[go: up one dir, main page]

RU2685818C1 - Способ изготовления изделий методом порошковой металлургии - Google Patents

Способ изготовления изделий методом порошковой металлургии Download PDF

Info

Publication number
RU2685818C1
RU2685818C1 RU2018116513A RU2018116513A RU2685818C1 RU 2685818 C1 RU2685818 C1 RU 2685818C1 RU 2018116513 A RU2018116513 A RU 2018116513A RU 2018116513 A RU2018116513 A RU 2018116513A RU 2685818 C1 RU2685818 C1 RU 2685818C1
Authority
RU
Russia
Prior art keywords
temperature
furnace
sintering
powder
final
Prior art date
Application number
RU2018116513A
Other languages
English (en)
Inventor
Андрей Викторович Мельниченко
Ольга Юрьевна Павлюковская
Андрей Федорович Коренякин
Андрей Геннадиевич Екотов
Геннадий Викторович Афанасов
Юрий Иванович Белоусов
Олег Владимирович Танаянц
Сергей Александрович Идиатулин
Алексей Петрович Сережников
Данис Хасанович Файрузов
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань") filed Critical Общество с ограниченной ответственностью "Газпром добыча Астрахань" (ООО "Газпром добыча Астрахань")
Priority to RU2018116513A priority Critical patent/RU2685818C1/ru
Application granted granted Critical
Publication of RU2685818C1 publication Critical patent/RU2685818C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к изготовлению изделий из твердосплавных порошковых смесей. Готовят пресс-порошок из твердосплавной смеси путем введения связывающей жидкости с последующим брикетированием полученной смеси и перетиранием сформированных брикетов с образованием пресс-порошка. Затем полученный пресс-порошок подвергают прессованию, а полученную спрессованную заготовку сушат и направляют на предварительное спекание в вакуумной печи, далее проводят пластифицирование заготовки и подвергают ее механической обработке до размеров на 30-35% больше окончательных размеров готового изделия. Проводят выжигание пластификатора и осуществляют окончательное высокотемпературное спекание заготовки в вакуумной печи с последующей окончательной механической обработкой до окончательных размеров готового изделия с полировкой рабочих поверхностей алмазной пастой. Обеспечивается изготовление изделий, применяемых в агрессивной среде, содержащей до 25% сероводорода. 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к порошковой металлургии, в частности к изготовлению деталей, запасных частей и элементов трения для импортного и отечественного насосно-компрессорного оборудования, трубопроводной запорно-регулирующей арматуры и иного оборудования, и может быть использовано для оборудования нефте- и газоперерабатывающей промышленности, применяемого в агрессивной среде, содержащей до 25% сероводорода.
Порошковая металлургия, наряду с другими наукоемкими и энергосберегающими отраслями промышленности, является одним из основных направлений развития современного, высокоэффективного производства технологически развитых стран мирового сообщества.
Технологический процесс производства изделий методом порошковой металлургии состоит из следующих основных операций:
- получение и подготовка порошков исходных материалов, которые могут представлять собой чистые металлы или их сплавы, соединения металлов с неметаллами и различные другие химические соединения;
- прессование из подготовленной шихты изделий необходимой формы в специальных пресс-формах;
- термическая обработка или спекание спрессованных изделий, придающее им окончательные физико-механические свойства.
На практике иногда встречаются отклонения от этих типичных элементов технологии. Так, например, процессы прессования и спекания можно совмещать в одной операции или предварительно спеченный пористый брикет затем может быть пропитан расплавленным металлом. Могут быть и другие отклонения от указанной схемы, однако использование исходной порошкообразной шихты и спекание при температуре ниже точки плавления основного элемента остаются неизменными.
В настоящее время трудно назвать отрасль промышленности, где бы не находили применения изделия из материалов, полученных методами порошковой металлургии. Например, в обрабатывающей промышленности это твердосплавные инструменты, в горнодобывающей промышленности - армирующие твердые сплавы и алмазно-металлические композиции, применяемые для оснащения бурового инструмента. В сварочной технике это порошки, применяемые для наплавки, специальной резки и изготовления обмазок. В практике машиностроения метод порошковой металлургии используют для изготовления деталей машин и механизмов с высокими износостойкими, антифрикционными и фрикционными свойствами. В современной электротехнике это контактные устройства, обеспечивающие высокую электро- и теплопроводность, хорошую тугоплавкость, высокую степень электроэрозионной устойчивости и прочности в условиях ударных нагрузок.
Основными достоинствами порошковой металлургии, обусловившими ее развитие, являются:
- возможность получения изделий из материалов, которые трудно или невозможно получить другими способами. Например, некоторые тугоплавкие металлы (вольфрам, тантал), сплавы и композиции на основе тугоплавких соединений (твердые сплавы на основе карбидов вольфрама, титана и др.), композиции металлов, не смешивающихся в расплавленном виде, в особенности при значительной разнице в температурах плавления (вольфрам - медь), композиции из металлов и неметаллов (медь - графит, алюминий - оксид алюминия и др.), пористые материалы (подшипники, фильтры, теплообменники и др.);
- возможность получения некоторых материалов и изделий с более высокими технико-экономическими показателями за счет экономии металла и значительного снижения себестоимости продукции. Например, при изготовлении деталей литьем и обработкой резанием до 60-80% металла теряется в литниках или идет в стружку;
- возможность получения изделий из материалов с меньшим содержанием примесей и с более точным соответствием заданному составу, чем у литых сплавов, за счет использования чистых исходных порошков.
При одинаковом составе и плотности у спеченных материалов в ряде случаев свойства выше, чем у плавленых в связи с особенностью их структуры. В частности, в спеченных материалах меньше сказывается неблагоприятное влияние предпочтительной ориентировки (текстуры), которая встречается у некоторых литых металлов вследствие специфических условий затвердевания расплава. В спеченных материалах размеры и форму структурных элементов легче регулировать и можно получать типы взаимного расположения и формы зерен, которые невозможны для плавленого металла. Благодаря этим структурным особенностям спеченные металлы более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжений, что очень важно для изделий из данных материалов.
Порошковая металлургия имеет и недостатки, которые препятствуют ее развитию:
- сравнительно высокая стоимость металлических порошков;
- необходимость спекания в защитной атмосфере, что увеличивает стоимость изделий;
- трудность изготовления изделий больших размеров;
- сложность получения металлов и сплавов в беспористом, компактном состоянии;
- необходимость применения чистых исходных порошков для получения чистых металлов.
Недостатки и некоторые достоинства порошковой металлургии нельзя рассматривать как постоянно действующие факторы. Они зависят от состояния и развития как самой порошковой металлургии, так и других отраслей промышленности. По мере развития техники порошковая металлургия может вытесняться из одних областей и перемещаться в другие.
По способу производства материала (сплава) методом порошковой металлургии с целью последующего изготовления из него изделий из патентной литературы известно следующее.
Способ прессования твердого сплава из наноразмерных порошков (патент РФ №2569288 «Способ изготовления наноразмерного твердого сплава», С22С 1/04, С22С 29/08, B22F 3/12, B82Y 30/00, опубликовано 20.11.2015), включающий приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме, перед прессованием в смесь наноразмерных порошков вводят 2-15 об. % этанола, при этом прессование ведут при давлении 2000 кгс/см2.
Существенным недостатком известного способа, выбранного в качестве ближайшего аналога-прототипа заявляемого технического решения, является отсутствие возможности изготовления готового изделия (детали).
В результате проведенного патентного поиска, авторами не были обнаружены аналоги и прототипы, близкие по существенным признакам к предлагаемому способу изготовления изделий методом порошковой металлургии.
Задачей, решаемой изобретением, является разработка способа изготовления методом порошковой металлургии деталей, запасных частей и элементов трения для импортного и отечественного насосно-компрессорного оборудования, трубопроводной запорно-регулирующей арматуры и иного оборудования, не уступающего по своим технико-эксплуатационным свойствам оригинальным изделиям, с возможностью использования для оборудования нефте- и газоперерабатывающей промышленности, применяемого в агрессивной среде, содержащей до 25% сероводорода.
Для решения поставленной задачи предлагается способ изготовления изделий методом порошковой металлургии, включающий следующий ряд технологически последовательных операций: приготовление пресс-порошка, прессование его в стальной пресс-форме, предварительное спекание в вакууме с последующей пропиткой пластификатором, механическая обработка пластифицированной заготовки, выжигание пластификатора, окончательное спекание и механическая обработка спеченной заготовки, отличающийся тем, что при приготовлении пресс-порошка из твердосплавной смеси путем перемешивания в нее вводят связывающую жидкость в соотношении 30 мл на 1 кг твердосплавной смеси с последующим брикетированием полученной смеси (порошок - связывающая жидкость) за счет уплотнения в пресс-форме с усилием до 2 т и перетиранием сформированных брикетов на сите с ячеей 0,5 мм с образованием пресс-порошка, который далее подвергают прессованию с усилием 6 т в стальной пресс-форме в пределах одного часа с момента окончания его приготовления, затем спрессованную заготовку сушат в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт.ст. при температуре 100°С не менее 16 часов, после сушки спрессованную заготовку помещают в графитовый контейнер, обеспечивающий наличие зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей, и проводят предварительное спекание в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт.ст. при температуре 750-800°С, причем скорость подъема температуры не более 200°С в час с выдержкой не менее 60 минут после достижения заданной температуры спекания и последующим естественным остыванием печи до температуры 40°С, далее пластифицирование прошедшей предварительное спекание заготовки осуществляют при температуре 80-100°С в объеме жидкого парафина в течение не менее 180 минут, затем проводят механическую обработку на токарно-винторезном и универсальном фрезерном станках предварительно спеченной и пластифицированной заготовки до размеров на 30-35% больше окончательных размеров готового изделия, далее механически обработанную заготовку для выжигания пластификатора помещают в графитовый контейнер, обеспечивающий наличие зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей, выжигание пластификатора производят в вакуумной печи с остаточным давлении в печи не более 5⋅10-2 мм рт.ст. при температуре 400°С, причем скорость подъема температуры не более 200°С в час с выдержкой не менее 180 минут после достижения заданной температуры выжигания пластификатора и последующим естественным остыванием печи до температуры 40°С, затем для окончательного высокотемпературного спекания заготовку помещают в графитовый контейнер, обеспечивающий наличие зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей, окончательное высокотемпературное спекание производят в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт.ст. при температуре 1350°С, причем скорость подъема температуры не более 300°С в час до температуры 1100°С и далее не более 100°С в час до температуры 1350°С с выдержкой не менее 30 минут после достижения заданной температуры окончательного высокотемпературного спекания и последующим охлаждением печи со скоростью не более 100°С в час до температуры 1100°С и естественным остыванием печи до температуры 40°С, окончательная механическая обработка полученной детали на универсально-заточном и круглошлифовальном станках до окончательных размеров готового изделия с полировкой рабочих поверхностей алмазной пастой.
С целью обеспечения удобства работы с мелкофракционным твердосплавным порошком на этапе приготовления пресс-порошка в качестве связывающей жидкости применяется дизельное топливо. Выбор дизельного топлива обусловлен его высокими смачивающими способностями для равномерного распределения связывающей жидкости по всему объему порошка.
Предварительное спекание, выжигание пластификатора и окончательное спекание заготовки осуществляют в графитовом контейнере обладающем высокотемпературными и инертными свойствами, а наличие зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпаны сажей, обеспечивают химическую инертность окружающей заготовку среды с целью предотвращения ее окисления остаточным кислородом для достижения постоянства состава и структуры конечного изделия.
Временные, температурные и иные параметры, приведенные в данном способе изготовления изделий методом порошковой металлургии, определены из расчета решения заявленной в данном изобретении задачи с учетом достижения минимально-возможных затрат на производство.
Изготовление изделия предлагаемым способом осуществляется по предварительно разработанной проектной документации на изготавливаемое изделие, в которой расчетным путем подобраны и определены марка твердосплавной смеси, геометрические размеры готового изделия с чертежом общего вида, представлены профиль и основные геометрические параметры заготовки, а также разработана маршрутная карта технологического процесса, раскрывающая указанную в предлагаемом способе последовательность изготовления изделия методом порошковой металлургии как основными, так и вспомогательными операциями с указанием оборудования и оснастки, на которых изготавливается изделие.
Сущность изобретения, а также осуществление способа изготовления изделий методом порошковой металлургии поясняется примером изготовления стакана штока углового дроссельного клапана СС20 ES «Cameron-Willis» 3'', который включает следующий ряд технологически последовательных операций.
1. Приготовление пресс-порошка
1.1 Порошок марки ВК-6 по ТУ 48-19-60-78 взвешивается на весах (механические, предел взвешивания - 3-10 кг, класс точности - средний). Масса взвешиваемого порошка - 3,2 кг.
1.2 В процессе перемешивания порошка в стеклянном бюксе (вместимость до 3 л) вводится связывающая жидкость - дизельное топливо по ГОСТ 32511-2013 (EN 590:2009) в количестве 96 мл. Связывающая жидкость должна быть равномерно распределена по всему объему порошка.
1.3 Полученная смесь (порошок -связывающая жидкость) уплотняется до образования брикетов в пресс-форме на прессе ПА-433 усилием до 2 т.
1.4 Сформированные брикеты перетираются на сите с ячеей 0,5 мм с образованием пресс-порошка.
2. Прессование заготовки
2.1 В пределах одного часа с момента окончания приготовления пресс-порошок засыпается в окно матрицы пресс-формы и прессуется на прессе ПА-433 усилием до 6 т с образованием заготовки, соответствующей указанным геометрическим размерам в проектной документации 80×80×80 мм.
2.2 Спрессованную заготовку сушат в вакуумной печи ВНЗ-1620-И1 при температуре 100°С и остаточном давлении в печи не более 5⋅10-2 мм рт.ст. не менее 16 часов.
3. Предварительное спекание
3.1 После сушки спрессованная заготовка помещается в графитовый контейнер, размеры которого должны обеспечить зазоры между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей марки Т-900.
3.2 Предварительное спекание проводят в вакуумной печи СГВ-2.4.2/15 ИЗ с остаточным давлении в печи не более 5⋅10-2 мм рт.ст. при температуре 750-800°С. Скорость подъема температуры не более 200°С в час с выдержкой не менее 60 минут после достижения заданной температуры спекания.
3.3 При завершении спекания обеспечивают естественное остывание печи до температуры 40°С. Из печи вынимается графитовый контейнер и из него извлекается заготовка.
4. Пропитка заготовки парафином (пластифицирование)
4.1 Металлический контейнер с кусками парафина по ГОСТ 23683-89 помещается в сушильный шкаф СНОЛ, где парафин расплавляется при температуре 80°С.
4.2 Пластифицирование прошедшей предварительное спекание заготовки осуществляют при температуре 80-100°С в объеме жидкого парафина в течение не менее 180 минут.
4.3 При завершении пластифицирования заготовка извлекается из металлического контейнера с парафином и остывает в естественных условиях.
5. Механическая обработка
5.1 Заготовку подвергают механической обработке согласно расчетным размерам в проектной документации на токарно-винторезном станке 16К20 и универсальном фрезерном станке RTM-3 до размеров на 30-35% больше окончательных размеров готового изделия с учетом усадки при окончательном спекании и припуска под окончательную механическую обработку.
6. Выжигание пластификатора
6.1 После механической обработки заготовка помещается в графитовый контейнер, размеры которого должны обеспечить зазоры между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей марки Т-900.
6.2 Выжигание пластификатора проводят в вакуумной печи СГВ-2.4.2/15 ИЗ с остаточным давлении в печи не более 5⋅10-2 мм рт.ст. при температуре 400°С.
Скорость подъема температуры не более 200°С в час с выдержкой не менее 180 минут после достижения заданной температуры выжигания пластификатора.
6.3 При завершении выжигания пластификатора обеспечивают естественное остывание печи до температуры 40°С. Из печи вынимается графитовый контейнер и из него извлекается заготовка.
7. Окончательное высокотемпературное спекание
7.1 После выжигания пластификатора заготовка помещается в графитовый контейнер, размеры которого должны обеспечить зазоры между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей марки Т-900.
7.2 Окончательное высокотемпературное спекание проводят в вакуумной печи СГВ-2.4.2/15 ИЗ с остаточным давлением в печи не более 5⋅10-2 мм рт.ст. при температуре 1350°С. Скорость подъема температуры не более 300°С в час до температуры 1100°С и далее не более 100°С в час до температуры 1350°С с выдержкой не менее 30 минут после достижения заданной температуры окончательного высокотемпературного спекания.
7.3 При завершении спекания производят охлаждение печи со скоростью не более 100°С в час до температуры 1100°С и далее обеспечивают естественное остывание печи до температуры 40°С. Из печи вынимается графитовый контейнер и из него извлекается заготовка.
8. Окончательная механическая обработка
8.1 С учетом усадки при окончательном высокотемпературном спекании проверяются геометрические размеры полученной детали.
8.2 Для доведения размеров полученной детали на соответствие расчетным, указанным в проектной документации, окончательный размер готового изделия получают шлифованием на универсально-заточном станке 3В642 и круглошлифовальном станке 3Н130В с полировкой рабочих поверхностей алмазной пастой.
8.3 Проведение технического контроля готового изделия на соответствие проектной документации осуществляют с использованием твердомера Роквелла, профилометра, прибора для контроля плоскостности поверхности детали, штангенциркуля и микрометра.
Ниже в таблице приводятся сравнительные результаты технических характеристик изделия, полученного при осуществлении заявленного способа и оригинального готового изделия.
Figure 00000001
При осуществлении изобретения получен технический результат, заключающийся в изготовлении методом порошковой металлургии деталей, запасных частей и элементов трения для импортного и отечественного насосно-компрессорного оборудования, трубопроводной запорно-регулирующей арматуры и иного оборудования, не уступающего по своим технико-эксплуатационным свойствам оригинальным изделиям, с возможностью использования для оборудования нефте- и газоперерабатывающей промышленности, применяемого в агрессивной среде, содержащей до 25% сероводорода.
Из патентной документации не известны способы изготовления изделий методом порошковой металлургии с идентичными существенными признаками заявляемому техническому решению, что говорит о его новизне и соответствию этому критерию для изобретения.
Совокупность изложенных выше существенных признаков необходима и достаточна для реализации задачи заявляемого решения. При этом между совокупностью существенных признаков и задачей, поставленной и решаемой изобретением, существует причинно-следственная связь, при которой сама совокупность признаков является причиной, а решаемая ими задача является следствием. Исходя из этих доводов, правомерен вывод о том, что заявляемое техническое решение соответствует установленному критерию - изобретательский уровень (неочевидность).
Заявляемое техническое решение может быть неоднократно реализовано с получением указанного выше технического результата.
Решение, таким образом, соответствует критерию «промышленная применимость».
Предлагаемое решение в качестве изобретения применяется в промышленных масштабах для собственных нужд в Газопромысловом управлении ООО «Газпром добыча Астрахань».
Технико-экономическое преимущество заявляемого изобретения заключается в изготовлении деталей, не уступающих по своим технико-эксплуатационным свойствам оригинальным импортным аналогам, при значительно меньших производственных затратах.

Claims (2)

1. Способ изготовления изделий из твердосплавных порошковых смесей, включающий приготовление пресс-порошка, прессование его в стальной пресс-форме и спекание в вакууме, отличающийся тем, что пресс-порошок готовят путем введения в порошок твердосплавной смеси связывающей жидкости в соотношении 30 мл на 1 кг порошка твердосплавной смеси с последующим брикетированием полученной смеси путем уплотнения в пресс-форме с усилием до 2 т и перетиранием сформированных брикетов на сите с ячейками 0,5 мм с образованием пресс-порошка, при этом прессование пресс-порошка ведут с усилием 6 т в стальной пресс-форме в пределах одного часа с момента окончания его приготовления, затем спрессованную заготовку сушат в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт. ст. при температуре 100°С не менее 16 часов, после сушки спрессованную заготовку помещают в графитовый контейнер, обеспечивающий наличие зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей, проводят предварительное спекание заготовки в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт. ст. при температуре 750-800°С, при этом обеспечивают скорость подъема температуры не более 200°С в час с выдержкой не менее 60 минут после достижения заданной температуры спекания и последующим естественным остыванием печи до температуры 40°С, далее осуществляют пластифицирование прошедшей предварительное спекание заготовки при температуре 80-100°С в объеме жидкого парафина в течение не менее 180 минут, затем проводят механическую обработку на токарно-винторезном и универсальном фрезерном станках предварительно спеченной и пластифицированной заготовки до размеров на 30-35% больше окончательных размеров готового изделия, далее механически обработанную заготовку помещают в графитовый контейнер с обеспечением зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей, и проводят выжигание пластификатора в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт. ст. при температуре 400°С, при скорости подъема температуры не более 200°С в час с выдержкой не менее 180 минут после достижения заданной температуры выжигания пластификатора и последующим естественным остыванием печи до температуры 40°С, затем заготовку помещают в графитовый контейнер с обеспечением зазоров между стенками контейнера и заготовкой не менее 10 мм, которые засыпают сажей, и проводят окончательное высокотемпературное спекание в вакуумной печи с остаточным давлением в печи не более 5⋅10-2 мм рт. ст. при температуре 1350°С, при скорости подъема температуры не более 300°С в час до температуры 1100°С и далее не более 100°С в час до температуры 1350°С с выдержкой не менее 30 минут после достижения заданной температуры окончательного высокотемпературного спекания и последующим охлаждением печи со скоростью не более 100°С в час до температуры 1100°С и естественным остыванием печи до температуры 40°С, затем проводят окончательную механическую обработку с получением детали на универсально-заточном и круглошлифовальном станках до окончательных размеров с полировкой рабочих поверхностей алмазной пастой.
2. Способ по п. 1, отличающийся тем, что пресс-порошок готовят с использованием дизельного топлива в качестве связывающей жидкости.
RU2018116513A 2018-05-03 2018-05-03 Способ изготовления изделий методом порошковой металлургии RU2685818C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018116513A RU2685818C1 (ru) 2018-05-03 2018-05-03 Способ изготовления изделий методом порошковой металлургии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018116513A RU2685818C1 (ru) 2018-05-03 2018-05-03 Способ изготовления изделий методом порошковой металлургии

Publications (1)

Publication Number Publication Date
RU2685818C1 true RU2685818C1 (ru) 2019-04-23

Family

ID=66314778

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018116513A RU2685818C1 (ru) 2018-05-03 2018-05-03 Способ изготовления изделий методом порошковой металлургии

Country Status (1)

Country Link
RU (1) RU2685818C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115740441A (zh) * 2022-11-10 2023-03-07 苏州大学 一种用于制备金刚石/铜热沉的超声辅助成型装置及其应用
RU2834926C1 (ru) * 2024-06-11 2025-02-17 Валерий Юрьевич Лучников Способ изготовления магнетитсодержащих анодов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1678527A1 (ru) * 1989-06-22 1991-09-23 Дальневосточный политехнический институт им.В.В.Куйбышева Способ изготовлени твердосплавного инструмента
RU2569288C1 (ru) * 2014-05-27 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ изготовления наноразмерного твердого сплава
EP2768995B1 (en) * 2011-10-17 2017-01-04 Sandvik Intellectual Property AB Method of making a cemented carbide or cermet powder by using a resonant acoustic mixer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1678527A1 (ru) * 1989-06-22 1991-09-23 Дальневосточный политехнический институт им.В.В.Куйбышева Способ изготовлени твердосплавного инструмента
EP2768995B1 (en) * 2011-10-17 2017-01-04 Sandvik Intellectual Property AB Method of making a cemented carbide or cermet powder by using a resonant acoustic mixer
RU2569288C1 (ru) * 2014-05-27 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ изготовления наноразмерного твердого сплава

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115740441A (zh) * 2022-11-10 2023-03-07 苏州大学 一种用于制备金刚石/铜热沉的超声辅助成型装置及其应用
RU2834926C1 (ru) * 2024-06-11 2025-02-17 Валерий Юрьевич Лучников Способ изготовления магнетитсодержащих анодов

Similar Documents

Publication Publication Date Title
US3175260A (en) Process for making metal carbide hard surfacing material and composite casting
CN104384501B (zh) 一种铁基粉末冶金摩擦材料及其制备方法
CN110819866B (zh) 一种WC-Co-B4C硬质合金的制备方法
CN101712550A (zh) 立方氮化硼超硬刀具
CN104032153A (zh) 一种高强韧微晶硬质合金的制造方法
CN106111946A (zh) 一种复合陶瓷金属耐磨坯件制备方法及其制品
RU2685818C1 (ru) Способ изготовления изделий методом порошковой металлургии
CN1218814C (zh) 金属或陶瓷结合剂超硬磨具的制造方法
CN105745044A (zh) 通过粉末冶金法获得密实部件的方法
US3717694A (en) Hot pressing a refractory article of complex shape in a mold of simple shape
RU2573146C1 (ru) КОМПОЗИЦИЯ УГЛЕРОДНОЙ ЗАГОТОВКИ ДЛЯ ПОЛУЧЕНИЯ SiC/C/Si КЕРАМИКИ И СПОСОБ ПОЛУЧЕНИЯ SiC/C/Si ИЗДЕЛИЙ
CN113188948B (zh) 一种温压状态下金属粉末的单轴压缩性测定方法
JP4295491B2 (ja) 銅−タングステン合金およびその製造方法
KR101897200B1 (ko) 부식저항성과 절삭가공성을 개선한 생체재료용 고밀도 소결 니켈-크롬-몰리브덴 합금의 제조방법
CN108975886B (zh) 一种基于3d打印技术的微织构自润滑拉丝模
JPS6131175B2 (ru)
RU2008188C1 (ru) Способ изготовления алмазного инструмента методом порошковой металлургии
Foster et al. Sintering carbides by means of fugitive binders
Derosow Examining Cermet’s (a Homogeneous Mixture of Metals or Alloys or One or More Ceramic PhaZes)
Šubić et al. Effect of hard metal production on the environment
WO2014038973A1 (ru) Шаровой затвор из кермета и способ его изготовления
JP2006130539A (ja) 鋳型の製造方法
JP7425872B2 (ja) 鉄含有バインダーを含む多結晶ダイヤモンド
Umarkhonov et al. PRODUCTION OF METAL-CERAMIC COMPOSITE MATERIALS
Zapciu et al. Research on sinterized materials from metal powder without cobalt, for special uses