RU2699562C1 - Способ получения пористых материалов на основе хитозана - Google Patents
Способ получения пористых материалов на основе хитозана Download PDFInfo
- Publication number
- RU2699562C1 RU2699562C1 RU2019116338A RU2019116338A RU2699562C1 RU 2699562 C1 RU2699562 C1 RU 2699562C1 RU 2019116338 A RU2019116338 A RU 2019116338A RU 2019116338 A RU2019116338 A RU 2019116338A RU 2699562 C1 RU2699562 C1 RU 2699562C1
- Authority
- RU
- Russia
- Prior art keywords
- chitosan
- solution
- materials
- porous material
- linking
- Prior art date
Links
- 229920001661 Chitosan Polymers 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011148 porous material Substances 0.000 title claims abstract description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000004132 cross linking Methods 0.000 claims abstract description 15
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 12
- 239000002594 sorbent Substances 0.000 claims abstract description 8
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000002334 glycols Chemical class 0.000 claims abstract description 4
- 238000010382 chemical cross-linking Methods 0.000 claims abstract 2
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 23
- 239000000495 cryogel Substances 0.000 abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 210000001519 tissue Anatomy 0.000 abstract description 4
- 102000004190 Enzymes Human genes 0.000 abstract description 3
- 108090000790 Enzymes Proteins 0.000 abstract description 3
- 210000000988 bone and bone Anatomy 0.000 abstract description 3
- 210000004872 soft tissue Anatomy 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 238000011049 filling Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 244000005700 microbiome Species 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 229940030225 antihemorrhagics Drugs 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 230000000025 haemostatic effect Effects 0.000 abstract 1
- 238000004065 wastewater treatment Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 42
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 24
- 229920000642 polymer Polymers 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 235000011054 acetic acid Nutrition 0.000 description 9
- 239000007943 implant Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229960000583 acetic acid Drugs 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 238000004108 freeze drying Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 238000010257 thawing Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000006196 deacetylation Effects 0.000 description 2
- 238000003381 deacetylation reaction Methods 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- 238000011749 CBA mouse Methods 0.000 description 1
- 241001448862 Croton Species 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 229940088990 ammonium stearate Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical compound [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- FFYPMLJYZAEMQB-UHFFFAOYSA-N diethyl pyrocarbonate Chemical compound CCOC(=O)OC(=O)OCC FFYPMLJYZAEMQB-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/716—Glucans
- A61K31/722—Chitin, chitosan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Polymers & Plastics (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Surgery (AREA)
- Materials Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Materials For Medical Uses (AREA)
Abstract
Изобретение относится к получению пористого материала на основе хитозана, который может найти применение в клеточной и тканевой инженерии, в медицине в качестве раневых покрытий, кровоостанавливающих и тампонирующих материалов, материалов для заполнения дефектов мягких и костных тканей, в биотехнологии для иммобилизации ферментов и микроорганизмов, в водоподготовке и обработке сточных вод в качестве сорбентов. Способ получения пористого материала заключается в проведении химической сшивки хитозана при отрицательной температуре, сшивку проводят в растворе хитозана в хлористоводородной кислоте, в качестве сшивающего агента используют диглицидиловые эфиры гликолей. Технический результат заключается в одностадийном получении неокрашенных биосовместимых криогелей хитозана, стабильных для использования в широком диапазоне рН. Полученные супермакропористые материалы характеризуются системой сквозных пор, нетоксичны при имплантации живым существам, в набухшем состоянии обеспечивают свободное протекание жидкости. 4 з.п. ф-лы, 4 ил.
Description
Изобретение относится к химии высокомолекулярных соединений и может найти применение в клеточной и тканевой инженерии, в медицине в качестве раневых покрытий, кровоостанавливающих и тампонирующих материалов, материалов для заполнения дефектов мягких и костных тканей, в биотехнологии для иммобилизации ферментов и микроорганизмов, в водоподготовке и обработке сточных вод в качестве эффективных сорбентов.
В последнее время высокопористые материалы на основе хитозана привлекают все большее внимание для применения в качестве матриц для культивирования клеток, иммобилизации белков и ферментов, получения биополимерных имплантов для регенеративной хирургии и контролируемой доставки лекарственных средств. К настоящему времени разработаны различные подходы к формированию из хитозана объемных материалов желаемой пористости и формы.
Известен способ получения пористых пен из раствора хитозана [пат. US №5840777, опубл. 24.11.1998], заключающийся в предварительном растворении 15 г полисахарида в 0,75% растворе соляной кислоты объемом 500 г и последующем добавлении 1,5 г додецилсульфата натрия как пенообразователя и 15 г стеарата аммония как стабилизатора пены. Затем раствор механически взбивают до получения пены, которую сушат на воздухе. К недостаткам можно отнести ограниченные возможности использования пен как по причине их растворимости в кислых средах, так и высокой концентрации сторонних веществ в составе пены.
Известно получение пористых губок для пластической реконструкции поврежденных костных тканей на основе хитозана с молекулярной массой более 300000 г/моль [пат. РФ №2356581, опубл. 27.05.2009, бюл. №15]. Для этого 1 г порошка хитозана растворяют в 20 мл раствора этановой кислоты. Затем при перемешивании добавляют 1 г порошка карбоната аммония. В результате взаимодействия кислоты, содержавшейся в исходном растворе, и карбоната аммония происходит вспенивание за счет выделения углекислого газа и формирование пористой губчатой структуры с одновременным твердением образующейся губки. Полученную губку промывают этанолом и сушат на воздухе при 20-25°C для удаления жидкости. В результате получают пластичную губку с пористостью 90-95%.
Недостатком аналога является то, что такой подход не позволяет эффективно регулировать размер пор, требует тщательного отмывания материала от вспомогательных веществ, а полученные материалы при длительном нахождении в растворах набухают с нарушением пористой структуры.
Широко применяется в настоящее время в синтезе пористых материалов для биомедицинского применения лиофилизация растворов хитозана в минеральных и органических кислотах с последующей нейтрализацией или обработкой водно-спиртовыми или водно-ацетоновыми смесями с пошаговым увеличением доли водной фазы. Достоинством такого подхода является возможность варьирования размера пор при изменении температуры лиофилизации. К недостаткам относятся необходимость использования специального вакуумного оборудования, растворимость полученного материала в кислых растворах и, как следствие, ограничение областей применения.
Так, известен способ получения пористого биодеградируемого материала для доставки лекарств из хитозана [пат. US №9662400, опубл. 30.05.2017] путем растворения в течение 1-12 часов 1 мас. % хитозана (степень деацетилирования 61%) в 1% растворе, состоящем из смеси молочной и уксусной кислот в соотношении 3:1. Для получения губчатого материала раствор хитозана помещают в алюминиевый стакан и замораживают при -20°C с последующей лиофилизацией. На следующем этапе полученные губки нейтрализуют в 0,6 М растворе NaOH в течение 3 минут, перемешивая раствор. Затем материал тщательно отмывают в большом количестве воды до нейтральных значений рН и вымачивают в 0,25 М ацетатном буфере (рН=5,6) в течение 30 минут. Затем губку отжимают и повторно проводят замораживание и лиофилизацию. К недостаткам метода относятся многостадийность процесса, наличие двух стадий лиофилизации, нестабильность полученных материалов в кислой среде, необходимость стадии нейтрализации или замены растворителя.
Известно использование для стабилизации пористой структуры материалов на основе хитозана минеральных наполнителей из группы гидросиликатов (монтмориллонита, галлуазита, бентонита [пат. РФ №2471824, опубл. 10.01.2013, бюл. №1]. Так, предложено получать биосовместимый биодеградируемый композиционный материал смешиванием гидросиликата, предварительно диспергированного в воде (рН 5-7), в ультразвуковом поле (частота колебаний 20-100 кГц) в течение 5-60 мин с хитозаном в количестве, соответствующем его концентрации в растворе 1-4 мас. %, при этом количество наполнителя составляет 0,05-10% от массы хитозана. Затем полученную смесь интенсивно перемешивают при температуре 20-50°С в течение 20-60 мин, добавляют концентрированную уксусную кислоту в количестве, соответствующем получению в смеси водного раствора уксусной кислоты с концентрацией 1-3%, интенсивно перемешивают смесь при температуре 20-50°С в течение 20-250 мин, охлаждают до температуры -5 - -196°С, удаляют растворитель в вакууме, обрабатывают полученный целевой материал нейтрализующим реагентом, промывают водой до рН 5-7 и высушивают. Предложенный способ позволяет получить материал со сквозными порами размером 5-1000 мкм. К недостаткам предложенного способа, как и у всех подходов, использующих лиофилизацию растворов хитозана, можно отнести многостадийность процесса, а также растворимость материалов в кислых средах. Помимо этого, наличие в составе неорганических компонентов ограничивает область применения, в частности невозможность использования в качестве биорезорбируемых имплантов для реконструкции мягких тканей.
В последнее время активно разрабатываются способы получения пористых материалов на основе хитозана методом криогелирования, когда кристаллы льда в замороженном растворе полимера выступают в роли порообразующих темплат, а ионная или ковалентная сшивка происходится при отрицательной температуре. В отличие от лиофилизации данный подход не требует использования специального вакуумного оборудования.
Описано получение пористых материалов на основе хитозана путем высаливания полимера в процессе размораживания криогеля в буферных или солевых растворах при определенных значениях рН и ионной силы [Xu Y. et al. «Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases» // Carbohydrate Polymers, 2017, V. 156, Р. 372-379]. Материал получают в два этапа. На первом этапе хитозан диспергируют в деионизированной воде и добавляют стехиометрически эквивалентное количество уксусной кислоты для растворения. Затем раствор оставляют без перемешивания для дегазации при 4°С. Через 24 ч помещают в цилиндрическую форму (9,0×9,0 мм) и замораживают при -20°С в течение 24 ч. На втором этапе замороженный раствор хитозана погружают либо в фосфатно-солевой буфер (рН=7,4), либо в раствор NaCl, либо в смесь этих растворов и выдерживают при 4°С в течение 48 ч. Материалы, полученные данным способом, также как и лиофилизаты хитозана, нестабильны в кислых средах, что ограничивает область их применения.
Проблему растворения пористых материалов на основе хитозана и повышения их механической стабильности можно решить за счет использования ковалентной сшивки полимера с помощью сшивающих агентов.
Известен способ получения ковалентно сшитых криогелей хитозана [Sen Т. et al. hierarchical porous hybrid chitosan scaffolds with tailorable mechanical properties» // Materials Letters, 2017, V. 209, P. 528-531], в процессе реализации которого хитозан растворяют в водном растворе уксусной кислоты, добавляют н-бутанол, центрифугируют при 4400 об./мин в течение 10 мин, а затем помещают при -20°С на 24 ч. Замороженные матрицы извлекают из емкостей, погружают в предварительно охлажденный до -20°С ацетон и выдерживают при -20°С в течение 96 ч. На следующем этапе образцы (криоструктураты) извлекают из емкостей и сушат при 60°С в течение 3 ч. Затем их погружают в 1 М раствор NaOH на 3 ч с последующей тщательной промывкой водой, снова сушат при 60°С в течение 48 ч, а затем в водном растворе в щелочной среде проводят ковалентную сшивку диглицидиловым эфиром полиэтиленгликоля при 60°С в течение 6 ч. Наконец, образцы тщательно промывают в воде, сублимируют и хранят до дальнейшего использования. Недостатком предложенного способа является многостадийность, необходимость предварительного формирования водонерастворимого криоструктурата и проведение сшивки в щелочном растворе при повышенной температуре, что существенно повышает трудозатраты на получение пористого материала и затрудняет контроль степени сшивки.
Прототипом предлагаемого изобретения является способ получения макропористых криогелей хитозана с использованием в качестве сшивающего агента глутарового альдегида [Никоноров В.В. и др. «Синтез и свойства криогелей хитозана, сшитого глутаровым альдегидом» // Высокомолекулярные соединения, Серия А, 2010, Т. 52, №8, с. 1436-1443]. Сшивку проводят в уксуснокислых растворах хитозана при мольных отношениях хитозан : глутаровый альдегид = 2,5:1-25:1 и оптимальной температуре -15°С. По этому способу сначала для растворения хитозана к сухому полимеру (2 г) добавляют 2% уксусную кислоту (98 г) и оставляют набухать в течение 1 ч, а затем перемешивают 2 ч на магнитной мешалке при скорости вращения 400 об/мин. Далее к полученному раствору добавляют рассчитанное количество глутарового альдегида, композицию быстро перемешивают, помещают в формы и замораживают при -15°С в камере прецизионного программируемого криостата. Через 24 ч выдерживания препаратов в замороженном состоянии их извлекают из криостата и размораживают в течение 25 с в микроволновой печи при мощности 800 Вт. Далее через образовавшийся макропористый криогель пропускают по 50 мл 1%-ного раствора уксусной кислоты, а затем по 50 мл воды для удаления непрореагировавшей фракции полимера.
Недостатком предложенного метода, прежде всего, является использование для сшивки хитозана глутарового альдегида, что ограничивает применение полученного материала в биомедицине из-за его собственной токсичности и токсичности продуктов его альдольной и кротоновой конденсации, образующихся в качестве побочных в реакции сшивки.
Диглицидиловые эфиры (ДГЭ) гликолей, в частности ДГЭ этиленгликоля или полиэтиленгликоля, являются нецитотоксичными и гораздо более привлекательными сшивающими агентами для получения биоматериалов, чем диальдегиды, однако считается, что они эффективно реагируют с хитозаном в щелочных средах, а в кислой среде реакция возможна только при нагревании и значительном избытке сшивающего реагента, что не позволяет применять эти сшивающие агенты для получения ковалентно-сшитых криогелей хитозана в одну стадию. Большинство других известных для хитозана сшивающих реагентов обладают достаточной реакционной способностью также только в щелочной среде, тогда как для получения гомогенных гидрогелей или криогелей на основе хитозана сшивку необходимо проводить при рН<5,5, когда полимер полностью растворим.
В связи с этим задачей предлагаемого изобретения является разработка одностадийного нетрудоемкого способа получения из кислых гомогенных растворов хитозана ковалентно сшитых криогелей, устойчивых в диапазоне рН 1-14, нетоксичных и биосовместимых.
Технический результат предлагаемого изобретения заключается в получении биосовместимых неокрашенных пористых материалов на основе хитозана, стабильных при использовании в широком диапазоне рН, из гомогенных растворов хитозана в кислой среде.
Указанный технический результат достигают способом получения пористого материала путем ковалентной сшивки макромолекул хитозана при температуре -10°С. При этом сшивку проводят в растворе хитозана в хлористоводородной кислоте в диапазоне рН 4,5-5,0, а в качестве сшивающего агента используют диглицидиловые эфиры гликолей в молярном отношении к аминогруппам хитозана не менее 1:4. Защищаемый способ позволяет получать криогели в том числе непосредственно в сорбционной колонке с формированием из хитозана монолитных сорбентов.
Способ получения ковалентно сшитых криогелей хитозана осуществляют следующим образом. Раствор хитозана с концентрацией 3% готовят растворением порошка полимера в хлороводородной кислоте с концентрацией 0,45-0,5%. Затем рН растворов доводят до 3,5-5,5, предпочтительно до 4,5-5,0, используя растворы хлороводородной кислоты или щелочи. Расчетные количества сшивающих агентов (соответствующие молярным отношениям к аминогруппам хитозана не менее 1:4) добавляют при тщательном перемешивании в раствор хитозана. Для получения пористого материала емкость произвольного размера и формы наполняют раствором хитозана со сшивающим агентом и помещают в морозильную камеру при температуре -10°С на 5-12 дней для ковалентной сшивки. После размораживания полученные таким способом ковалентно сшитые криогели на основе хитозана промывают 0,1 М раствором HCl, а затем водой.
Результаты представлены на следующих иллюстрациях.
Фиг. 1. Крио-электронная микрофотография пористого материала на основе хитозана, полученного по примеру 1.
Фиг. 2. Фотография набухшего криогеля на основе хитозана, полученного по примеру 1.
Фиг. 3. Выходная кривая сорбции красителя ализарина красного на монолитном сорбенте на основе криогеля хитозана, сшитого диглицидиловым эфиром этиленгликоля при мольном отношении к аминогруппе 1:4. Концентрация красителя - 20 мг/л, скорость потока - 20 колоночных объемов (к.о.) в час, рН=5.6.
Фиг. 4. Микрофотография гистологического препарата молодой соединительной ткани с выраженными признаками ангиогенеза (образование капилляров) у границы живая ткань-имплант через 14 дней после операции. Окраска гематоксилин - эозин х 273. И - материал импланта; обозначенные области - капилляры.
Примеры конкретного осуществления способа.
Пример 1
3 г хитозана с молекулярной массой 30 кДа и степенью дезацетилирования 0,9 растворяют в 97 г 0,47% раствора HCl при постоянном перемешивании. Через 24 часа рН полученного раствора доводят до 5 добавлением 0,1 М раствора HCl. К 10 г полученного охлажденного до 5°С раствора при постоянном перемешивании добавляют 0,2898 г диглицидилового эфира этиленгликоля. Полученный раствор помещают в чашку Петри, замораживают при -10°С и выдерживают в течение 12 суток в морозильной камере при той же температуре. После размораживания полученный криогель промывают 0,1 М раствором HCl и водой до нейтральной реакции. Модуль Юнга полностью набухшего в воде криогеля составляет 72±10 кПа, степень набухания составляет 2400%. Изображение структуры криогеля, полученного в данном примере, приведено на Фиг. 1. Фотография полностью набухшего криогеля приведена на Фиг. 2.
Пример 2
К 10 г раствора хитозана, полученного способом, описанном в примере 1, и охлажденного до 5°С, при постоянном перемешивании добавляют 1,656 г диглицидилового эфира полиэтиленгликоля с молекулярной массой ~500 Да. Полученный раствор помещают в чашку Петри, замораживают при -10°С и выдерживают в течение 12 суток в морозильной камере при той же температуре. После размораживания полученный криогель промывают 0,1 М раствором HCl и водой до нейтральной реакции. Модуль Юнга полностью набухшего в воде криогеля составляет 90±15 кПа, степень набухания - 3500%.
Пример 3
К 10 г раствора хитозана, полученного способом, описанном в примере 1, и охлажденного до 5°С, при постоянном перемешивании в течение 5 минут добавляют 0,00724 г диглицидилового эфира этиленгликоля и заполняют полученным раствором пластиковые колонки с внутренним диаметром 0,48 см с высотой слоя 6 см. Колонки в вертикальном положении помещают в морозильную камеру и выдерживают в течение 12 суток при -10°С. После оттаивания полученные пористые монолитные материалы, не вынимая из колонок, промывают с помощью перистальтического насоса 0,1 М раствором HCl и дистиллированной водой при скорости потока 100 колоночных объемов в час. Выходная кривая сорбции красителя ализарина красного на полученном монолитном сорбенте представлена на Фиг. 3. Эффективная динамическая сорбционная емкость составляет 283 мг/г. Регенерацию сорбента после насыщения красителем проводят 0,3 М раствором NaOH, в трех последовательных циклах сорбции/регенерации не наблюдается изменений в свойствах сорбента.
Пример 4
Биосовместимость пористого материала, полученного аналогично Примеру 1, in vivo изучалась путем внутримышечной имплантации мышам линии СВА (самки массой 22,0-24,0 г). Все манипуляции с лабораторными животными проводили с соблюдением требований Международных принципов Хельсинкской декларации о гуманном отношении к животным при экстирпации органов [World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research involving Human Subjects. UMS, 2002, Р. 42-46].
Стандартная форма круга для имплантов достигалась методом штамповки с получением дисков диаметром 1,0 мм и толщиной 0,15-0,40 мм. Стерилизацию имплантов проводили в водном растворе диэтилпирокарбоната с концентрацией 0,02-0,03%. Анестезию лабораторных животных осуществляли путем внутрибрюшинной инъекции 2,2,2-трибромэтанола на физиологическом растворе в дозе 0,250 мг/г. Имплантация полимерных дисков проведена путем рассечения дермы и мышечной фасции с латеральной стороны бедра с последующим погружением образцов в мышечную ткань на глубину 2-3 мм. Кожный покров над мышцей с имплантируемым материалом сшивали шелковой нитью (диаметр 0,100-0,149 мм.) производства ООО «Медин-Н» (г. Екатеринбург). Вскрытие кожного покрова над мышцей с полимерным имплантом через 14 дней не показало признаков патологических изменений в виде выраженного кровенаполнения, отечности и/или гиперемии дермальных сосудов и тканей мышц или наличия экссудативного воспаления. Демаркационная зона четкая, без выраженной клеточной инфильтрации окружающих тканей указывает на низкую реактогенность имплантов. Микроскопически идентифицируется умеренная полиморфноклеточная реакция ткани, окружающей полимерный имплант. В окрашенных пикрофуксином препаратах выявлены волокнистые фуксинофильные структуры, что свидетельствует о начале коллагенизации (созревания) грануляционной ткани. Микрофотография гистологического препарата молодой соединительной ткани с выраженными признаками ангиогенеза приведена на Фиг. 4.
Claims (5)
1. Способ получения пористого материала, заключающийся в проведении химической сшивки хитозана при отрицательной температуре, отличающийся тем, что сшивку проводят в растворе хитозана в хлористоводородной кислоте, а в качестве сшивающего агента используют диглицидиловые эфиры гликолей.
2. Способ по п. 1, характеризующийся тем, что рН среды устанавливают в диапазоне 4,5-5,0.
3. Способ по п. 1, характеризующийся тем, что сшивающий агент выбирают из диглицидилового эфира этиленгликоля или полиэтиленгликоля в молярном отношении к аминогруппам хитозана не менее 1:4.
4. Способ по п. 1, характеризующийся тем, что проводится при температуре -10°С.
5. Способ по п. 1, характеризующийся тем, что формирование монолитного пористого материала для использования в качестве сорбента проводят непосредственно в сорбционной колонке.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019116338A RU2699562C1 (ru) | 2019-05-27 | 2019-05-27 | Способ получения пористых материалов на основе хитозана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019116338A RU2699562C1 (ru) | 2019-05-27 | 2019-05-27 | Способ получения пористых материалов на основе хитозана |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2699562C1 true RU2699562C1 (ru) | 2019-09-06 |
Family
ID=67851551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019116338A RU2699562C1 (ru) | 2019-05-27 | 2019-05-27 | Способ получения пористых материалов на основе хитозана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2699562C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2798558C1 (ru) * | 2022-11-04 | 2023-06-23 | Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) | Макропористые матрицы для клеточного культивирования |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2313538C2 (ru) * | 2005-08-04 | 2007-12-27 | Борис Олегович Майер | Хитозановый продукт, способ его получения (варианты) |
RU2471824C1 (ru) * | 2011-07-26 | 2013-01-10 | Учреждение Российской академии наук Институт высокомолекулярных соединений РАН | Биосовместимый биодеградируемый пористый композиционный материал и способ его получения |
RU2496793C1 (ru) * | 2012-06-14 | 2013-10-27 | Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук | Способ получения 2,3-дигидроксипропилхитозана |
EA201491084A1 (ru) * | 2011-12-02 | 2014-11-28 | Лаборатуар Виваси | Способ одновременного замещения и сшивки полисахарида по его гидроксильным функциональным группам |
-
2019
- 2019-05-27 RU RU2019116338A patent/RU2699562C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2313538C2 (ru) * | 2005-08-04 | 2007-12-27 | Борис Олегович Майер | Хитозановый продукт, способ его получения (варианты) |
RU2471824C1 (ru) * | 2011-07-26 | 2013-01-10 | Учреждение Российской академии наук Институт высокомолекулярных соединений РАН | Биосовместимый биодеградируемый пористый композиционный материал и способ его получения |
EA201491084A1 (ru) * | 2011-12-02 | 2014-11-28 | Лаборатуар Виваси | Способ одновременного замещения и сшивки полисахарида по его гидроксильным функциональным группам |
RU2496793C1 (ru) * | 2012-06-14 | 2013-10-27 | Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук | Способ получения 2,3-дигидроксипропилхитозана |
Non-Patent Citations (3)
Title |
---|
В.В. Никаноров, Р.В. Иванов, Н.Р. Кильдеева и др. Синтез и свойства криогелей хитозана, сшитого глутаровым альдегидом. Высокомолекулярные соединения, Серия А, 2010, том 52, номер 8, с. 1436-1443. * |
В.В. Никаноров, Р.В. Иванов, Н.Р. Кильдеева и др. Синтез и свойства криогелей хитозана, сшитого глутаровым альдегидом. Высокомолекулярные соединения, Серия А, 2010, том 52, номер 8, с. 1436-1443. Никаноров Василий Владимирович. Получение гидрогелей хитозана, модифицированного диальдегидами, с использованием технологии криотропного гелеобразования. Автореферат диссертации на соискание ученой степени к.х.н., Москва, 2010, с.20. Tugce Sen, Berkay Ozcelik, Greg G. Qiao et. al. Hierarchical poros hydrid chitosan scaffolds with tailorable mechanical properties. Materials Letters. 2017, v. 209, p. 528-531. DOI: 10.1016/j.matlet.2017.08.088. Meng-tan Cai, Jia-xing Zhang, Yuan-wei Chen et. al. Preparation and Characterization of Chitisan Composite Membranes Crosslinked by Carboxyl-capped Poly(ethylene glycol). Chinese Journal of Polymer Science, vol. 32, no.2 (2014) p.236-244. Doi.org/10.1007/s10118-014-1373-5. * |
Никаноров Василий Владимирович. Получение гидрогелей хитозана, модифицированного диальдегидами, с использованием технологии криотропного * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2798558C1 (ru) * | 2022-11-04 | 2023-06-23 | Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) | Макропористые матрицы для клеточного культивирования |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4734097A (en) | Medical material of polyvinyl alcohol and process of making | |
US4292972A (en) | Lyophilized hydrocolloio foam | |
CA2656523C (en) | Flexible bioresorbable hemostatic packing and stent | |
US20020187182A1 (en) | Biocompatible fleece for hemostasis and tissue engineering | |
CN109942905B (zh) | 一种复合水凝胶材料及其制备方法 | |
KR20010076418A (ko) | 수팽윤성 고분자 겔 및 그 제조법 | |
CN109568641B (zh) | 一种可促进伤口愈合的医用封闭胶及其制备方法 | |
JPH045457B2 (ru) | ||
CN102068714A (zh) | 一种胶原海绵及其制备方法 | |
KR20030086254A (ko) | 콜라겐 스펀지의 제조 방법, 콜라겐 발포체 부분의 추출장치, 및 신장된 콜라겐 스펀지 | |
AU7176698A (en) | Poly(vinyl alcohol) cryogel | |
CN109432496A (zh) | 一种可原位注射成型的巯基化多糖基水凝胶及其药物载体的制备方法和应用 | |
Wu et al. | Enzymatically degradable oxidized dextran–chitosan hydrogels with an anisotropic aligned porous structure | |
KR100440239B1 (ko) | 상처 치료용 수화겔의 제조방법 | |
ES2275739T3 (es) | Producto medico-tecnico, procedimiento para su produccion y puesta a disposicion para la cirugia. | |
CN113663120B (zh) | 止血海绵垫芯及其制备方法 | |
JP4044291B2 (ja) | 水膨潤性高分子ゲルおよびその製造法 | |
RU2699562C1 (ru) | Способ получения пористых материалов на основе хитозана | |
KR100333317B1 (ko) | 방사선 이용 수화겔 드레싱 제조방법 | |
WO2024140931A1 (zh) | 多糖基高分子交联剂、多糖基生物材料及制备方法与应用 | |
CN113069589A (zh) | 一种可生物降解的抗菌止血海绵 | |
JP4728527B2 (ja) | 架橋ヒアルロン酸スポンジの製造方法 | |
CN107349464B (zh) | 一种新型医用止血凝胶敷料的制备方法 | |
KR102409461B1 (ko) | 조직 접착용 키토산 하이드로젤 | |
CN115737904A (zh) | 一种可降解产生呼吸孔的皮肤修复膜及其制备方法 |