[go: up one dir, main page]

RU2749606C1 - Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой - Google Patents

Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой Download PDF

Info

Publication number
RU2749606C1
RU2749606C1 RU2020128868A RU2020128868A RU2749606C1 RU 2749606 C1 RU2749606 C1 RU 2749606C1 RU 2020128868 A RU2020128868 A RU 2020128868A RU 2020128868 A RU2020128868 A RU 2020128868A RU 2749606 C1 RU2749606 C1 RU 2749606C1
Authority
RU
Russia
Prior art keywords
capacitor
thyristor
stage
reactive power
network
Prior art date
Application number
RU2020128868A
Other languages
English (en)
Inventor
Владимир Степанович Климаш
Бехруз Довудходжаевич Табаров
Рустам Рамазонович Ниматов
Евгений Геннадьевич Антонов
Original Assignee
Владимир Степанович Климаш
Бехруз Довудходжаевич Табаров
Рустам Рамазонович Ниматов
Евгений Геннадьевич Антонов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Степанович Климаш, Бехруз Довудходжаевич Табаров, Рустам Рамазонович Ниматов, Евгений Геннадьевич Антонов filed Critical Владимир Степанович Климаш
Priority to RU2020128868A priority Critical patent/RU2749606C1/ru
Application granted granted Critical
Publication of RU2749606C1 publication Critical patent/RU2749606C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

Использование: в области электротехники для компенсации реактивной мощности в системах электроснабжения. Технический результат - повышение надежности систем электроснабжения за счет сокращения количества коммутационных аппаратов. Согласно способу трехступенчатого регулирования реактивной мощности конденсаторной установкой с двумя батареями конденсаторов, каждая из которых подключается к сети двумя тиристорными ключами и сетевым выключателем, при включении каждой батареи конденсаторов сначала включают две фазы в момент перехода линейного напряжения этих двух фаз через ноль, а затем включают третью фазу в момент перехода фазного напряжения этой фазы через ноль. Отключение каждой батареи конденсаторов производится тиристорными ключами с естественной коммутацией, а отключение конденсаторной установки - сетевым выключателем. При отключении каждой батареи конденсаторов сначала отключается одна фаза, в которой ток раньше перейдет через ноль, а затем отключаются две фазы, общий ток в которых перейдет через ноль. Емкость второй батареи конденсаторов в два раза больше первой. Включение первой ступени производится подключением к сети первой батареи конденсаторов, включение второй ступени - подключением к сети второй батареи конденсаторов при завершении отключения первой батареи, а включение третьей ступени производится подключением к сети первой батареи конденсаторов при подключенной к сети второй батарее конденсаторов. 3 ил.

Description

Предлагаемое техническое решение относится к электротехнике, в частности, к электроэнергетическим системам и может быть использовано для трехступенчатого регулирования реактивной мощности конденсаторной установкой.
Известен способ трехступенчатого регулирования реактивной мощности конденсаторной установкой, в состав которой входит сетевой выключатель и три батареи конденсаторов, каждая из которых оснащена трехфазным тиристорным пускателем и разрядным устройством (Кабышев А.В. Компенсация реактивной мощности в электроустановках промышленных предприятий: учебное пособие. / А.В. Кабышев; Томский политехнический университет.- Томск: Изд - во ТПУ, 2012, - с. 185, рис. 5.1.), при этом каждый тиристорный пускатель содержит три тиристорных ключа с двухсторонней проводимостью тока (Климаш B.C. Способы включения трехфазного электрооборудования и их реализация / B.C. Климаш, В.И. Тараканов // Электротехнические комплексы и системы управления - Воронеж, 2015, №2, с. 27, стр. 6.), заключающейся в том, что число ступеней регулирования реактивной мощности равно количеству батарей конденсаторов в установке и все батареи конденсаторов имеют одинаковые параметры (Солодухо Я.Ю. Состояние и перспективы внедрения в электропривод статических компенсаторов реактивной мощности. Статические компенсаторы реактивной мощности ведущих зарубежных фирм и отечественных предприятий. - М.: Информэлектро. 1982, - с. 29, рис. 29,г.).
Включение и выключение конденсаторной установки производится сетевым выключателем, а включение и выключение батарей конденсаторов (ступеней регулирования) соответствующими трехфазными тиристорными пускателями.
Разрядные устройства представляют собой резисторы, которые постоянно подключены параллельно конденсаторам или подключаются через разрядные ключи только при отключении конденсаторных батарей. В качестве разрядных ключей применяют механические контакты электрического аппарата или бесконтактные ключи электронного аппарата.
Отмечая повышение энергетической эффективности от применения в системах электроснабжения промышленных предприятий способа прямой компенсации реактивной мощности, следует указать и основной его недостаткам, о котором постоянно говорят производители конденсаторных установок и обслуживающий персонал, работающий на эксплуатации устройств компенсации реактивной мощности с трехступенчатым регулированием.
Недостатком известного способа является большое количество коммутационных аппаратов.
Наиболее близким по физической сущности является способ трехступенчатого регулирования реактивной мощности конденсаторной установкой, в состав которой входит сетевой выключатель и батареи конденсаторов, каждая из которых оснащена трехфазным тиристорным пускателем и разрядным устройством, при этом число ступеней регулирования реактивной мощности равно количеству батарей конденсаторов и каждый тиристорный пускатель содержит три тиристорных ключа с двухсторонней проводимостью тока (патент РФ на изобретение №2577769, Бюл. №8, 20.03.16), который взят за прототип.
В способе - прототипе включение установки производится общим сетевым выключателем, включение каждой батареи конденсаторов индивидуальным тиристорным пускателем. Выключение батарей конденсаторов производится естественным путем при снятии управляющих импульсов с тиристоров соответствующего пускателя, а выключение конденсаторной установки производится снятием управляющих импульсов со всех тиристорных ключей с последующим отключением обесточенного сетевого выключателя без возникновения дуги на его механических контактах.
Особенностью способа является то, что включение трехфазных батарей конденсаторов выполняется в две операции. Сначала включают две фазы соответствующими тиристорными ключами в момент перехода линейного напряжения этих двух фаз через ноль, а затем включают третью фазу в момент перехода фазного напряжения этой фазы через ноль. При такой последовательности операций способа включение трехфазных батарей конденсаторов производит практически за полпериода сетевого напряжения без всплеска токов и без превышения напряжений на конденсаторах их установившихся значений. Прототип обладает улучшенной динамикой дискретного регулирования в установках с прямой компенсацией реактивной мощности. Вместе с тем, следует отметить и его недостаток.
К недостатку прототипа следует отнести большое количество коммутационной аппаратуры.
Задачей изобретения является уменьшение количества коммутационных аппаратов при трехступенчатом регулировании реактивной мощности конденсаторной установкой за счет введения новых операций способа и последовательности между существующими и вновь введенными операциями.
В результате решения поставленной задачи будет уменьшено количество тиристорных пускателей в 1,5 раза (два вместо трех), а тиристоров в 2, 25 раза (восемь против восемнадцати) и, как следствие повышена надежность системы электроснабжения, снижены капитальные затраты на установку и эксплуатационные затраты на ее обслуживание. Следует отметить, что в 1,5 раза уменьшится также количество блоков разряда конденсаторов вместе с коммутационными аппаратами для подключения разрядных резисторов.
Решение поставленной задачи достигается тем, что емкость второй батареи конденсаторов в два раза больше, чем у первой, при этом включение второй ступени регулирования реактивной мощности производится при завершении отключения первой батареи конденсаторов, а включение третьей ступени производится подключением первой батареи конденсаторов параллельно ко второй батареи конденсаторов.
Сущность предлагаемого технического решения поясняется ниже следующим описанием и прилагаемыми к нему чертежами, где на фиг. 1 приведена схема конденсаторной установки, а на фиг. 2 и фиг. 3, осциллограммы напряжений и токов, иллюстрирующие имитационную реализацию в среде Matlab операций способа трехступенчатого регулирования реактивной мощности конденсаторной установкой.
Схема (фиг. 1), реализующая предлагаемый способ, содержит сетевой выключатель 1, активно-индуктивную нагрузку 2, первую батарею конденсаторов 3 с резистивным блоком 4 разряда конденсаторов первой батареи, первый тиристорный пускатель 5 с тиристорными ключами 6 и 7, вторую батарею конденсаторов 8 с резистивным блоком 9 разряда конденсаторов второй батареи, второй тиристорный пускатель 10 с тиристорными ключами 11 и 12, формирователь импульсов управления 13, на управляющий вход которого подано напряжение управления Uy, а шесть его выходов 14, 15, 16, 17, 18, 19, предназначенных для подключения к цепям управления соответствующих тиристорных ключей и к ключам резистивных блоков разряда конденсаторов.
На осциллограммах (фиг. 2 и фиг. 3) введены следующие обозначения: U*A и U*BC - синхронизирующие сигналы, пропорциональные соответственно фазному UA и линейному UBC напряжениям сети; UA - фазное напряжение сети; iA, iB и iC - фазные токи сети; iкA, iкВ и iкС - фазные токи батареи конденсаторов; Т-1, Т-2 и Т-3 - интервалы работы первой, второй и третьей ступеней соответственно. Осциллограммы (фиг. 2, фиг. 3) получены при проведении численных экспериментов в среде Matlab.
Суть предлагаемого способа трехступенчатого регулирования реактивной мощности конденсаторной установкой заключается в последовательности выполнения известных и вновь введенных операций.
Ниже приведены операции способа, описание которых с прилагаемыми чертежами поясняет его принцип действия.
Первая операция способа. Заключается в подготовке к работе силовой части и микроэлектронной систему управления конденсаторной установки. Для этого в произвольный момент времени сетевым выключателем 1 подают напряжение на тиристорные пускатели 5, 10 и формирователь импульсов управления 13 с непосредственным подключением одной фазы батарей конденсаторов 3 и 8, например фазы «В», к сети.
Вторая операция способа. Заключается во включении первый ступени. Выполняется подключением к сети первой батареи конденсаторов 3 посредством первого тиристорного пускателя 5 при выключенной второй батареи конденсаторов 8. Сначала включают один тиристорный ключ, например, для фазы «С» ключ 7, в момент перехода через ноль линейного напряжения между фазами «В» и «С» сети, а затем включают другой тиристорный ключ 6 в момент перехода через ноль фазного напряжения фазы «А». Включение тиристорных ключей 6 и 7 производится подачей импульсов управления соответственно с выходов 14 и 15 формирователя 13 импульсов управления.
Третья операция способа. Заключается во включении второй ступень. Выполняется подключением к сети второй батареи конденсаторов 8 вторым тиристорным пускателем 10 и отключением первой батареи конденсаторов 3 первым тиристорным пускателя 5. Отключение первого тиристорного пускателя 5 производится снятием импульсов управления с его тиристорных ключей 6, 7 и соответственно с выходов 14, 15 формирователя 13 этих импульсов. При подключении к сети второй батареи конденсаторов 8 вторым тиристорным пускателем 10 сначала включают один тиристорный ключ, например, для фазы «С» ключ 11, в момент перехода через ноль линейного напряжения между фазами «В» и «С» сети, а затем включают другой тиристорный ключ 12 в момент перехода через ноль фазного напряжения фазы «А». Включение тиристорных ключей 11 и 12 производится подачей импульсов управления соответственно с выходов 18 и 19 формирователя 13 импульсов управления.
Четвертая операция способа. Заключается во включении третьей ступени. Выполняется подключением к сети первой батареи конденсаторов 3 посредством первого тиристорного пускателя 5 при подключенной к сети второй батареи конденсаторов 8. Эта операция способа выполняется по алгоритму аналогичному во второй его операции.
Выключение трех ступеней регулирования реактивной мощности и в целом конденсаторной установки производится также в четыре операции, но в обратной последовательности.
В формуле и в описании принципа действия способа в соответствии с чертежами рассмотрен вариант, когда тиристорные ключи первого и второго пускателей включены в фазу «А» и в фазу «С» и устройство стартует с момента перехода через ноль линейного напряжения между фазами «В» и «С» сети. Это не единственный вариант возможны и другие. Например, при переключении на выходе сетевого выключателя трех вводов устройства по направлению часовой стрелки или против него и сохранении прямого порядок следования фаз, устройство также успешно будет выполнять известные и вновь введенные операции и последовательность операций способа, стартуя соответственно от момента перехода через ноль двух других линейного напряжения трехфазной сети.
Целесообразной областью применения предлагаемого способа являются системы электроснабжения с протяженными линиями электропередач. Предлагаемый способ, как более совершенный, обладающий повышенной надежностью систем электроснабжения, уменьшенными капитальными затратами на установку и эксплуатационными затратами на ее обслуживание, вследствие сокращения количества коммутационной аппаратуры в конденсаторных установках, может заменить известный способ регулирования в устройствах с прямой компенсацией реактивной мощности.

Claims (1)

  1. Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой, в состав которой входит сетевой выключатель и, по крайней мере, две батареи конденсаторов, каждая из которых оснащена тиристорным пускателем и разрядным устройством, при этом каждый тиристорный пускатель содержит два тиристорных ключа с двухсторонней проводимостью тока, заключающийся в том, что включение конденсаторной установки производится сетевым выключателем с последующим включением тиристорных пускателей, а выключение путем снятия управляющих импульсов с тиристоров первого и второго тиристорных пускателей и выключением обесточенного сетевого выключателя, включение и отключение первой ступени регулирования реактивной мощности производится включением и отключением первой батареи конденсаторов посредством первого тиристорного пускателя, а включение и отключение второй ступени регулирования реактивной мощности производится включением и отключением второй батареи конденсаторов посредством второго тиристорного пускателя, причем как при включении первой, так и при включении второй батареи конденсаторов сначала включают один тиристорный ключ соответствующего тиристорного пускателя в момент перехода через ноль линейного напряжения двух подключаемых фаз батареи косинусных конденсаторов, затем включают второй тиристорный ключ в момент перехода через ноль фазного напряжения третьей подключаемой фазы, отличающийся тем, что емкость второй батареи конденсаторов в два раза больше, чем у первой, при этом включение второй ступени регулирования реактивной мощности производится при завершении отключения первой батареи конденсаторов, а включение третьей ступени производится подключением первой батареи конденсаторов параллельно ко второй батарее конденсаторов.
RU2020128868A 2020-08-31 2020-08-31 Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой RU2749606C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020128868A RU2749606C1 (ru) 2020-08-31 2020-08-31 Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020128868A RU2749606C1 (ru) 2020-08-31 2020-08-31 Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой

Publications (1)

Publication Number Publication Date
RU2749606C1 true RU2749606C1 (ru) 2021-06-16

Family

ID=76377477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020128868A RU2749606C1 (ru) 2020-08-31 2020-08-31 Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой

Country Status (1)

Country Link
RU (1) RU2749606C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774841C1 (ru) * 2021-12-20 2022-06-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Способ плавного регулирования мощности секционированной конденсаторной установки

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214661A2 (en) * 1985-09-10 1987-03-18 Kabushiki Kaisha Toshiba Reactive power compensation apparatus
RU2012979C1 (ru) * 1991-12-02 1994-05-15 Украинский научно-исследовательский институт силовой электроники "Преобразователь" Способ управления компенсатором реактивной мощности
RU2096888C1 (ru) * 1996-04-08 1997-11-20 Саратовский государственный технический университет Способ регулирования реактивной мощности и устройство для его осуществления
TW201439703A (zh) * 2012-12-31 2014-10-16 Gazelle Semiconductor Inc 開關調節器電路及方法
RU2577769C1 (ru) * 2015-03-19 2016-03-20 Владимир Степанович Климаш Способ включения конденсаторов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214661A2 (en) * 1985-09-10 1987-03-18 Kabushiki Kaisha Toshiba Reactive power compensation apparatus
RU2012979C1 (ru) * 1991-12-02 1994-05-15 Украинский научно-исследовательский институт силовой электроники "Преобразователь" Способ управления компенсатором реактивной мощности
RU2096888C1 (ru) * 1996-04-08 1997-11-20 Саратовский государственный технический университет Способ регулирования реактивной мощности и устройство для его осуществления
TW201439703A (zh) * 2012-12-31 2014-10-16 Gazelle Semiconductor Inc 開關調節器電路及方法
RU2577769C1 (ru) * 2015-03-19 2016-03-20 Владимир Степанович Климаш Способ включения конденсаторов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774841C1 (ru) * 2021-12-20 2022-06-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Способ плавного регулирования мощности секционированной конденсаторной установки

Similar Documents

Publication Publication Date Title
RU2664558C2 (ru) Устройство комплексного регулирования перетоков мощности для двухцепной линии
AU753416B2 (en) Drive with high output in failed mode
US20180159422A1 (en) Power conversion device
CN107086605B (zh) 一种电网零起升压的黑启动方法
CN109039072B (zh) 一种双极双向直流变换器及其控制方法和控制装置
KR20160109137A (ko) 인버터 시스템
WO2003098771A1 (en) Dynamic series voltage compensator with current sharing static switch
WO2019179787A1 (en) Converter
RU2577769C1 (ru) Способ включения конденсаторов
RU2749606C1 (ru) Способ трехступенчатого регулирования реактивной мощности конденсаторной установкой
EP3695502B1 (en) Modular multilevel converter
CN111164876A (zh) 多级变流器
RU2746796C1 (ru) Способ регулирования реактивной мощности конденсаторной установкой
da Silva et al. Modified sliding-mode observer of capacitor voltages in modular multilevel converter
RU2711587C1 (ru) Способ управления напряжением трансформатора под нагрузкой и устройство для его реализации
US20220271536A1 (en) Device for connecting two alternating voltage networks and method for operating the device
CN107332260B (zh) 一种用于提高电力系统稳定性的三相换相系统
CN103986159B (zh) 具有多线路的变电站中统一潮流控制器的安装电路
RU2671829C1 (ru) Регулятор вольтодобавочного переменного напряжения
RU195453U1 (ru) Многоуровневое устройство компенсации реактивной мощности и подавления высших гармоник тока
WO2018157010A1 (en) Capacitive-based power transformation
CN104065092A (zh) 智能平衡补偿方法及其装置
Diab et al. A current flow control apparatus for meshed multi-terminal DC grids
Chai et al. A low switching frequency voltage balancing strategy of modular multilevel converter
RU2374738C1 (ru) Токоограничивающее устройство электрической сети