RU2692373C1 - Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники - Google Patents
Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники Download PDFInfo
- Publication number
- RU2692373C1 RU2692373C1 RU2018128409A RU2018128409A RU2692373C1 RU 2692373 C1 RU2692373 C1 RU 2692373C1 RU 2018128409 A RU2018128409 A RU 2018128409A RU 2018128409 A RU2018128409 A RU 2018128409A RU 2692373 C1 RU2692373 C1 RU 2692373C1
- Authority
- RU
- Russia
- Prior art keywords
- polymer
- solution
- dielectric layer
- layer
- substrate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/36—Successively applying liquids or other fluent materials, e.g. without intermediate treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/01—Manufacture or treatment
- H10D48/04—Manufacture or treatment of devices having bodies comprising selenium or tellurium in uncombined form
- H10D48/043—Preliminary treatment of the selenium or tellurium, its application to foundation plates or the subsequent treatment of the combination
- H10D48/046—Provision of discrete insulating layers
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Заявленное изобретение относится к области микроэлектроники, а именно к способам получения диэлектрического слоя межслойной изоляции определенной толщины в изделиях микроэлектроники на основе полимерного покрытия. Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники включает следующие этапы. Подготовку поверхности нанесения. Нанесение толстого покрытия. Термообработку для удаления растворителя и летучих продуктов реакции. Нанесение покрытия из раствора полимера проводят последовательно в два этапа. На первом этапе раствор полимера наносят центрифугированием. На втором этапе – постадийным ультразвуковым спреевым нанесением. Причем на первом этапе применяют раствор полимера большей концентрации и вязкости, чем на втором. Техническим результатом заявленного изобретения является формирование толстого полимерного слоя заданной толщины из раствора с одновременным улучшением качества поверхности формируемого толстого полимерного слоя и равномерности толстого полимерного слоя по площади поверхности. 5 з.п. ф-лы, 9 ил.
Description
Заявленное изобретение относится к области микроэлектроники, а именно к способам получения диэлектрического слоя межслойной изоляции определенной толщины на основе полимерного покрытия в изделиях микроэлектроники.
Из уровня техники известен способ формирования толстых полимерных слоев методом нанесения раствора на горизонтально расположенную поверхность, покрытую тонким слоем того же материала (см. SU1556521 опубл. 20.08.1988)(1). В данных методе на дозу раствора действуют силы поверхностного натяжения и тяжести, под действием которых происходит постепенное сглаживание неровностей рельефа и растекание раствора по поверхности. Для нанесения раствора необходимо использовать внешнюю нагрузку, например, использовать центрифугирование.
Недостатком данного метода является невозможность получения при однократном нанесении равномерных по толщине толстых слоев полимера. Недостатком метода (1) также является возможность неполного растекания раствора по поверхности в результате медленного центрифугирования, или, в обратном случае, при быстром центрифугировании – образование излишка раствора на краю пластины.
Наиболее близким по технической сущности является способ формирования толстых полимерных слоев методом нанесения нескольких тонких слоев раствора на горизонтально расположенную поверхность (см. RU2144472, опубл. 20.01.2000) (2). В данном методе для получения толстопленочного слоя желаемой толщины центрифугированием за один раз наносят слой, имеющий заданную толщину, и затем подвергают его сушке и термообработке. Затем на основном тонкопленочном слое, неоднократно выполняя вышеописанную операцию формируют толстопленочный слой, состоящий из нескольких тонкопленочных слоев.
Недостатком метода (2) является образующаяся граница раздела с соответствующими граничными поверхностями двух тонкопленочных слоев. Также, недостатком данного метода является необходимость проведения сушки и термообработки после нанесения каждого тонкопленочного слоя.
Техническим результатом заявленного способа является формирование толстого полимерного слоя заданной толщины из раствора с одновременным улучшением качества поверхности формируемого толстого полимерного слоя и равномерности толстого полимерного слоя по площади поверхности.
Заявленный технический результат достигается за счет создания способа получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники, включающего подготовку поверхности нанесения, нанесение толстого покрытия, термообработку для удаления растворителя и летучих продуктов реакции, причём нанесение покрытия из раствора полимера проводят последовательно в два этапа: на первом этапе раствор полимера наносят центрифугированием, а на втором – постадийным ультразвуковым (УЗ) спеевым нанесением, причем на первом этапе применяют раствор полимера большей концентрации и вязкости, чем на втором.
Вышеуказанные цели и преимущества настоящего способа станут более очевидными при описании со ссылками на сопроводительные изображения и схемы, на которых:
фигура 1 – полимерный слой, сформированный комбинированным 2-х стадийным методом в разрезе;
фигура 2 – схематичное изображение движения сопла со спреевым конусом относительно подложки (вид сбоку), где 1 – спреевый конус, 2 – сопло, 3 – направление движения сопла со спреевым конусом;
фигура 3 – схематичное изображение траектории движения сопла со спреевым конусом относительно подложки (вид сверху), где 1 – вращающаяся с заданной скоростью подложка, 2 – конус спрея, 3- сопло установки УЗ-спреевого нанесения, 4 – направление движения сопла относительно подложки, 5 – направление вращения подложки;
фигура 4 – схематично изображенная последовательность технологических операций, отражающая сущность изобретения;
фигура 5 – слой полимера (лак АД-9103 ИС ТУ 6-19-247-84) без различимой границы раздела, сформированный комбинированным методом, описанным ранее;
фигура 6 – слой полимера (лак АД-9103 ИС ТУ 6-19-247-84) с различимой границей раздела, сформированный послойным нанесением;
фигура 7 – изображение эффекта расслоения по границы раздела слоев полимера;
фигура 8 – Изображение поверхности слоя полимера, сформированного комбинированным методом, описанным ранее без промежуточной термообработки, расчетная толщина слоя составляет 100 мкм;
фигура 9 – Изображение спреевого конуса в процессе работы установки УЗ-спреевого нанесения.
Способ получения диэлектрического слоя (межслойной изоляции) определенной толщины в изделиях микроэлектроники на основе полимерного покрытия осуществляется следующим образом. Комбинированный метод получения толстого полимерного слоя представляется собой 2-х стадийную последовательность операций нанесения полимерных покрытий из растворов различной концентрации и вязкости методами центрифугирования и УЗ-спреевого нанесения. На примере лака АД-9103 ИС, для метода центрифугирования содержание сухого остатка в растворе составляет 12,5-14 %, а для метода УЗ-спреевого нанесения производят разбавление изначального раствора (12,5-14% сух. остатка) в пропорции 1:3 или 1:4 для получения приемлемой (для установки нанесения) вязкости раствора.
Общая толщина слоя полимерного покрытия Hсл рассчитывается по формуле:
Толщина слоя H1, полученного центрифугированием:
где v – вязкость раствора, b – коэффициент, величина которого приблизительно равна 2, w – частота вращения, t* – время растекания (составляет приблизительно несколько секунд);
Толщина слоя H2, полученного методом УЗ-спреевого нанесения:
где K – коэффициент (от 0 до 1), характеризует количественную характеристику общего объема раствора попадающего на подложку, c – концентрация раствора в %, V – объем раствора в мм3, S – площадь подложки в мм2.
На подготовленную неподвижную подложку, установленную на держатель в центрифуге, в центр из дозатора наносится исходный раствор, вязкостью не более 52000 сПз и методом центрифугирования при скорости вращения необходимой для полного и равномерного распределения по поверхности (для полиимидов с содержанием сухого остатка 12,5-14% скорость вращения 500-1000 об/мин) с получается покрытие толщиной H1, затем методом УЗ-спреевого нанесения на вращающуюся со скоростью 1-5 об/мин подложку наносится выравнивающий слой полимера, вязкостью не более 50 сП и толщиной 5-10 мкм и предварительно проходит мягкую сушку в свете ИК-лампы при температуре, не превышающей 40°C. Дальнейшее наращивание слоя H2, проходит циклами нанесения по 8-12 мкм УЗ-спреевым методом нанесения и мягкой сушки в свете ИК-лампы. При формировании полимерного слоя из всех материалов, кроме светочувствительных, проводят подогрев подложки и мягкую сушку в свете инфракрасной лампы. Коэффициент К, характеризующий количественную характеристику общего объема раствора, попадающего на подложку, обусловлен образованием спреевого конуса, который движется в процессе нанесения вместе с соплом от начальной точки к конечной, находящихся в области краев подложки.
Регулирование площади основания спреевого конуса возможно путем изменения скорости потока газа, проходящего через сопло. Коэффициент К зависит от начальной и конечной точки нанесения материала, а также от площади основания конуса спрея. Варьирование размера капли, попадающей на подложку из сопла, и стабильность спреевого конуса достигается изменением мощности ультразвука. Для формирования диэлектрических слоев, толщиной более 50 мкм используется циклы нанесения 25-35 мкм с последующей конвективной сушкой. Полная полимеризация покрытия проводится после всех циклов нанесения и является последним звеном в цикле термообработки.
Примером использования предлагаемого способа может служить формирование толстого полимерного слоя на основе полиимида на подложке из кремния или нитрида алюминия.
В центр специально подготовленной подложки (методика подготовки поверхности подложки не уточняется ввиду того, что полимерные слои могут быть нанесены на разные поверхности, например, как промежуточные диэлектрические слои или как слой диэлектрика непосредственно на подложке), установленную в держатель центрифуги из дозатора подается 5 мл материала (лак АД-9103 ИС ТУ 6-19-247-84, содержание сухого остатка в растворе составляет 12,5-14%) и вращается в течении 1 минуты при скорости 1000 об/мин. После остановки центрифуги сразу делается 1 проход спреевого нанесения и сушка в свете ИК-лампы 30 минут. Далее делается необходимое количество проходов (повторений) спреевого нанесения для достижения необходимой толщины слоя полимера. В данном случае, для полиимида толщиной более 50 мкм, необходимо использовать промежуточную термообработку в термошкафу со ступенчатым нагревом.
Далее процесс формирования слоя полнее описан со ссылкой на сопроводительные изображения (фигуры).
На фиг. 1 изображен нанесенный 2-х стадийным методом полимерный слой толщиной Hсл. Формирование слоя происходит последовательно, а именно на подготовленную неподвижную подложку (функциональное или технологическое жесткое основание) со сформированной структурой или без нее, в центр, дозируется раствор, вязкость которого не превышает 52000 сП, далее методом центрифугирования создается слой 1 стадии толщиной H1. Толщина слоя H1 рассчитывается по формуле, описанной ранее. Затем на вращающуюся подложку с сформированным слоем ультразвуковым (УЗ)-спреевым методом из раствора вязкостью не более 50 сП наносится слой стадии 2, толщиной H2. Суммарная толщина диэлектрического слоя составляет
На фиг. 2 схематично изображено движение сопла установки УЗ-спреевого нанесения (2) с образовавшимся спреевым конусом (1) относительно подложки, с уже сформированным методом центрифугирования слоем 1 стадии, в указанном направлении (3) при виде сбоку. Сопло начинает и заканчивает движение и нанесение вне зоны подложки, что имеет влияние на значения коэффициента К в формуле расчета толщины слоя 2 стадии. Ширина конуса спрея зависит от скорости потока газа, проходящего через сопло. При увеличении скорости потока газа, проходящего через сопло, площадь основания конуса спрея увеличивается, тем самым так же влияя на общее количество материала, попадающее на поверхность подложки и, как следствие, влияя на коэффициент К. На стабильность конуса спрея основное влияние производит мощность источника ультразвука. В зависимости от вязкости наносимого материала при неправильной мощности источника ультразвука в процессе могут возникать такие явления, как образование крупных капель или образование «вспененых» включений, приводящих к дефектам на поверхности и структуре слоя 2 стадии. Для получения качественного слоя необходим оптимальных подбор характеристик системы давление подачи-скорость потока газа-мощность ультразвука для наносимого материала определенной вязкости.
На фиг. 3 схематично изображено движение сопла установки УЗ-спреевого нанесения (3) с образовавшимся спреевым конусом (2) относительно подложки (1), вращающейся в определенном направлении (5) со скоростью 1-10 об/мин с уже сформированным методом центрифугирования слоем 1 стадии, в указанном направлении (4) при виде сверху. Скорость вращения подложки выбирается такой, чтобы распределения материала по поверхности было равномерным и при этом не образовывалось скопления материала на краю пластины. Далее вращение подложки сохраняется при сушке в свете инфракрасной (ИК)-лампы необходимое время. Необходимо учитывать то, что при нанесении материала на подложку не круглой формы значение коэффициента К будет тем ниже, чем меньше площадь фигуры относительно площади описываемой окружности для этой фигуры.
На фиг. 4 изображена последовательность основных операций технологического процесса, отражающая сущность способа формирования толстого полимерного покрытия. В зависимости материала подложки, материала и состояния ее поверхности, проводят подготовку поверхности под нанесение полимера, как пример обработка кремниевой пластины с сформированной проводящей структурой в диметилформамиде и нанесение промоутера адгезии на поверхность перед формированием слоя полиимида. Время между операцией подготовки поверхности и формированием слоя не должно превышать 30 минут, в противном случае операцию подготовки поверхности необходимо повторить. Далее производится дозирование и центрифугирование из раствора, описанное для фиг. 1. Затем в течении 1 минуты, до начала активного выхода растворителя из сформированного слоя 1 стадии производится формирование слоя УЗ-спреевым нанесением, описанное для фиг. 2 и фиг. 3. Получение необходимой толщины слоя полимера достигается изменением количества проходов спрея. За один проход формируется слой до 15 мкм. Между проходами и после последнего используется мягкое подсушивание в свете ИК-лампы с температурой нагрева поверхности не более 40оС. Далее проводится термообработка подложки с нанесенным толстым слоем полимера. Необходимо учитывать то, что для полиимидов, для получения толстых слоев (толщина боле 50-60 мкм) с равномерной и гладкой поверхностью, нужно проводить промежуточную термообработку без имидизации.
На фиг. 5 показано изображение слоя полимера (лак АД-9103 ИС ТУ 6-19-247-84), полученное с помощью растрового электронного микроскопа, сформированного комбинированным методом, описанным ранее. На изображении видно, что слой полимера, находящийся на кремниевой подложке не имеет границы раздела. Слой полимера толщиной приблизительно 29 мкм сформирован комбинированным методом в две стадии, где первая стадия – нанесение центрифугированием при скорости вращения 1000 об/мин продолжительностью 90 секунд, а вторая стадия – УЗ-спреевое нанесение полимера при вращении 1 об/мин и свете ИК-лампы.
На фиг. 6 показано изображение слоя полимера (лак АД-9103 ИС ТУ 6-19-247-84), полученное с помощью растрового электронного микроскопа, сформированного послойным нанесением. В данном случае нанесение материала производилось послойным методом с помощью центрифугирования при скорости вращения 1000 об/мин в течение 1 минуты. Между нанесениями слой подвергается сушке и термообработке. На изображении видно, что есть четкая границы между первым и вторым слоем полимера.
На фиг. 7 показано изображение произошедшего расслоения, полученное с помощью растрового электронного микроскопа. Данный слой полимера получен методом послойного нанесения, описанным для фиг. 6. Общая толщина слоя полимера составляет приблизительно 72 мкм. На изображении видно, что расслоение происходит по границе между слоями.
На фиг. 8 представлено изображение поверхности слоя полимера, нанесенного на кремниевую подложку. Полимерный слой сформирован комбинированным методом, но без промежуточной термообработки, необходимость которой также указывалась ранее в случае, если расчетная толщина полимерного слоя превышает 60 мкм. В данном случае расчетная толщина слоя составляет 100 мкм. Слой полимера с расчетной толщиной 100 мкм сформирован комбинированным методом в две стадии, где первая стадия – нанесение центрифугированием при скорости вращения 1000 об/мин продолжительностью 90 секунд, а вторая стадия – многопроходное УЗ-спреевое нанесение полимера при вращении 1 об/мин и свете ИК-лампы. В процессе сушки, растворитель из раствора, нанесенного на поверхность, выходит слишком быстро, создавая поверхность полимерного слоя, показанную на изображении.
На фиг. 9 показано изображение спреевого конуса в процессе работы установки УЗ-спреевого нанесения. В данном случае через сопло подается раствор полимера на основе Лака АД-9103 ИС ТУ 6-19-247-84.
Claims (15)
1. Способ получения диэлектрического слоя в изделиях микроэлектроники на основе полимерного покрытия, включающий подготовку поверхности нанесения, нанесение толстого покрытия, термообработку для удаления растворителя и летучих продуктов реакции, отличающийся тем, что нанесение покрытия из раствора полимера проводят последовательно в два этапа: на первом этапе раствор полимера наносят центрифугированием, а на втором – постадийным ультразвуковым спреевым нанесением, причем на первом этапе применяют раствор полимера большей концентрации и вязкости, чем на втором.
2. Способ получения диэлектрического слоя по п. 1, отличающийся тем, что время между центрифугированием и ультразвуковым спреевым нанесением составляет не более 1 минуты.
3. Способ получения диэлектрического слоя по п. 1, отличающийся тем, что для центрифугирования вязкость раствора полимера составляет не более 52000 сП.
4. Способ получения диэлектрического слоя по п. 1, отличающийся тем, что для ультразвукового спреевого нанесения вязкость раствора полимера составляет не более 50 сП.
5. Способ получения диэлектрического слоя по п. 1, отличающийся тем, что общая толщина слоя определяют по формуле:
v – вязкость раствора в П,
b – коэффициент, величина которого приблизительно равна 2,
w – частота вращения в об/мин,
t* – время растекания в мин,
K – коэффициент (от 0 до 1), характеризует количественную характеристику общего объема раствора, попадающего на подложку,
c – концентрация раствора в %,
V – объем раствора в мм3,
S – площадь подложки в мм2.
6. Способ получения диэлектрического слоя по п. 1, отличающийся тем, что при формировании полимерного слоя из всех материалов, кроме светочувствительных, проводят подогрев подложки и сушку в свете инфракрасной лампы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018128409A RU2692373C1 (ru) | 2018-08-03 | 2018-08-03 | Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018128409A RU2692373C1 (ru) | 2018-08-03 | 2018-08-03 | Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2692373C1 true RU2692373C1 (ru) | 2019-06-24 |
Family
ID=67038133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018128409A RU2692373C1 (ru) | 2018-08-03 | 2018-08-03 | Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2692373C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2144472C1 (ru) * | 1998-11-03 | 2000-01-20 | Самсунг Электроникс Ко., Лтд. | Способ образования толстопленочного слоя в микроинжекционном устройстве |
WO2008030474A2 (en) * | 2006-09-08 | 2008-03-13 | Krogman Kevin C | Automated layer by layer spray technology |
US20080175996A1 (en) * | 2007-01-23 | 2008-07-24 | Commissariat A L'energie Atomique | Method for depositing a polymer layer on a surface of a support comprising at least a recessed zone |
EP3316324A1 (en) * | 2015-06-25 | 2018-05-02 | Kabushiki Kaisha Nihon Micronics | Secondary battery manufacturing method |
-
2018
- 2018-08-03 RU RU2018128409A patent/RU2692373C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2144472C1 (ru) * | 1998-11-03 | 2000-01-20 | Самсунг Электроникс Ко., Лтд. | Способ образования толстопленочного слоя в микроинжекционном устройстве |
WO2008030474A2 (en) * | 2006-09-08 | 2008-03-13 | Krogman Kevin C | Automated layer by layer spray technology |
US20080175996A1 (en) * | 2007-01-23 | 2008-07-24 | Commissariat A L'energie Atomique | Method for depositing a polymer layer on a surface of a support comprising at least a recessed zone |
EP3316324A1 (en) * | 2015-06-25 | 2018-05-02 | Kabushiki Kaisha Nihon Micronics | Secondary battery manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5609995A (en) | Method for forming a thin uniform layer of resist for lithography | |
US6407009B1 (en) | Methods of manufacture of uniform spin-on films | |
US5925410A (en) | Vibration-enhanced spin-on film techniques for semiconductor device processing | |
US6436851B1 (en) | Method for spin coating a high viscosity liquid on a wafer | |
US5554567A (en) | Method for improving adhesion to a spin-on-glass | |
JP4745358B2 (ja) | 回転塗布方法、および回転塗布装置 | |
US6530340B2 (en) | Apparatus for manufacturing planar spin-on films | |
CN104952704B (zh) | 涂层的形成方法 | |
US5298288A (en) | Coating a heat curable liquid dielectric on a substrate | |
US9170496B2 (en) | Method of pre-treating a wafer surface before applying a solvent-containing material thereon | |
CN1516624A (zh) | 静电喷涂装置及方法 | |
US6946407B2 (en) | Method for pretreating a substrate prior to application of a polymeric coat | |
US6849293B2 (en) | Method to minimize iso-dense contact or via gap filling variation of polymeric materials in the spin coat process | |
US5646071A (en) | Equipment and method for applying a liquid layer | |
US6225240B1 (en) | Rapid acceleration methods for global planarization of spin-on films | |
US6317642B1 (en) | Apparatus and methods for uniform scan dispensing of spin-on materials | |
WO2007047284A1 (en) | Reduction of iso-dense field thickness bias through gas jet for gapfill process | |
US6974600B2 (en) | Method and apparatus for coating a photosensitive material | |
US6387825B2 (en) | Solution flow-in for uniform deposition of spin-on films | |
RU2692373C1 (ru) | Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники | |
US6033589A (en) | Method for depositing a coating layer on a wafer without edge bead formation | |
JPH0780384A (ja) | 流体塗布装置 | |
JP2812755B2 (ja) | 円筒状塗布体の製造方法 | |
US6410080B1 (en) | Method for forming a liquid film on a substrate | |
US6207357B1 (en) | Methods of forming photoresist and apparatus for forming photoresist |