования телекоманд с наземной станции управления. Увеличение эффективной изотропно излучаемой мощности помехового сигнала до тех пор, пока не прекратится передача квитанций о приеме телекоманд на частоте КУ "КА-Земля".
Недостатками способа-прототипа являются:
- возможность осуществления РП спутниковых КУ только при условии нахождения КА в зоне прямой радиовидимости автоматизированной станции помех (АСП);
- отсутствие избирательности и процедуры определения принадлежности спутниковых КУ к подавляемому КА.
Целью данного изобретения является разработка способа РП спутниковых КУ, обеспечивающего избирательное РП спутниковых КУ подавляемых КА, находящихся вне зоны прямой радиовидимости АСП.
Поставленная цель достигается тем, что в известном способе РП принимают сигналы установленного на подавляемом КА источника излучения, определяют их параметры, формируют сигналы управления режимом передачи и структурой модулирующих напряжений, модулируют, усиливают и излучают помеховые сигналы, после чего оценивают эффективность РП КУ. Принимают сигналы от установленного на подавляемом КА источника излучения, ретранслированные через космический аппарат-ретранслятор (КАр) во всех рабочих частотных поддиапазонах Δfpemp1, Δfpemp2 … Δfpempi, где i - номер поддиапазона работы КАр. Идентифицируют обнаруженный на частоте f"КАр-КА" сигнал, как сигнал КУ "Земля-КАр-КА". Определяют принадлежность обнаруженного сигнала КУ "Земля-КАр-КА" к подавляемому КА. Определяют и запоминают значение частоты f"ка-КАр" КУ "КА-КАр-Земля". Формируют, модулируют, усиливают и излучают помеховый сигнал на периоде Δt с уровнем эквивалентной изотропно излучаемой мощности (ЭИИМ), равным максимально заявленному уровню ЭИИМ источника излучения на частоте, соответствующей ранее запомненному значению частоты f"ка-КАр" КУ "КА-КАр-Земля". Оценивают эффективность РП КУ, для чего непрерывно контролируют информацию о счетчике номеров кадров телекоманд с наземной станции управления (НСУ), передаваемую в сигнале источника излучения на частоте f"КАр-КА" КУ "Земля-КАр-КА". Если в сигнале источника излучения принимаемые значения счетчика номеров кадров имеют пропуски, то РП считают эффективным, в обратном случае итеративно на ΔР(%) увеличивают ЭИИМ помехового сигнала и оценивают эффективность РП КУ до тех пор, пока при очередной итерации в принятом сигнале КУ "Земля-КАр-КА" не появятся пропуски в номерах кадрах телекоманд.
Благодаря новой совокупности существенных признаков, в заявленном техническом решении предоставляется возможность нарушения управления КА, находящимися вне зоны прямой радиовидимости АСП, путем постановки помех КПРЛ, функционирующим через каналы ретрансляции данных КАр КСРД.
Заявленный способ поясняется чертежами, на которых:
на фиг. 1 - структурная схема заявленного технического решения;
на фиг. 2 - алгоритм РП спутниковых КУ;
на фиг. 3 - структура кадра протокола передачи командной информации.
На фиг. 1 цифрами обозначены: 1 - наземная станция управления (НСУ) подавляемого КА; 1.1 - тракт приема НСУ КА, 1.2 - тракт передачи НСУ КА; 2 - космический аппарат-ретранслятор, расположенный на ГСО или ВЭО; 3 - источник излучения, установленный на подавляемом КА, расположенном на НОО; 2.1, 3.1 - КУ "КА-КАр-Земля", в котором содержатся телеметрические данные подавляемого КА; 2.2, 3.2 - КУ "Земля-КАр-КА", через который передается командная информация (телекоманды) с НСУ на подавляемый КА и содержатся данные о принадлежности подавляемого КА, 4 - автоматическая станция помех, 4.1 - тракт излучения помехового сигнала, 5 - пост контроля (ПК) АСП, 5.1 - тракт приема ПК АСП.
Возможность реализации предложенного способа объясняется следующим. Известно, см., например, стр. 29-33 [1], что организация спутниковых КПРЛ управления КА вне зоны радиовидимости НСУ осуществляется следующим образом. Перед началом сеанса связи антенные системы НСУ (объект 1 на фиг. 1) начинают сопровождение траектории предполагаемого перемещения КАр по небосводу, а рабочие частоты приемо-передающих устройств НСУ устанавливают в соответствии с рабочими частотами бортовой аппаратуры КАр. С входом подавляемого КА (объект 3 на фиг. 1) в зону радиовидимости КАр (объект 2 на фиг. 1) начинают сопровождение антенными системами КАр траектории предполагаемого перемещения КА по небосводу, а рабочие частоты приемопередающих устройств КАр устанавливают в соответствии с рабочими частотами бортовой аппаратуры КА.
На частоте КУ "Земля-КАр-КА" f"Земля-КАр" (канал 1.2 объекта 1 на фиг. 1) осуществляют передачу сигналов с командной информацией (телекоманд) от НСУ на управление бортовой аппаратурой КА, которые ретранслируют через КАр на частоте f"КАр-КА" (канал 2.2 объекта 2 на фиг. 1) и принимают на КА (канал 3.2 объекта 3 на фиг.1) на той же частоте f"КАр-КА". При этом на частоте КУ "КА-КАр-Земля" f"КА-КАр" (канал 3.1 объекта 3 на фиг. 1) осуществляют передачу сигналов с телеметрической информацией для НСУ, которые ретранслируют через КАр (канал 2.1 объекта 2 на фиг. 1) и принимают на НСУ на частоте f- КАр-Земля" (канал 1.1 объекта 1 на фиг. 1).
Передача очередных кадров командной информации (телекоманд) происходит последовательно с указанием номера каждого кадра после получения подтверждения от КА о приеме очередной телекоманды, содержащегося в кадрах телеметрической информации. Прием сигналов от НСУ, ретранслированных через КАр, с командной информацией, содержащей значения счетчика номеров кадров телекоманд и данные о принадлежности КА, возможен и на ПК АСП (канал 5.1 объекта 5 на фиг. 1) при оснащении его соответствующими приемниками сигналов КУ "Земля-КАр-КА".
Поскольку значение частоты КУ "КА-КАр-Земля" f"КА-КАр" определяется исходя из значения частоты КУ "Земля-КАр-КА" f"КАр-КА", то постановка помех от АСП (по каналу 4.1 объекта 4 на фиг. 1) на частоте f"КА-КАр" приведет к тому, что НСУ не осуществит прием сигналов с телеметрической информацией от подавляемого КА, содержащей подтверждения о приеме очередной телекоманды, и, соответственно, не осуществит передачу очередного кадра командной информации (телекоманды).
Отмеченное позволяет путем контроля на ПК АСП (по каналу 5.1 объекта 5 на фиг. 1) наличия информации о счетчике номеров кадров телекоманд с НСУ, передаваемой в сигнале источника излучения на частоте f"КАр-КА" КУ "Земля-КАр-КА", судить об эффективности постановки помех, т.е эффективности РП спутниковых КУ. Так, если принимаемые значения счетчика номеров кадров имеют пропуски, то РП считают эффективным, в обратном случае итеративно на ΔР (%) увеличивают ЭИИМ помехового сигнала до тех пор, пока при очередной итерации в принятом сигнале КУ "Земля-КАр-КА" не появятся пропуски в номерах кадрах телекоманд. В свою очередь контроль на ПК АСП (по каналу 5.1 объекта 5 на фиг. 1) наличия информации о принадлежности КА позволяет обеспечить избирательное РП на периоде ***t функционирования КУ "Земля-КАр-КА", где Δt = tоконч - tнач, где tнач - время начала функционирования частоты f"КАр-КА" КУ "Земля-КАр-КА", tоконч - время окончания функционирования частоты f"КАр-КА" КУ "Земля-КАр-КА".
Предлагаемый способ РП спутниковых КУ реализуют следующей последовательностью действий (см. алгоритм на фиг. 2).
На начальном этапе принимают сигналы от установленного на подавляемом КА источника излучения, ретранслированные через космический аппарат-ретранслятор (КАр) во всех рабочих частотных поддиапазонах Δfpemp1, Δfpemp2 … Δfpempi, где i - номер поддиапазона работы КАр. Поддиапазоны работы КАр заранее определены для конкретной КСРД см., например, стр. 52, 63, 81 [1].
Для идентификации принятого сигнала, как сигнала КУ "Земля-КАр-КА", производят его сравнение с сигналом-эталоном из базы данных. Процедура идентификации известна и описана, например, в патенте РФ №2677261.
Определение принадлежности сигнала КУ "Земля-КАр-КА" к подавляемому КА осуществляют либо путем привязки КА к определенной частоте f"КАр-КА" КУ "Земля-КАр-КА", либо путем фиксации информации о международном идентификаторе КА в принимаемых пакетах командной информации. Например, в качестве такой информации может выступать значение поля идентификатора КА (Spacecraft Identifier, поле 5 на фиг. 3) в основном заголовке протокола ТС SDLP (Telecommand Space Data Link Layer Protocol, Командный протокол канального уровня) стандарта CCSDS (Consultative Committee for Space Data Systems, Международный Консультативный Комитет по космическим системам передачи данных) см., например, стр. 70, 72 [5].
Далее определяют и запоминают значение частоты f"КА-КАр" КУ "КА-КАр-Земля", причем значение частоты рассчитывают по соотношению где величина соотношения заранее определена для конкретной КСРД см., например, стр. 81-82, 127-128, 178-179 [6].
После чего формируют, модулируют, усиливают и излучают помеховый сигнал на периоде Δt с уровнем ЭИИМ, равным максимально заявленному уровню ЭИИМ установленного на подавляемом КА источника излучения на частоте, соответствующей ранее запомненному значению частоты f"КА-КАр" КУ "КА-КАр-Земля". Порядок реализации указанных процедур известен и описан, например, в патентах РФ №2104616, №2677261.
Затем оценивают эффективность РП КУ, для чего непрерывно контролируют информацию о счетчике номеров кадров телекоманд с НСУ, передаваемую в сигнале источника излучения на частоте f"КАр-КА" КУ "Земля-КАр-КА". Например, в качестве такой информации может выступать значения поля номера кадра (Frame Sequence Number, поле 8 на фиг. 3) в основном заголовке протокола ТС SDLP стандарта CCSDS см., например, стр. 70, 73 [5]. При этом, если в сигнале источника излучения принимаемые значения счетчика номеров кадров имеют пропуски, то РП считают эффективным, в обратном случае итеративно на ΔР(%) увеличивают ЭИИМ помехового сигнала и оценивают эффективность РП КУ до тех пор, пока при очередной итерации в принятом сигнале КУ "Земля-КАр-КА" не появятся пропуски в номерах кадрах телекоманд. Критерием эффективности РП в данном случае может быть, например, пропуск не менее 40% значений номеров кадров из принимаемых после очередной итерации.
Формирование, излучение помехового сигнала и оценку эффективности РП осуществляют на периоде Δt функционирования КУ "Земля-КАр-КА", где Δt = tоконч - tнач, где tнач - время начала функционирования частоты f"КАр-КА" КУ "Земля-КАр-КА", tоконч - время окончания функционирования частоты f"КАр-КА" КУ "Земля-КАр-КА". В случае использования режима многостанционного доступа с применением одной частоты f"КАр-КА" КУ "Земля-КАр-КА" для нескольких установленных на подавляемых КА источников излучения, период ****t функционирования КУ "Земля-КАр-КА" определяют от времени первого до времени последнего факта приема информации о международном идентификаторе КА в принимаемых пакетах командной информации (в соответствии с описанной выше процедурой определения принадлежности сигнала КУ "Земля-КАр-КА" к подавляемому КА).
Таким образом, возможность определения принадлежности спутниковых КУ к подавляемому КА позволит осуществлять избирательную постановку помех на частоте f"КА-КАр" КУ "КА-КАр-Земля", обеспечивать РП спутниковых КУ подавляемых КА, находящихся вне зоны прямой радиовидимости АСП, а также осуществлять контроль эффективности РП, что позволяет судить о достижении цели заявляемого технического решения, которое обеспечивается только при последовательном выполнении всех перечисленных выше действий.
Использованная литература.
1. Тестоедов Н. А. и др. Космические системы ретрансляции. - М: Издательство «Радиотехника», 2017 г. - 448 стр.
2. Европатент ЕР 0293167 А2, опубликованный 30.11.88, бюл. 88/48, МПК Н 04 К 3/00
3. Волков В.Е., Чуровский СР., Шишков А.Я. Способ радиоподавления каналов связи// Патент РФ №2149512, опубл. 20.05.2000
4. Агиевич С.Н., Волощук Э. В., Круглое С.А., Луценко С.А., Пономарев А. А. Способ радиоподавления спутниковых каналов управления // Патент РФ №2677261, опубл. 16.01.2019, бюл. №2.
5. ТС Space Data Link Protocol. Recommendation for Space Data System Standarts, CCSDS 232.0-B-3, September 2015.
6. Space Network Users' Guide (SNUG). Revision 10, 450-SNUG // NASA Goddard Space Flight Center, Greenbelt, MD. - 2012.
Claims (2)
1. Способ радиоподавления (РП) спутниковых каналов управления (КУ), заключающийся в том, что принимают сигналы установленного на подавляемом КА источника излучения, определяют их параметры, формируют сигналы управления режимом передачи и структурой модулирующих напряжений, модулируют, усиливают и излучают помеховые сигналы, после чего оценивают эффективность РП КУ, отличающийся тем, что принимают сигналы от установленного на подавляемом КА источника излучения, ретранслированные через космический аппарат-ретранслятор (КАр) во всех рабочих частотных поддиапазонах Δfpemp1, Δfpemp2 … Δfpempi, где i - номер поддиапазона работы КАр, идентифицируют обнаруженный на частоте f"КАр-КА" сигнал как сигнал КУ "Земля-КАр-КА", определяют принадлежность обнаруженного сигнала КУ "Земля-КАр-КА" к подавляемому КА, определяют и запоминают значение частоты f"КА-КАр" КУ "КА-КАр-Земля", после чего формируют, модулируют, усиливают и излучают помеховый сигнал на периоде Δt с уровнем эквивалентной изотропно излучаемой мощности (ЭИИМ), равным максимально заявленному уровню ЭИИМ источника излучения на частоте, соответствующей ранее запомненному значению частоты f"КА-КАр" КУ "КА-КАр-Земля", затем оценивают эффективность РП КУ, для чего непрерывно контролируют информацию о счетчике номеров кадров телекоманд с наземной станции управления (НСУ), передаваемую в сигнале источника излучения на частоте f"КАр-КА" КУ "Земля-КАр-КА", при этом если в сигнале источника излучения принимаемые значения счетчика номеров кадров имеют пропуски, то РП считают эффективным, в обратном случае итеративно на ΔР(%) увеличивают ЭИИМ помехового сигнала и оценивают эффективность РП КУ до тех пор, пока при очередной итерации в принятом сигнале КУ "Земля-КАр-КА" не появятся пропуски в номерах кадров телекоманд.
2. Способ по п. 1, отличающийся тем, что излучение помехового сигнала и оценку эффективности РП осуществляют на периоде Δt функционирования КУ "Земля-КАр-КА", где Δt=tоконч-tнач, где tнач - время начала функционирования частоты f"КАр-КА" КУ "Земля-КАр-КА", tоконч - время окончания функционирования частоты f"КАр-КА" КУ "Земля-КАр-КА".
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020136728A RU2754110C1 (ru) | 2020-11-06 | 2020-11-06 | Способ радиоподавления спутниковых каналов управления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020136728A RU2754110C1 (ru) | 2020-11-06 | 2020-11-06 | Способ радиоподавления спутниковых каналов управления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2754110C1 true RU2754110C1 (ru) | 2021-08-26 |
Family
ID=77460472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020136728A RU2754110C1 (ru) | 2020-11-06 | 2020-11-06 | Способ радиоподавления спутниковых каналов управления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2754110C1 (ru) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3023375C1 (ru) * | 1980-06-23 | 1987-12-03 | Siemens Ag, 1000 Berlin Und 8000 Muenchen, De | |
US4719649A (en) * | 1985-11-22 | 1988-01-12 | Sanders Associates, Inc. | Autoregressive peek-through comjammer and method |
EP0293167A2 (en) * | 1987-05-27 | 1988-11-30 | British Aerospace Public Limited Company | A communications jammer |
RU2104616C1 (ru) * | 1995-03-06 | 1998-02-10 | Военная академия связи | Способ радиоподавления каналов связи |
RU2149512C1 (ru) * | 1999-02-04 | 2000-05-20 | Военный университет связи | Способ радиоподавления каналов связи |
RU2211538C2 (ru) * | 2001-04-16 | 2003-08-27 | Военный университет связи | Способ радиоподавления каналов связи |
RU2677261C1 (ru) * | 2017-10-06 | 2019-01-16 | федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации | Способ радиоподавления спутниковых каналов управления |
-
2020
- 2020-11-06 RU RU2020136728A patent/RU2754110C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3023375C1 (ru) * | 1980-06-23 | 1987-12-03 | Siemens Ag, 1000 Berlin Und 8000 Muenchen, De | |
US4719649A (en) * | 1985-11-22 | 1988-01-12 | Sanders Associates, Inc. | Autoregressive peek-through comjammer and method |
EP0293167A2 (en) * | 1987-05-27 | 1988-11-30 | British Aerospace Public Limited Company | A communications jammer |
RU2104616C1 (ru) * | 1995-03-06 | 1998-02-10 | Военная академия связи | Способ радиоподавления каналов связи |
RU2149512C1 (ru) * | 1999-02-04 | 2000-05-20 | Военный университет связи | Способ радиоподавления каналов связи |
RU2211538C2 (ru) * | 2001-04-16 | 2003-08-27 | Военный университет связи | Способ радиоподавления каналов связи |
RU2677261C1 (ru) * | 2017-10-06 | 2019-01-16 | федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации | Способ радиоподавления спутниковых каналов управления |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5905943A (en) | System for generating and using global radio frequency maps | |
US5875180A (en) | Satellite telephone interference avoidance system | |
US9859973B2 (en) | Hybrid space system based on a constellation of low-orbit satellites working as space repeaters for improving the transmission and reception of geostationary signals | |
US7911372B2 (en) | Active imaging using satellite communication system | |
Oetting et al. | The mobile user objective system | |
EP0929164B1 (en) | Method and apparatus for determining an operating point of a non-linear amplifier of a communication channel | |
US5784028A (en) | Method and apparatus for simplex delivery of signals to obstructed geographical areas | |
RU98100255A (ru) | Система управления средствами разнесенной передачи сигналов через спутниковые ретрансляторы | |
CN110212969B (zh) | 一种信标测控和信关融合的低轨星座接入与控制系统 | |
RU2754110C1 (ru) | Способ радиоподавления спутниковых каналов управления | |
Quintana-Diaz et al. | Detection of radio interference in the UHF amateur radio band with the Serpens satellite | |
RU2389054C1 (ru) | Способ сличения шкал времени и устройство для его реализации | |
EP2096771A2 (en) | Communication system using an aircraft as a relay | |
RU2677261C1 (ru) | Способ радиоподавления спутниковых каналов управления | |
RU2597999C1 (ru) | Способ радиоподавления несанкционированных каналов космической радиолинии "космический аппарат - земля" и система для его реализации | |
EP2928100B1 (en) | Device and method for neutralizing the impact of a jamming signal on a satellite | |
Sun et al. | Enabling inter-satellite communication and ranging for small satellites | |
US20220095303A1 (en) | Satellite system for allocating portions of a frequency band | |
Munemasa et al. | Advanced demonstration plans of high-speed laser communication" HICALI" mission onboard the engineering test satellite 9 | |
RU2835669C1 (ru) | Способ подавления радиосвязи и устройство, его реализующее | |
MUKAI et al. | A Survey on Network Technologies and Extracted Issues for Space Optical Communication Systems between Space and Ground | |
Nicholson et al. | The Department of Defense's next generation narrowband satellite communications system, the Mobile User objective System (MUOS) | |
RU2344547C1 (ru) | Способ установления связи с низкоорбитальными космическими аппаратами в космической системе ретрансляции | |
US10116411B1 (en) | Frequency agile anti-jam data link | |
Ziemer et al. | Computer-assisted evaluation of SDI communications system alternatives |