RU2684104C1 - Способ получения соединений с более высокой молекулярной массой из синтез-газа с использованием со2 из tsa-процесса с косвенным нагреванием - Google Patents
Способ получения соединений с более высокой молекулярной массой из синтез-газа с использованием со2 из tsa-процесса с косвенным нагреванием Download PDFInfo
- Publication number
- RU2684104C1 RU2684104C1 RU2016135514A RU2016135514A RU2684104C1 RU 2684104 C1 RU2684104 C1 RU 2684104C1 RU 2016135514 A RU2016135514 A RU 2016135514A RU 2016135514 A RU2016135514 A RU 2016135514A RU 2684104 C1 RU2684104 C1 RU 2684104C1
- Authority
- RU
- Russia
- Prior art keywords
- synthesis gas
- adsorption
- reactor
- molecular weight
- stream
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 102
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 39
- 150000001875 compounds Chemical class 0.000 title claims abstract description 28
- 238000010438 heat treatment Methods 0.000 title claims abstract description 5
- 238000001179 sorption measurement Methods 0.000 claims abstract description 40
- 239000003463 adsorbent Substances 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 23
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 19
- 239000000047 product Substances 0.000 claims abstract description 19
- 238000000926 separation method Methods 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 6
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 86
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 150000001336 alkenes Chemical class 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 9
- 238000004064 recycling Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 238000007037 hydroformylation reaction Methods 0.000 claims description 5
- 150000003384 small molecules Chemical class 0.000 claims description 5
- 150000001299 aldehydes Chemical class 0.000 claims description 4
- 239000013529 heat transfer fluid Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 12
- 239000012530 fluid Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 88
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000000629 steam reforming Methods 0.000 description 10
- 238000002407 reforming Methods 0.000 description 9
- 238000007906 compression Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000002453 autothermal reforming Methods 0.000 description 2
- 230000035425 carbon utilization Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 235000019256 formaldehyde Nutrition 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- -1 alkenes Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0462—Temperature swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0438—Cooling or heating systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/1516—Multisteps
- C07C29/1518—Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/09—Preparation of ethers by dehydration of compounds containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/34—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/34—Separation; Purification; Stabilisation; Use of additives
- C07C41/36—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/79—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
- C10K1/005—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/32—Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/20—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Настоящее изобретение относится к способу получения одного или многих реакционных продуктов с помощью последующей сопутствующей реакции, в которой соединения с более высокой молекулярной массой образуются, по меньшей мере частично, из низкомолекулярных соединений синтез-газа (3), включающему следующие стадии:- образование синтез-газа (3), включающего СО и Н,- введение по меньшей мере части синтез-газа (3) в реактор (104), и также проведение последующей сопутствующей реакции в реакторе (104), причем образуется продуктовый поток (5), содержащий соединения с более высокой молекулярной массой, СО, СО и Н,- разделение продуктового потока (5) в разделительном устройстве (105) на первый поток (8), имеющий соединения с более высокой молекулярной массой, и также на второй поток (6), включающий СО, СО и Н. При этом по меньшей мере СОотделяют от второго потока (6) в устройстве (103) для адсорбции при переменной температуре ниже по потоку относительно разделительного устройства (105) с помощью адсорбции при переменной температуре, причем, в адсорбции при переменной температуре, СОадсорбируется по меньшей мере на одном адсорбенте, и по меньшей мере один насыщенный СОадсорбент регенерируется нагреванием по меньшей мере одного адсорбента, причем СОдесорбируется, и причем по меньшей мере один насыщенный адсорбент нагревают по меньшей мере косвенным теплопереносом от текучей среды теплоносителя на адсорбент, при том, что поток, который выводят из устройства (103) для адсорбции при переменной температур, и из которого был отделен СО, подают в циркуляционный контур к реактору (104), и что синтез-газ (3), прежде чем будет введен в реактор (104), пропускают в устройство (103) для адсорбции при переменной температуре. Предлагаемый способ позволяет повысить эффективность использования углерода и снизить выбросы СО. 11 з.п.ф-лы, 4 ил.
Description
Изобретение относится к способу получения одного или многих реакционных продуктов с помощью дополнительной сопутствующей реакции, в которой соединения с более высокой молекулярной массой образуются, по меньшей мере частично, из низкомолекулярных соединений синтез-газа.
В разнообразных областях класс веществ, имеющих низкую молекулярную массу, называется низкомолекулярным соединением. Как правило, они составляют группу, противоположную соединениям с большей молекулярной массой, которые имеют более высокую молекулярную массу, нежели низкомолекулярное соединение. Низкомолекулярные соединения синтез-газа здесь предпочтительно подразумевают СО и Н2, из которых могут быть образованы многочисленные различные соединения с более высокой молекулярной массой, например, такие как метанол, этилен, и т.д. Также может быть, что один или многие первые продукты, образованные из СО и Н2, преобразуются в один или многие дополнительные продукты, которые, по сравнению с первыми продуктами, имеют продукты с еще более высокой молекулярной массой. Одним примером их является гидроформилирование алкенов для образования альдегидов/кетонов (алкен+Н2+СО→альдегид, Н2:СО=1, без СО2), и также гидроформилирование алкенов для образования спиртов (алкен+2Н2+СО→спирт, Н2:СО=2, без СО2).
В качестве дополнительного примера, простой диметиловый эфир (DME) может быть получен прямым синтезом дегидратации метанола. Для этого метанол генерируют из синтез-газа со стехиометрическим числом SN=(хН2-хСО2)/(хСО+хСО2), равным приблизительно 2. Этот двухстадийный процесс подробно описан, например, в докладе «Dimethyl Ether Technology and Markets («Технология и рынки диметилового эфира»). CHEMYSTEMS PERP Program, Nexant Inc., November 2008», а также в издании «Japan DME Forum. 2007. DME Handbook. Japan DME Forum, Tokyo».
В качестве альтернативы этому, DME может быть приготовлен из синтез-газа в одностадийном процессе, который также называется прямым синтезом. Такие прямые синтезы описаны, например, в вышеупомянутом прототипе, и также в статье авторов Takashi Ogawa, Norio Inoue, Tutomu Shikada, Yotaro Ohno, «Direct Dimethyl Ether Synthesis» («Прямой синтез диметилового эфира»), Journal of Natural Gas Chemistry, том 12, стр. 219-227, 2003, и Lee, Seung-Ho, Cho, Wonjun, Song, Taekyong, & Ra, Young-Jin, «Scale Up Study of DME Direct Synthesis Technology» («Исследования масштабирования в технологии прямого синтеза DME»), в трудах конференции «Proceedings of the 24th World Gas Conference», 2009, Буэнос-Айрес, Аргентина.
В прямом синтезе DME синтез-газ, содержащий СО и Н2, генерируют в установке для получения синтез-газа (например, в реакторе для получения синтез-газа, таком как, например, установка парового риформинга для парового риформинга углеводородов, в частности, СН4), и вводят в DME-реактор, в котором проводится прямой синтез DME каталитической конверсией синтез-газа с помощью подходящего катализатора, причем образуется продуктовый поток или реакторный эфлюент, содержащий DME, СО2, Н2О, СН3ОН и непрореагировавший синтез-газ (СО и Н2). В этом случае синтез-газ из СО и Н2 может быть получен, например, из природного газа, например, паровым риформингом: СН4+Н2О→2СО+4Н2.
В дополнение, существует возможность преобразования природного газа в синтез-газ частичным окислением: 2СН4+О2→2СО+4Н2.
В дополнение, синтез-газ также может быть получен автотермическим риформингом (сочетание парового риформинга и частичного окисления в одной установке). Два процесса объединяются друг с другом так, что преимущество окисления (подведение тепловой энергии) благоприятным образом дополняется преимуществом парового риформинга (более высоким выходом водорода).
Наконец, синтез-газ также может быть получен способом, который называется комбинированным риформингом (комбинацией парового риформинга и частичного окисления в отдельных установках).
Кроме того, синтез-газ может быть приготовлен еще и сухим риформингом (углекислотной конверсией), или разнообразными комбинациями известных способов получения синтез-газа, например, последовательным или параллельным соединением автотермического риформинга или частичного окисления с паровым риформингом или сухим риформингом. Способ согласно изобретению не ограничивается единственным процессом генерирования синтез-газа, который также применим к комбинациям подходящих способов при условии, что достигается образование синтез-газа.
Прямой синтез DME из синтез-газа проходит согласно следующему обобщенному уравнению реакции: 3Н2+3СО→DME+СО2.
Соответственно стехиометрическому соотношению может быть использован, например, синтез-газ, имеющий соотношение Н2/СО около 1:1. Также возможны иные составы синтез-газа.
В качестве механизма в настоящее время предполагается следующий путь взаимодействия через промежуточный метанол:
2Н2+СО→СН3ОН,
2СН3ОН→DME+Н2О, и
Н2О+СО→СО2+Н2 (реакция конверсии водяного газа).
Чтобы повысить эффективность использования углерода в прямом синтезе DME и снизить выбросы СО2, предпочтительным является повторное использование углеродного компонента СО2, и в частности СО и СН4, и возвращением его рециркуляцией в процесс производства синтез-газа. Цель состоит не только в прямом синтезе DME, но также в общем в отношении других дополнительных сопутствующих реакций.
Эта задача решается с помощью способа, имеющего признаки согласно пункту 1 формулы изобретения. Предпочтительные варианты осуществления изобретения показаны, помимо прочего, в зависимых пунктах формулы изобретения. Признаки пунктов формулы изобретения могут быть объединены любым технически осуществимым путем, причем, в этом контексте, могут быть применены разъяснения из нижеследующего описания, а также признаки из фигур, которые включают дополнительные варианты осуществления изобретения.
В соответствии с пунктом 1 формулы изобретения, согласно изобретению предусматривается, что создается поток синтез-газа, включающий СО и Н2 (например, смотри выше), и вводится в реактор, в котором проводится последующая сопутствующая реакция. Выражение «синтез-газ» подразумевает газовую смесь, в частности, полученную в промышленном масштабе газовую смесь, которая в основном содержит монооксид углерода и водород, и, необязательно, другие газы. Соединения с более высокой молекулярной массой образуются из низкомолекулярных соединений синтез-газа, причем по меньшей мере частично формируется поток продуктов, содержащий соединения с более высокой молекулярной массой, СО2, непрореагировавший синтез-газ и, необязательно, СН4. В этом случае компоненты синтез-газа, по меньшей мере частично, химически преобразуются в соединения, которые имеют более высокую молекулярную массу, чем компоненты синтез-газа, которые используются.
Полученный поток продуктов, имеющий соединения с более высокой молекулярной массой, разделяют в разделительном устройстве на первый поток, содержащий соединение с более высокой молекулярной массой, и также на второй поток, включающий СО2, СО, Н2, и также, необязательно, СН4. В устройстве для адсорбции при переменной температуре ниже по потоку относительно разделительного устройства, посредством адсорбции при переменной температуре, от второго потока отделяют СО2, причем в ходе адсорбции при переменной температуре СО2 адсорбируется на адсорбенте. Насыщенный СО2 адсорбент регенерируют нагреванием адсорбента, в результате чего СО2 десорбируется.
Насыщенный адсорбент нагревают, по меньшей мере частично, косвенным теплопереносом от текучей теплоносительной среды на адсорбент. Адсорбент также может быть нагрет исключительно косвенным теплопереносом от текучей теплоносительной среды на адсорбент. В этом отношении возможно, что только часть тепла, необходимого для регенерации, подводится непосредственно к адсорбенту посредством теплоносительной текучей среды, и еще одна часть, например, прямым нагреванием горячим газом, как в традиционном TSA-процессе. Адсорбент также может быть сформирован из многочисленных адсорбентов, например, в форме послойно загруженного слоя.
Адсорбент предпочтительно охлаждают при адсорбции косвенным теплопереносом на текучую теплоносительную среду или посредством нее.
Такой процесс адсорбции при переменной температуре, в котором адсорбция происходит при относительно низкой температуре, и регенерация адсорбента проходит при более высокой температуре, которая достигается косвенным теплопереносом, описан и также называется быстрой адсорбцией при переменной температуре (RTSA). Такие процессы известны, например, из патентных документов EP1291067A2, WO2012085128A1, US8226746B2, и WO2008143966A1.
Благодаря косвенному теплопереносу посредством текучей среды теплоносителя, которая пропускается отдельно в пространственном отношении, достигаются более короткие продолжительности циклов по сравнению с традиционной адсорбцией при переменной температуре, при которой адсорбент нагревается напрямую воздействием горячего регенерационного газа.
В дополнение, косвенное охлаждение в RTSA во время адсорбции обеспечивает возможность удаления бóльших количеств примесей сравнительно с традиционным TSA. В дополнение, для RTSA-установок постоянно требуется меньшее количество адсорбента, что позволяет более компактно сконструировать такую установку, снижает затраты и обеспечивает возможность повторного использования адсорбированного компонента с высокой концентрацией, поскольку, вследствие возможности обойтись без регенерационного газа или использовать меньшее количество регенерационного газа, не происходит разбавление или имеет место меньшее разбавление десорбированных компонентов.
По сравнению с другими известными из прототипа способами отделения компонентов от газовой смеси, например, такими как адсорбция при переменном давлении, способы мембранного разделения или промывания в аминных скрубберах, RTSA в принципе позволяет обрабатывать компоненты, которые должны быть отделены при высоком давлении. Конструкция устройства для проведения RTSA может основываться, например, на теплообменнике с трубным пучком, как описывается, например, в патентном документе EP1291067 A2, на микроканальном устройстве (например, сравни патентный документ US6974496 B2), на структурированном адсорбентном контакторе (например, смотри патентный документ WO2008143823 A1), или на полых волокнах, как описано в патентном документе WO2009003171 A1). Описанные в литературе способы относятся к удалению С2+-фракций из природного газа (смотри патентный документ WO2012118747 A1), а также к удалению СО2 из дымовых газов (смотри патентный документ WO2012064919A1).
Поток, который выводится из устройства для адсорбции при переменной температуре, и из которого был отделен СО2, предпочтительно подается в циркуляционный контур к реактору, и синтез-газ, прежде чем он будет введен в реактор, пропускается в устройство для адсорбции при переменной температуре. В таком варианте исполнения устройство для адсорбции при переменной температуре используется не только для удаления СО2 из второго потока, но также для удаления СО2 из синтез-газа, образованного перед проведением последующей сопутствующей реакции, в результате чего достигаются повышенная эффективность использования углерода и также более низкие выбросы СО2.
СО2, который адсорбирован (или десорбирован) в процессе адсорбции при переменной температуре, предпочтительно вовлекается в рециркуляцию для питания реактора для получения синтез-газа, в котором генерируется синтез-газ, подлежащий обработке в последующей сопутствующей реакции. Однако СО2 также может быть использован для других синтезов. Тогда адсорбированный СО2 отличается более высокой чистотой, чем в большинстве других способов, и не содержит, в частности, - за исключением возможных компонентов в следовых количествах - О2 и также амины.
В дополнение, СО2 предпочтительно извлекается в адсорбции при переменной температуре при давлении на высоком уровне в диапазоне от 5 бар до 40 бар (0,5-4 МПа), предпочтительно от 15 бар до 25 бар (1,5-2,5 МПа), таким образом, что по сравнению с другими способами очистки, может быть применено сравнительно меньшее число ступеней сжатия, или же можно вообще обойтись без сжатия СО2, который должен быть возвращен рециркуляцией.
В одном предпочтительном варианте осуществления изобретения предусматривается, что в устройстве для адсорбции при переменной температуре СО2 предпочтительно отделяется только из второго потока, и возвращается рециркуляцией в реактор для получения синтез-газа, причем очищенный удалением СО2 второй поток, содержащий СО и Н2, по меньшей мере частично, возвращается рециркуляцией в реактор.
В дополнение, согласно одному варианту осуществления изобретения, в устройстве для адсорбции при переменной температуре, в дополнение к СО2, из второго потока также отделяются СО и СН4 в устройстве для адсорбции при переменной температуре (и более точно, также на вышеописанном высоком уровне давления) с помощью адсорбции при переменной температуре, и вовлекаются в рециркуляцию в реактор для получения синтез-газа, причем Н2-обогащенный и также содержащий N2 второй поток, который очищен удалением СО2, СО и СН4, по меньшей мере частично, возвращается рециркуляцией в реактор, и/или подвергается дополнительной очистке, по меньшей мере частично, в устройстве для адсорбции при переменном давлении с помощью адсорбции при переменном давлении, причем, в частности, поглощается N2, и, в частности, Н2 либо подается в реактор, направляется на обессеривание, или получается для иных вариантов применения.
В дополнение, есть возможность отведения частичного потока синтез-газа в обход мимо RTSA, чтобы этим путем целенаправленно скорректировать содержание СО2 в синтез-газе.
В порядке обобщения, техническое решение согласно изобретению позволяет отделять СО2 от синтез-газа и возвращать рециркуляцией в процесс получения синтез-газа (в частности, в случае технологий получения синтез-газа на основе риформинга), и/или получать дополнительно или исключительно в качестве выпускного потока, причем требуется сравнительно малая энергия на сжатие, или же можно вообще обойтись без компрессора. В дополнение, углеродсодержащие компоненты могут быть выделены при высоком давлении из газового потока, рециркулирующего из последующей сопутствующей реакции, и вовлечены в рециркуляцию в процесс получения синтез-газа. В дополнение, водород может быть направлен в рециркуляцию в последующую сопутствующую реакцию и/или выделен в качестве побочного продукта. Избыточный пар, который генерирован во время процесса, может быть использован в качестве текучей среды теплоносителя для RTSA, или может быть применен для нагревания среды теплоносителя, например, с помощью теплообменника. Необязательно, для регенерации адсорбента может быть использован сравнительно малый продувочный поток или промывочный поток, чтобы дополнительно ускорить десорбцию. Для этой цели могут быть применены обогащенные метаном и/или водородом потоки.
В дополнение, содержание СО2 в сырьевом потоке, подаваемом в последующую сопутствующую реакцию, может контролироваться благоприятным образом точно так же, как содержание СО2 в рециркуляционном потоке. Генерированный в реакторе СО2 может быть отделен от продуктового потока при высоком давлении. В дополнение, от продуктового потока могут быть отделены дополнительные углеродсодержащие компоненты, например, такие как СО и СН4, и вовлечены в рециркуляцию в процесс получения синтез-газа при высоком давлении. В результате этого может быть снижена необходимость в продувочном потоке для сокращения инертных компонентов в последующей сопутствующей реакции. Водород может быть получен как побочный продукт в комбинации с повторным использованием углеродсодержащих компонентов при высоком давлении для получения синтез-газа.
Настоящее изобретение может быть использовано для обработки синтез-газов в дополнительных устройствах, причем основное внимание предпочтительно уделяется сокращению содержания СО2 в синтез-газе, а также повторному использованию СО2, который отделен, для получения синтез-газа или в риформинг-установке.
В последующей сопутствующей реакции один или многие реагенты, имеющие низкомолекулярные соединения, преобразуются в один или многие продукты, имеющие соединения с более высокой молекулярной массой. Реагенты предпочтительно представляют собой монооксид углерода и водород, с которыми, например, может быть проведен синтез Фишера-Тропша, в котором образуются соответствующие соединения с более высокой молекулярной массой, такие как алкены, спирт, и т.д. В дополнение, реагенты также могли бы представлять собой углеводороды, такие как алкены, которые могут быть преобразованы в последующей сопутствующей реакции в соединения с еще большей молекулярной массой, такие как альдегиды. Продукты могут представлять собой кислородсодержащие соединения, такие как DME, этанол, ацетон, и также могут быть углеводородами, такими как этилен, пропен.
Эта последующая сопутствующая реакция представляет собой, например, получение метанола из синтез-газа (СО+2Н2→СН4О), синтез Фишера-Тропша, гидроформилирование алкенов для образования альдегидов/кетонов (алкен+Н2+СО→альдегид, Н2:СО=1, без СО2), и также гидроформилирование алкенов для образования спиртов (алкен+2Н2+СО→спирт, Н2:СО=2, без СО2).
Рециркуляция СО2 в процесс получения синтез-газа в особенности благоприятна, когда желателен СО-обогащенный синтез-газ. Такие технологии синтез-газа относятся, в частности, к паровому риформингу с введением СО2, а также к сухому риформингу.
Вышеописанное изобретение подробно разъясняется ниже на примере получения DME, со ссылкой на сопроводительные чертежи, которые показывают предпочтительные варианты исполнения. Изобретение никоим образом не ограничивается чисто схематическими чертежами. В чертежах
фиг. 1: показывает первый вариант исполнения способа согласно изобретению, в котором RTSA предусматривается ниже по потоку относительно разделительного устройства;
фиг. 2: показывает второй вариант исполнения, в котором RTSA размещается ниже по потоку относительно разделительного устройства и обработки синтез-газа, и выше по потоку относительно DME-реактора;
фиг. 3: показывает третий вариант исполнения, в котором RTSA предусматривается ниже по потоку относительно устройства для отделения DME; и
фиг. 4: показывает четвертый вариант исполнения, в котором RTSA располагается ниже по потоку относительно устройства для отделения DME.
Настоящее изобретение относится к различным вариантам размещения вышеописанного RTSA при прямом синтезе DME в DME-реакторе 104, основанном на Н2- и СО-содержащем синтез-газе 2, который генерирован в реакторе 101 для получения синтез-газа (например, паровым риформингом СН4-содержащего сырьевого материала 1), и затем кондиционирован, то есть, охлажден и/или подвергнут сжатию. В этом случае следует отметить, что сжатие синтез-газа в этой конфигурации также может происходить ниже по потоку относительно RTSA. Обе конфигурации имеют преимущества: если сжатие выполняется сначала, и затем проводится RTSA, синтез-газ имеет более высокое давление, чем в риформинг-установке. СО2 может быть вовлечен в рециркуляцию в риформинг-установку без дополнительного компрессора; адсорберы могут становиться меньшими. Если сначала выполняется адсорбция, и затем проводится сжатие, расходуется меньшая энергия. Однако вследствие возникших падений давления СО2 должен быть затем подвергнут сжатию до давления риформинг-установки с использованием отдельного компрессора. В обоих вариантах охлаждение и отделение воды предпочтительно проводятся выше по потоку относительно RTSA.
В фигуре 1 синтез-газ, обработанный охлаждением синтез-газа и обработкой 102, подается в DME-реактор 104. Ниже по потоку относительно DME-реактора 104 продуктовый поток 5 из синтеза DME разделяется в разделительном устройстве 105 на первый DME-обогащенный поток 8 (DME-продукт), а также второй поток 6, который содержит СО2 и также непрореагировавший синтез-газ (Н2 и СО).
Первый поток 8 также может содержать МеОН и также Н2О, причем МеОН и Н2О могут быть впоследствии отделены от первого потока 8. В этом случае МеОН может быть повторно использован в подходящем месте в процессе.
Второй поток 6 пропускается в RTSA-устройство 103. В RTSA-устройстве 103 СО2 отделяется от второго потока 6 и затем возвращается рециркуляцией в реактор 101 для получения синтез-газа (например, паровым риформингом СН4). Поток 11, очищенный удалением СО2 и имеющий Н2 и СО, частично возвращается рециркуляцией в DME-реактор или выводится 9 наружу (например, чтобы сократить накопление легкого инертного материала, такого как N2, в рециркуляционном контуре).
Обогащенный СО2 поток 10 утилизируется при высоком давлении, в этом случае с помощью RTSA-устройства 103. В результате этого можно регулировать содержание СО2 в сырье 4, подаваемом в синтез DME, как желательно, причем можно обойтись без повторного сжатия рециркулирующего СО2, или же могут быть значительно сокращены затраты на повторное сжатие сравнительно с прототипом (промывание в аминном скруббере или ректизольном скруббуре).
В фигуре 2 представлен дополнительный вариант размещения RTSA-устройства 103, в котором поток, выводимый из RTSA-устройства 103, из которого был отделен поток СО2, подается в контур к DME-реактору 104, и обработанный синтез-газ 3, прежде чем будет введен в DME-реактор 104, пропускается в RTSA-устройство 103. RTSA-устройство 103 размещается выше по потоку относительно DME-реактора 104 и ниже по потоку относительно устройства 102 для охлаждения и обработки синтез-газа, и в то же время также располагается ниже по потоку относительно разделительного устройства 105. Второй поток 6, отделенный в разделительном устройстве 105, подается в RTSA-устройство 103 или выводится 9 наружу. В RTSA-устройстве 103 СО2 отделяется от второго потока и затем вовлекается в рециркуляцию в реактор 101 для получения синтез-газа. Такое размещение RTSA-устройства 103 рекомендуется, например, когда соотношение Н2:СО в синтез-газе, подаваемом в DME-реактор 104, должно быть в диапазоне от 1 до 2, и сравнительно малое количество СО2 должно поступать в DME-реактор 104.
В фигуре 3 RTSA-устройство 103 размещается идентично положению в фигуре 1. Различие состоит в том, что все углеродсодержащие компоненты во втором потоке 6, например, такие как СО2, СО и СН4, отделяются в RTSA 103, и затем возвращаются как обогащенные углеродом потоки 10 в процесс 101 получения синтез-газа. Поток 11, отделенный от обогащенных углеродом потоков 10, содержащий Н2, частично возвращается в DME-реактор 104 или выводится 9 наружу.
Согласно фигуре 4, Н2-обогащенный второй (продувочный) поток 9 может быть сожжен или (целиком или частично) дополнительно очищен, например, с использованием адсорбции 106 при переменном давлении, чтобы получить технически чистый водород 12 как побочный продукт DME-синтеза 104 (например, при давлении от 30 до 60 бар (3-6 МПа)). Второй поток 9, если требуется, может быть всегда очищен. В дополнение, всегда имеется возможность проведения части потока для RTSA 103 в обход RTSA 103, чтобы регулировать состав синтез-газа. В этом случае в особенности часть СО2 может оставаться в синтез-газе, в частности, в диапазоне от 100 млн-1 до 5 об.%.
Конфигурации, описанные в фигурах, пригодны не только для синтеза DME, но также для других последующих сопутствующих реакций, в которых из низкомолекулярных соединений синтез-газа образуются, по меньшей мере частично, соединения с более высокой молекулярной массой.
Список условных обозначений
1 | Сырье для получения синтез-газа, имеющее, например, СН4 |
2 | Сырой синтез-газ |
3 | Обработанный синтез-газ |
4 | Синтез-газ |
5 | Продуктовый поток, или первый поток |
6 | Второй поток |
8 | DME-продукт |
9 | Продувка |
10 | Рециркуляционный поток |
11 | Второй поток |
12 | Продуктовый водород |
101 | Реактор для получения синтез-газа |
102 | Охлаждение и обработка синтез-газа |
103 | RTSA-устройство |
104 | DME-реактор |
105 | Разделительное устройство |
106 | Адсорбция при переменном давлении |
Claims (17)
1. Способ получения одного или многих реакционных продуктов с помощью последующей сопутствующей реакции, в которой соединения с более высокой молекулярной массой образуются, по меньшей мере частично, из низкомолекулярных соединений синтез-газа (3), включающий стадии:
- образования синтез-газа (3), включающего СО и Н2
- введения по меньшей мере части синтез-газа (3) в реактор (104), и также проведения последующей сопутствующей реакции в реакторе (104), причем образуется продуктовый поток (5), содержащий соединения с более высокой молекулярной массой, СО2, СО и Н2,
- разделения продуктового потока (5) в разделительном устройстве (105) на первый поток (8), имеющий соединения с более высокой молекулярной массой, и также на второй поток (6), включающий СО2, СО и Н2
отличающийся тем, что
по меньшей мере СО2 отделяют от второго потока (6) в устройстве (103) для адсорбции при переменной температуре ниже по потоку относительно разделительного устройства (105) с помощью адсорбции при переменной температуре, причем, в адсорбции при переменной температуре, СО2 адсорбируется по меньшей мере на одном адсорбенте, и по меньшей мере один насыщенный СО2 адсорбент регенерируется нагреванием по меньшей мере одного адсорбента, причем СО2 десорбируется, и причем по меньшей мере один насыщенный адсорбент нагревают по меньшей мере косвенным теплопереносом от текучей среды теплоносителя на адсорбент, при том, что поток, который выводят из устройства (103) для адсорбции при переменной температуре, и из которого был отделен СО2, подают в циркуляционный контур к реактору (104), и что синтез-газ (3), прежде чем будет введен в реактор (104), пропускают в устройство (103) для адсорбции при переменной температуре.
2. Способ по п.1, отличающийся тем, что синтез-газ получают в реакторе для получения синтез-газа, и что СО2 (10), который адсорбируется при адсорбции (103) при переменной температуре, возвращают рециркуляцией в реактор (101) для получения синтез-газа, и/или получают для других вариантов применения.
3. Способ по любому из предшествующих пунктов, отличающийся тем, что СО2 извлекают при адсорбции (103) при переменной температуре под высоким давлением в диапазоне от 5 бар до 40 бар (0,5-4 МПа), предпочтительно от 15 бар до 25 бар (1,5-2,5 МПа).
4. Способ по любому из предшествующих пунктов, отличающийся тем, что второй поток (11), очищенный удалением СО2 и включающий СО и Н2, по меньшей мере частично возвращают рециркуляцией в реактор (104).
5. Способ по любому из предшествующих пунктов, отличающийся тем, что в устройстве (103) для адсорбции при переменной температуре, в дополнение к СО2, от второго потока (6) также отделяют СО и СН4 с помощью адсорбции при переменной температуре, и возвращают рециркуляцией в реактор (101) для получения синтез-газа, причем второй поток (11), который очищен удалением СО2, СО и СН4, по меньшей мере частично возвращают рециркуляцией в реактор (104) и/или пропускают, по меньшей мере частично, в устройство (106) для адсорбции при переменном давлении, и там дополнительно очищают (12) с помощью адсорбции при переменном давлении, где адсорбируются N2 и, также, углеродистые компоненты.
6. Способ по любому из предшествующих пунктов, отличающийся тем, что низкомолекулярные соединения содержат монооксид углерода и водород.
7. Способ по любому из предшествующих пунктов, отличающийся тем, что соединения с более высокой молекулярной массой представляют собой кислородсодержащие соединения.
8. Способ по любому из предшествующих пунктов, отличающийся тем, что соединения с более высокой молекулярной массой представляют собой углеводороды.
9. Способ по любому из предшествующих пунктов, отличающийся тем, что последующая сопутствующая реакция представляет собой получение DME.
10. Способ по любому из предшествующих пунктов, отличающийся тем, что последующая сопутствующая реакция представляет собой синтез Фишера-Тропша.
11. Способ по любому из предшествующих пунктов, отличающийся тем, что последующая сопутствующая реакция представляет собой получение метанола.
12. Способ по любому из предшествующих пунктов, отличающийся тем, что последующая сопутствующая реакция включает гидроформилирование алкенов с образованием альдегидов или кетонов.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14000399 | 2014-02-04 | ||
EP14000399.7 | 2014-02-04 | ||
PCT/EP2015/000172 WO2015117738A1 (de) | 2014-02-04 | 2015-01-29 | Verfahren zur herstellung höhermolekularer verbindungen aus synthesegas unter verwendung eines indirekt beheizten co2-tsa |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2684104C1 true RU2684104C1 (ru) | 2019-04-04 |
Family
ID=50068781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016135514A RU2684104C1 (ru) | 2014-02-04 | 2015-01-29 | Способ получения соединений с более высокой молекулярной массой из синтез-газа с использованием со2 из tsa-процесса с косвенным нагреванием |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3102309B1 (ru) |
CN (1) | CN106132511A (ru) |
RU (1) | RU2684104C1 (ru) |
SA (1) | SA516371601B1 (ru) |
WO (1) | WO2015117738A1 (ru) |
ZA (1) | ZA201605272B (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015015524A1 (de) * | 2015-12-01 | 2017-06-01 | Linde Aktiengesellschaft | Verfahren zur Erzeugung von Harnstoff |
EP3216511A1 (en) * | 2016-03-08 | 2017-09-13 | Casale SA | A temperature-swing adsorption process |
WO2018093604A1 (en) * | 2016-11-17 | 2018-05-24 | Exxonmobil Research And Engineering Company | Method for converting natural gas to dimethyl ether |
EP3449996A1 (en) * | 2017-08-28 | 2019-03-06 | Casale Sa | A temperature-swing adsorption process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026676A2 (en) * | 2000-09-27 | 2002-04-04 | Exxonmobil Chemical Patents Inc. | A methanol, olefin, and hydrocarbon synthesis process |
EA200601222A1 (ru) * | 2003-12-22 | 2006-10-27 | Сека С.А. | Способ очистки газового потока, загрязненного coи одним или более углеводородами и/или оксидами азота, путем адсорбции на агрегированных цеолитных адсорбентах |
WO2008143966A1 (en) * | 2007-05-18 | 2008-11-27 | Exxonmobil Reserch And Engineering Company | Process for removing a target gas from a mixture of gases by thermal swing adsorption |
WO2009075942A2 (en) * | 2007-12-11 | 2009-06-18 | Range Fuels, Inc. | Methods and apparatus for continuous removal of carbon dioxide from a mixture of reacting gases |
US20130030063A1 (en) * | 2011-07-26 | 2013-01-31 | Randhava Sarabjit S | Process and method for the producton of dimethylether (dme) |
WO2013062800A1 (en) * | 2011-10-26 | 2013-05-02 | Rentech, Inc. | Gasifier fluidization |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082509A (zh) * | 1992-08-21 | 1994-02-23 | 无锡新苑集团公司 | 变压吸附-低温分离回收氢的方法 |
AU681481B2 (en) * | 1994-03-10 | 1997-08-28 | Boc Group, Inc., The | Cryogenic refrigeration method for use in connection with a cryogenic temperature swing adsorption process |
US20070051238A1 (en) * | 2005-09-07 | 2007-03-08 | Ravi Jain | Process for gas purification |
EP2450449A1 (en) * | 2010-11-09 | 2012-05-09 | Ineos Commercial Services UK Limited | Process and apparatus for the production of alcohols |
-
2015
- 2015-01-29 CN CN201580007385.7A patent/CN106132511A/zh active Pending
- 2015-01-29 WO PCT/EP2015/000172 patent/WO2015117738A1/de active Application Filing
- 2015-01-29 EP EP15704458.7A patent/EP3102309B1/de not_active Not-in-force
- 2015-01-29 RU RU2016135514A patent/RU2684104C1/ru active
-
2016
- 2016-07-29 ZA ZA2016/05272A patent/ZA201605272B/en unknown
- 2016-08-03 SA SA516371601A patent/SA516371601B1/ar unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026676A2 (en) * | 2000-09-27 | 2002-04-04 | Exxonmobil Chemical Patents Inc. | A methanol, olefin, and hydrocarbon synthesis process |
EA200601222A1 (ru) * | 2003-12-22 | 2006-10-27 | Сека С.А. | Способ очистки газового потока, загрязненного coи одним или более углеводородами и/или оксидами азота, путем адсорбции на агрегированных цеолитных адсорбентах |
WO2008143966A1 (en) * | 2007-05-18 | 2008-11-27 | Exxonmobil Reserch And Engineering Company | Process for removing a target gas from a mixture of gases by thermal swing adsorption |
WO2009075942A2 (en) * | 2007-12-11 | 2009-06-18 | Range Fuels, Inc. | Methods and apparatus for continuous removal of carbon dioxide from a mixture of reacting gases |
US20130030063A1 (en) * | 2011-07-26 | 2013-01-31 | Randhava Sarabjit S | Process and method for the producton of dimethylether (dme) |
WO2013062800A1 (en) * | 2011-10-26 | 2013-05-02 | Rentech, Inc. | Gasifier fluidization |
Also Published As
Publication number | Publication date |
---|---|
WO2015117738A1 (de) | 2015-08-13 |
EP3102309B1 (de) | 2018-12-05 |
EP3102309A1 (de) | 2016-12-14 |
SA516371601B1 (ar) | 2018-07-23 |
ZA201605272B (en) | 2017-08-30 |
CN106132511A (zh) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101717121B1 (ko) | 메탄올 및 암모니아의 공동 제조 | |
JP2009519371A (ja) | 天然ガスからの炭化水素の生成 | |
JPH0466814B2 (ru) | ||
RU2684104C1 (ru) | Способ получения соединений с более высокой молекулярной массой из синтез-газа с использованием со2 из tsa-процесса с косвенным нагреванием | |
CN101456795B (zh) | 纯二甲醚的制备方法 | |
JP2019501942A (ja) | ジメチルエーテルを製造するための方法およびシステム | |
GB2619796A (en) | Process for synthesising methanol | |
KR102786916B1 (ko) | 일산화탄소, 수소 및 적어도 하나의 산 가스를 각각 함유하는 두 가스상 스트림들의 분리를 위한 방법 및 장치 | |
CA1254749A (en) | Hydrogen streams | |
US20150352483A1 (en) | Method and device for generating fuel for a gas turbine | |
RU2648331C2 (ru) | Способ получения синтетических жидких углеводородов из природного газа | |
CN103501877A (zh) | 原料气的净化方法 | |
CA2968730A1 (en) | A process for the elimination of volatile organic compounds and hazardous air pollutants in ammonia plants | |
KR102817637B1 (ko) | 흡착부과스팀개질반응-건식개질반응의 스위칭 반응 시스템을 이용한 경제적인 블루수소 및 초산 병산 공정 | |
KR20240145504A (ko) | 합성가스로부터 액체 탄화수소를 생성하는 방법 | |
CN113891850B (zh) | 用于分离一氧化碳、氢气和至少一种酸性气体的混合物的方法和装置 | |
CN110914197A (zh) | 生产氨的方法 | |
JPH03242302A (ja) | 水素及び一酸化炭素の製造方法 | |
CA3189954A1 (en) | Improving the purity of a co2-rich stream | |
EP4488230A1 (en) | Process and plant for producing methanol and ammonia with reduced emission of carbon dioxide | |
EP4488253A1 (en) | Process and plant for producing methanol with reduced emission of carbon dioxide | |
RU2800065C2 (ru) | Способ синтеза водородсодержащего соединения | |
RU2774658C1 (ru) | Способ производства метанола | |
US20170022057A1 (en) | Process for generating syngas from a co2-rich hydrocarbon-containing feed gas | |
US20250162962A1 (en) | Method of producing liquid hydrocarbons from a syngas |