RU2701698C1 - Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава - Google Patents
Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава Download PDFInfo
- Publication number
- RU2701698C1 RU2701698C1 RU2019118563A RU2019118563A RU2701698C1 RU 2701698 C1 RU2701698 C1 RU 2701698C1 RU 2019118563 A RU2019118563 A RU 2019118563A RU 2019118563 A RU2019118563 A RU 2019118563A RU 2701698 C1 RU2701698 C1 RU 2701698C1
- Authority
- RU
- Russia
- Prior art keywords
- electrode
- coating
- remelting
- alloying
- metal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000005275 alloying Methods 0.000 title claims abstract description 28
- 239000011248 coating agent Substances 0.000 title claims abstract description 20
- 238000000576 coating method Methods 0.000 title claims abstract description 20
- 230000008018 melting Effects 0.000 title claims abstract description 10
- 238000002844 melting Methods 0.000 title claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 238000009434 installation Methods 0.000 claims abstract description 8
- 239000003973 paint Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 5
- 239000003870 refractory metal Substances 0.000 claims abstract description 3
- 239000002893 slag Substances 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 abstract description 14
- 229910001338 liquidmetal Inorganic materials 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 2
- 230000003993 interaction Effects 0.000 abstract description 2
- 238000005272 metallurgy Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- 238000004321 preservation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 7
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 238000004040 coloring Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/18—Electroslag remelting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к области электрометаллургии, а именно к легированию поверхности заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава на электрошлаковой установке, оснащенной механизмом вращения электрода со скоростью, определяемой из выражения, при этом до начала переплава методом окраски наносят на переплавляемый электрод покрытие в виде жидкой смеси, включающей металлический порошок, который состоит из 80 мас.% частиц тугоплавких металлов крупностью до 9 мкм и 20 мас.% антипригарной краски на водяной основе, покрытие сушат, электрод закрепляют на установке, процесс ведут при силе тока 1,5 кА, при этом перенос легирующих элементов из покрытия происходит по поверхности заготовки. Изобретение позволяет повысить механические свойства слитка вследствие повышения степени прогнозируемости доставки частиц в ванну жидкого металла и гарантирования сохранения их химического состава вследствие короткого времени взаимодействия с рабочим флюсом. 2 пр., 3 ил.
Description
Изобретение относится к области электрометаллургии, а именно к специальным процессам электроплавки.
Известен способ легирования электрошлакового металла в процессе переплава, при котором для увеличения степени усвоения легирующих материалов вместе с их окислами подают углерод. При этом усвоение легирующих элементов увеличивается с 5-6 до 40-60% (RU 1585339, МПК С22В 9/18, 15.08.90 г.).
Недостатком известного способа является то, что несмотря на увеличение усвоения легирующих элементов, значительная часть легирующих элементов остается в ванне жидкого шлака вследствие их продолжительного контакта. Вторым недостатком является то, что данный способ не обеспечивает подачу легирующих элементов в конкретную зону, легирование происходит хаотично, вследствие чего имеет место образование такого дефекта как ликвация.
Известен способ введения легирующих элементов в процессе электрошлакового переплава (ЭШП) (RU 2355790, МПК С22В 9/18, 20.05.2009 г.).
Способ включает подачу части легирующих материалов в кристаллизатор печи вместе с флюсом до начала переплава и остальной части в процессе переплава, при этом подачу легирующих материалов до начала переплава в количестве 1-2% от массы флюса осуществляют в смеси с флюсом. Легирующие материалы измельчают до фракции 2-3 мм. Изобретение позволяет равномерно распределять легирующие элементы по слитку и уменьшать обрезь нижней части слитка.
Недостатком данного способа (введения) является длительное взаимодействие легирующих элементов с рабочим флюсом, что влечет за собой не только не прогнозируемость количества введения легирующих материалов в расплав, но и невозможность равномерного распределения вводимой фазы.
Известен способ электрошлакового переплава, принятый за прототип, включающий вращение расходуемого электрода, при котором, расходуемый электрод в начальный момент переплава вращают вокруг своей оси с линейной скоростью, определяемой из выражения
где g - ускорение силы тяжести, м/с2;
σме-ш - межфазное натяжение на границе раздела металл - шлак, Дж/м2;
Δр - разность плотностей металла и шлака, кг/м3;
r - радиус электрода, м,
при этом в процессе переплава эту линейную скорость снижают прямо пропорционально падению сопротивления на электроде и шлаковой ванне.
(RU 2241050, МПК С22B 9/18 27.11.2004 г.)
Недостатком данного способа является то, что в нем не предусмотрено легирование поверхности заготовки.
Технической задачей предлагаемого изобретения является упрочнение поверхностного слоя металла заготовки в процессе ЭШП твердыми тугоплавкими частицами из покрытия расплавляемого электрода при равномерном распределении их по поверхности формируемой заготовки.
Техническая задача решается тем, что способ легирования поверхности заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава на электрошлаковой установке, оснащенной механизмом вращения электрода со скоростью, определяемой из выражения
где g - ускорение силы тяжести, м/с2;
σме-ш - межфазное натяжение на границе раздела металл - шлак, Дж/м2;
Δр - разность плотностей металла и шлака, кг/м3;
r - радиус электрода, м,
согласно изобретения, до начала переплава методом окраски наносят на переплавляемый электрод покрытие в виде жидкой смеси, включающей металлический порошок, который состоит из 80 масс % частиц тугоплавких металлов крупностью до 9 мкм и 20 масс % антипригарной краски на водяной основе, покрытие сушат, электрод с покрытием закрепляют на установке, процесс ведут при силе тока 1,5 кА, при этом перенос легирующих элементов из покрытия происходит по поверхности заготовки.
Сущность способа заключается в том, что для его осуществления до начала электрошлакового переплава с вращением электрода на поверхность расходуемого электрода равномерно наносят покрытие из твердых дисперсных тугоплавких частиц, например, таких как карбид титана, карбид вольфрама и др. Затем электрод с нанесенным твердым тугоплавким покрытием сушат, устанавливают в печи для электрошлакового переплава и начинают процесс. При этом линейную скорость вращения электрода определяют по формуле (1) в зависимости от диаметра переплавляемого электрода, так как она должна обеспечивать полное радиальное течение металла на оплавляемом торце, в этом случае образование капли и ее отрыв происходит с периметра электрода. Твердые тугоплавкие частицы с поверхности электрода, по мере оплавления электрода попадают в образовавшиеся капли металла и транспортируются через слой жидкого флюса в зону минимальных температур жидкой металлической ванны, имея минимальные возможности контакта с рабочим флюсом.
Существенным признаком предлагаемого способа является то, что упрочняющие частицы подаются в жидкую металлическую ванну, не путем их непосредственной подачи в ванну жидкого флюса, а при помощи переноса каплями жидкого металла с поверхности электрода с покрытием под воздействием радиального течения, возникающего при определенной линейной скорости вращения электрода для соответствующих диаметров электрода и кристаллизатора, скорость вращения определяется по формуле (1). В этом случае достигается прогнозируемая транспортировка капель металла, которые в свою очередь захватывают частицы легирующих элементов с поверхности переплавляемого электрода с покрытием. Происходит прогнозируемое, по поверхности получаемой заготовки распределение в т.ч. легирующих частиц, так как капли жидкого металла с захваченной фазой имеют минимальное время контакта с ванной жидкого флюса, и подаются сразу непосредственно к краю ванны жидкого металла в зону холодных температур, где в свою очередь, частицы захватываются кристаллизующимся металлом, образованным в получаемой заготовке благодаря более плоскому фронту кристаллизации (плоский фронт образуется так же вследствие вращения) затвердевающего металла и повышенной скорости кристаллизации по сравнению с классическим методом электрошлакового переплава. [Диссертация на тему: Управление процессами плавления, транспортировки и кристаллизации металла при ЭШП. Чуманов, Илья Валерьевич. 1996 г., специальность ВАК РФ 05.16.03].
Способ иллюстрируется фиг. 1, 2, 3. На фиг. 1 показана схема установки для ЭШП. На фиг. 2 представлена микроструктура поверхности заготовки по примеру 1. На фиг. 3 представлена микроструктура поверхности заготовки по примеру 2
На фиг. 1 представлена схема устройства для осуществления способа - полупромышленной электрошлаковой печи А-550, которая использовалась для реализации предлагаемого способа переплава электрода, покрытого смесью с упрочняющими частицами. Данное устройство (фиг. 1) состоит из кристаллизатора 1 с поддоном 2, плавящегося электрода 3 с легирующим покрытием 4.
Во время протекания процесса ЭШП, ванна жидкого металла охлаждается поддоном 2 и кристаллизатором 1 как и в классической технологии ЭШП [Латаш Ю.В., Медовар Б.И. Электрошлаковый переплав. - М.: Металлургия, 2011 - с. 240]
В процессе переплава с поверхности вращающегося вокруг своей оси электрода 3 по периметру его сплавляемого торца происходит захват предварительно нанесенных упрочняющих частиц каплями жидкого металла 4 и осуществляется их перенос через слой рабочего флюса 5 в зону низких температур ванны жидкого металла 6.
Способ осуществляют следующим образом (фиг. 1)
Перед началом процесса ЭШП готовят жидкую смесь из тугоплавких легирующих элементов для нанесения на поверхность 4 плавящегося электрода 3. Смесь содержит 80 масс % тугоплавких элементов в виде металлического порошка дисперсностью не более 9 мкм (таких как карбид титана, карбид вольфрама), и 20 масс % антипригарной краски на водяной основе ЦП-2 ГОСТ 10772-78. Смесь при содержании более 80 масс % тугоплавких элементов теряет свою жидкотекучесть и покрытие электрода методом окраски становится невозможным, в свою очередь, использование менее 80 масс % тугоплавких частиц в содержании не позволяет добиться пастообразного состояния смеси и при нанесении смесь растекается, не образуя равномерно покрывающий слой. Использование порошка большей дисперсности, в свою очередь, приводит не к упрочнению поверхностного слоя, а к созданию концентраторов напряжения, что резко снизит качество получаемой заготовки. Затем методом окрашивания при помощи кисти указанную смесь наносят на поверхность 4 электрода 3.
После высыхания покрытия 4 электрод 3 устанавливают на установку для ЭШП. Процесс переплава ведут на полупромышленной печи А-550, при силе тока 1,5 кА, причем скорость вращения электрода рассчитывается по формуле (1), в зависимости от диаметра электрода 3. После окончания процесса и полного затвердевания металла в кристаллизаторе, заготовку извлекают из кристаллизатора 1.
Пример 1.
Перед началом электрошлакового переплава провели подготовку плавящегося электрода, для этого заготовили жидкую смесь для нанесения при помощи окраски на поверхность расплавляемого электрода следующего состава: карбид титана в количестве 400 гр., в качестве связующего вещества использовалась антипригарная краска на водяной основе ЦП-2 ГОСТ 10772-78 - в количестве 100 гр. Затем на расплавляемый электрод из ст.20, диаметр 40 мм., длина 1500 мм, методом окраски равномерным слоем наносили подготовленную смесь. После высыхания нанесенной смеси переплавляемый электрод был установлен на установку электрошлакового переплава А-550. Переплав проводился на полупромышленной печи А-550 под слоем флюса АНФ-6. Сила тока при переплаве составляла 1,5 кА. Скорость вращения электрода составляла 100 об/мин. После полного затвердевания металла и ванны жидкого флюса заготовку извлекали.
Проведенные исследования качества поверхности полученной заготовки, показали плотное строение поверхности без усадочных дефектов. Исследование микроструктуры на продольном разрезе заготовки показали, что легирующие элементы, карбид титана, равномерно располагаются по поверхности заготовки, без их вымывания в середину, фото микроструктуры представлено на фиг. 2.
Пример 2
Для подтверждения работоспособности способа на электродах различного диаметра, было решено провести эксперимент с переплавом электрода 60 мм. Перед началом электрошлакового переплава провели подготовку плавящегося электрода, для этого приготовили жидкую смесь для окраски поверхности расплавляемого электрода, состав для чистоты эксперимента был аналогичен первому опытному эксперименту: карбид титана в количестве 400 г. в качестве связующего вещества использовалась антипригарная краска на водяной основе ЦП-2 ГОСТ 10772-78 в количестве 100 г. Затем на расплавляемый электрод из ст. 20, диаметр 60 мм., длина 1500 мм. вручную при помощи кисти равномерным слоем наносили подготовленную смесь. После высыхания нанесенной смеси переплавляемый электрод был установлен на установку электрошлакового переплава А-550. Переплав проводился на полупромышленной печи А-550 под слоем флюса АНФ-6. Сила тока при переплаве составляла 1,5 кА. Скорость вращения электрода вследствие изменения диаметра переплавляемого электрода была пересчитана и для данных диаметров составляла 92 об/мин. После полного затвердевания металла и ванны жидкого флюса заготовку извлекали.
Проведенные исследования качества поверхности полученной заготовки, показали плотное строение поверхности без усадочных дефектов. Исследование микроструктуры на продольном разрезе заготовки показали, что легирующие элементы, карбид титана, равномерно располагаются по поверхности заготовки, без их вымывания в середину, фото микроструктуры представлено на фиг. 3.
Из проведенных исследований (пример 1, 2) следует, что предлагаемый способ позволяет добиться упрочнения поверхностного слоя металла заготовки в процессе ЭШП твердыми тугоплавкими частицами из покрытия расплавляемого электрода при равномерном распределении их по поверхности формируемой заготовки.
Claims (7)
- Способ легирования поверхности заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава на электрошлаковой установке, оснащенной механизмом вращения электрода со скоростью, определяемой из выражения
- где g - ускорение силы тяжести, м/с2;
- σме-ш - межфазное натяжение на границе раздела металл - шлак, Дж/м2;
- Δр - разность плотностей металла и шлака, кг/м3;
- r - радиус электрода, м,
- отличающийся тем, что до начала переплава методом окраски наносят на переплавляемый электрод покрытие в виде жидкой смеси, включающей металлический порошок, который состоит из 80 мас.% частиц тугоплавких металлов крупностью до 9 мкм и 20 мас.% антипригарной краски на водяной основе, покрытие сушат, электрод закрепляют на установке, процесс ведут при силе тока 1,5 кА, при этом перенос легирующих элементов из покрытия происходит по поверхности заготовки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019118563A RU2701698C1 (ru) | 2019-06-14 | 2019-06-14 | Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019118563A RU2701698C1 (ru) | 2019-06-14 | 2019-06-14 | Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2701698C1 true RU2701698C1 (ru) | 2019-09-30 |
Family
ID=68170586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019118563A RU2701698C1 (ru) | 2019-06-14 | 2019-06-14 | Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2701698C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761192C1 (ru) * | 2021-03-10 | 2021-12-06 | Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)» | Способ получения многослойных слитков методом электрошлакового переплава |
CN116043106A (zh) * | 2022-11-08 | 2023-05-02 | 湖北楠田工模具科技有限公司 | 一种高纯净度高韧性长服役周期冷作模具钢及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2011925A1 (ru) * | 1968-06-11 | 1970-03-13 | Continental Ore Corp | |
RU2048553C1 (ru) * | 1992-06-22 | 1995-11-20 | Чуманов Валерий Иванович | Способ получения слитка переменного сечения электрошлаковым переплавом |
RU2241050C1 (ru) * | 2003-12-17 | 2004-11-27 | Южно-Уральский государственный университет | Способ электрошлакового переплава |
RU2355790C2 (ru) * | 2007-03-05 | 2009-05-20 | ОАО "Златоустовский металлургический завод" | Способ легирования сталей и сплавов в процессе электрошлакового переплава |
-
2019
- 2019-06-14 RU RU2019118563A patent/RU2701698C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2011925A1 (ru) * | 1968-06-11 | 1970-03-13 | Continental Ore Corp | |
RU2048553C1 (ru) * | 1992-06-22 | 1995-11-20 | Чуманов Валерий Иванович | Способ получения слитка переменного сечения электрошлаковым переплавом |
RU2241050C1 (ru) * | 2003-12-17 | 2004-11-27 | Южно-Уральский государственный университет | Способ электрошлакового переплава |
RU2355790C2 (ru) * | 2007-03-05 | 2009-05-20 | ОАО "Златоустовский металлургический завод" | Способ легирования сталей и сплавов в процессе электрошлакового переплава |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761192C1 (ru) * | 2021-03-10 | 2021-12-06 | Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)» | Способ получения многослойных слитков методом электрошлакового переплава |
CN116043106A (zh) * | 2022-11-08 | 2023-05-02 | 湖北楠田工模具科技有限公司 | 一种高纯净度高韧性长服役周期冷作模具钢及其制备方法 |
CN116043106B (zh) * | 2022-11-08 | 2023-12-15 | 湖北楠田工模具科技有限公司 | 一种高纯净度高韧性长服役周期冷作模具钢及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9303321B2 (en) | Cladding composition with flux particles | |
RU2701698C1 (ru) | Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава | |
DE3835234A1 (de) | Verfahren zur herstellung von wolframschmelzcarbid-kugeln | |
DE2349742C2 (de) | Verfahren zum Herstellen von vorlegiertem Metallpulver | |
EP0440275B1 (de) | Verfahren zur Herstellung monotektischer Legierungen | |
US6368375B1 (en) | Processing of electroslag refined metal | |
DE2504813C3 (de) | Verfahren und Vorrichtung zum Granulieren von Schmelzen | |
DE2727618A1 (de) | Verfahren zur verarbeitung von geschmolzenen schlacken der ne-metallurgie und elektroofen zur durchfuehrung dieses verfahrens | |
DE69004054T2 (de) | Verfahren und Vorrichtung zum kontinuierlichen Abstechen von Metall und Schlacke im geschmolzenem Zustand. | |
RU2413595C2 (ru) | Способ получения сферических гранул жаропрочных и химически активных металлов и сплавов, устройство для его осуществления и устройство для изготовления исходной расходуемой заготовки для реализации способа | |
DE2807527B2 (de) | Verfahren zum Impfen oder Veredeln von Metallschmelzen | |
EP0687650A1 (de) | Verfahren und Vorrichtung zur schmelzmetallurgischen Herstellung von Hartstoffen | |
CN104630512A (zh) | 一种弥散型铜铋锡难混溶合金复合线材及其制备方法 | |
GB2117417A (en) | Producing high-purity ceramics- free metallic powders | |
CN112296343B (zh) | 一种空心电极熔炼制备超细金属粉末的方法 | |
DE4122190C2 (de) | Verfahren und Vorrichtung zum kontinuierlichen Behandeln von Silicium | |
DE1921885C3 (de) | Verfahren und Vorrichtung zur Umformung von stückigem Reaktionsmetall in Form von Metallschrott unterschiedlicher Form und Größe | |
DE2841295A1 (de) | Verfahren zum beschichten der innenwand eines rohres | |
RU2068453C1 (ru) | Способ электрошлакового переплава порошкообразных материалов | |
DE965208C (de) | Verfahren zur Herstellung von Schleifmitteln durch Schmelzen von Tonerde oder tonerdehaltigen Stoffen im elektrischen Ofen | |
JPH075937B2 (ja) | 急冷凝固金属基複合粉末の製造方法 | |
JPS6280239A (ja) | 合金製造法 | |
JPH0623918Y2 (ja) | 電子ビーム溶解炉用原料供給フィーダー | |
JPS58147532A (ja) | Al系複合材の製造方法 | |
RU2017831C1 (ru) | Способ ввода легирующих материалов в жидкий металл |