[go: up one dir, main page]

RU2675561C1 - Способ получения синтез-газа - Google Patents

Способ получения синтез-газа Download PDF

Info

Publication number
RU2675561C1
RU2675561C1 RU2017123236A RU2017123236A RU2675561C1 RU 2675561 C1 RU2675561 C1 RU 2675561C1 RU 2017123236 A RU2017123236 A RU 2017123236A RU 2017123236 A RU2017123236 A RU 2017123236A RU 2675561 C1 RU2675561 C1 RU 2675561C1
Authority
RU
Russia
Prior art keywords
mixture
conversion
oxidizing agent
cavity
gas
Prior art date
Application number
RU2017123236A
Other languages
English (en)
Inventor
Владимир Сергеевич Арутюнов
Валерий Иванович Савченко
Алексей Витальевич Никитин
Игорь Владимирович Седов
Алексей Валериевич Озерский
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority to RU2017123236A priority Critical patent/RU2675561C1/ru
Application granted granted Critical
Publication of RU2675561C1 publication Critical patent/RU2675561C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретение относится к способу получения синтез-газа, который может быть использован в химической промышленности для производства метанола, диметилового эфира, синтетических жидких углеводородов и других продуктов. Способ включает горение смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1, осуществляемое внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем, при этом в реакционную смесь предварительно примешивают водяной пар, нагретый до температуры 400-600 К, в количестве от 30 до 100 об.% от подаваемого углеводородного сырья. Изобретение обеспечивает более глубокую конверсию исходного углеводородного сырья, стабильный температурный режим конверсии и низкое сажеобразование. 2 пр.

Description

Изобретение относится к процессу получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Полученный синтез-газ может быть использован в химической промышленности для производства метанола, диметилового эфира, синтетических жидких углеводородов и других продуктов. Полученный водород после его выделения из смеси газов может быть использован для питания топливных элементов транспортных средств и автономных источников электроснабжения, а также в качестве сырья и восстановителя в химической, нефтехимической, металлургической и других отраслях промышленности.
Основными промышленными способами получения синтез газа в настоящее время являются паровой, парокислородный и автотермический риформинг природного газа или угля. В случае необходимости промышленного получения водорода его выделяют различными методами из полученного синтез-газа (смеси Н2 и СО). Дополнительное количество водорода получают, конвертируя СО в присутствии водяного пара в водород и CO2.
Однако эти способы требуют применения дорогостоящих катализаторов и отличаются высокой сложностью и громоздкостью оборудования, большими удельными капитальными затратами, что делает их малопригодными для создания небольших автономных источников синтез-газа и водорода.
Из уровня техники [патент RU 2320531 С2, опубл. 27.03.2008] известен способ получения синтез-газа, осуществляемый в проточном двухкамерном реакторе в турбулентном режиме при горении смеси углеводородного сырья и окислителя. Дополнительно к указанной смеси в проточный реактор подают перегретый водяной пар в количестве 5-20 мас. % по отношению к массе поданного углерода в виде углеводородного сырья. Производят воспламенение трехкомпонентной смеси в камере сгорания струей горячего газа из внешнего источника, давление в котором при воспламенении превышает давление в первой камере. Продукты сгорания из первой камеры реактора через сопло с критическим перепадом давления направляют во вторую камеру и продолжают процесс горения до содержания кислорода в продуктах горения не более 0,3 об. %.
К недостатку такого способа можно отнести его низкую эффективность, которая связана с высоким расходом окислителя и невозможностью конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность.
Также из уровня техники [патент RU 2374173 С1, опубл. 27.11.2009] известен способ получения синтез-газа при горении смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1 при температуре менее 1400 K внутри одной или нескольких полостей, полностью или частично образованных материалом, проницаемым для смеси углеводородного сырья с окислителем. Причем ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости/полостей, или через проницаемые стенки полости/полостей, или через проницаемые стенки и дно полости/полостей, а вывод продуктов горения осуществляют через верхнее сечение полости/полостей.
Недостатком данного способа является его недостаточная эффективность, связанная с большой потерей тепла с отходящими газами и, как следствие, невозможностью конверсии углеводородных смесей с высоким содержанием негорючих компонентов, имеющих низкую теплотворную способность.
Известен способ получения синтез-газа при горении смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1 при температуре менее 1400 K внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем. Ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости, или через проницаемые стенки полости, или через проницаемые стенки и дно полости, а вывод продуктов горения - через верхнее сечение полости. Смесь углеводородного сырья с окислителем или один из этих газов в полном объеме или частично перед вводом в полость нагревают за счет тепла, выделяемого продуктами горения. Матрицу дополнительно подогревают тепловым излучением, отраженным от проницаемого для продуктов горения экрана, размещенного в полости матрицы [патент RU 2374173 С1, опубл. 27.11.2009]. Данное техническое решение выбрано за прототип.
Недостатком прототипа является низкая конверсия исходного углеводородного сырья, нестабильность процесса конверсии, сопровождаемого большими колебаниями температуры рабочей поверхности матрицы и, соответственно, состава получаемого синтез-газа, что также приводит к повышенному сажеобразованию и необходимости мер по очистке получаемого синтез-газа от сажи.
Задачей предлагаемого изобретения является разработка такого способа получения синтез-газа, при котором повысится конверсия исходного углеводородного сырья и будет достигаться стабильный температурный режим конверсии и низкое сажеобразования.
Технический результат, достигаемый настоящим изобретением, заключается в достижении более глубокой конверсии исходного углеводородного сырья, более стабильного температурного режима конверсии углеводородного сырья и снижении сажеобразования по сравнению с прототипом.
Указанный технический результат достигается способом получения синтез-газа при горении смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1, осуществляемым внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем, согласно которому для стабилизации процесса в реакционную смесь предварительно примешивают водяной пар, нагретый до температуры 400-600 K в количестве до 100 об. % от подаваемого углеводородного сырья.
Настоящее изобретение иллюстрируется следующим примером осуществления предлагаемого способа.
Пример 1
Матричную конверсию метана кислородом проводили в конверторе цилиндрической формы, внутри полости, образованной двумя матричными блоками. Исходная газовая смесь, в том числе и водяной пар, подавалась в торцы конвертора и нагревалась в камерах предварительного подогрева, затем через апертурное кольцо диаметром 150 мм направлялась на матрицы толщиной 8 мм и диаметром 250 мм, выполненные из прессованной фехралевой проволоки. Напротив каждой матрицы был установлен металлический экран с отверстием в центре диаметром 30 мм для выхода конвертированного газа.
Первоначально метанокислородную смесь (метан 56 об. %, кислород 44 об. %), с расходом 8 м.куб./час подвергали матричной конверсии в отсутствие подачи водяного пара. Колебания температуры на рабочей стороне матрицы составляли ±150 K. Температура обратной стороны матрицы (сторона на которой не протекает горение) колебалась от 600 до 700 K. Процесс проводили в течение 1 часа, при этом периодически горение начинало протекать на входной стороне матрицы. В результате конверсии получали газовую смесь в количестве 10,4 м.куб./час и сажу в количестве 273 г/час. После осушки газовая смесь содержит (% объемные): 52% водорода, 30% монооксида углерода, 5,3% диоксида углерода и 12,7% метана. Конверсия метана составляет 77,3%.
К исходной метанокислородной смеси добавили водяной пар нагретый до температуры 400±10 K, в количестве 67 об. % от подаваемого углеводородного сырья (объемное соотношение метан : водяной пар 1,5:1). Колебания температуры на рабочей стороне матрицы не превышали ±50 K. Температура обратной стороны матрицы (сторона на которой не протекает горение) составляла 550±10 K, горения на ее поверхности не наблюдалось. Процесс проводили в течение 5 часов.
В результате конверсии получали газовую смесь в количестве 11,2 м.куб./час и сажу в количестве 119 г/час. После осушки газовая смесь содержала (% объемные): 56% водорода, 33% монооксида углерода, 6,7% диоксида углерода и 4,3% метана. Конверсия метана составляет 92,3%.
Пример 2
Матричную конверсию метана кислородом проводили в конверторе, описанном в примере 1.
К исходной метанокислородной смеси добавили водяной пар нагретый до температуры 600±10 K, в количестве 100 об. % от подаваемого углеводородного сырья (объемное соотношение метан : водяной пар 1:1). Колебания температуры на рабочей стороне матрицы не превышали ±50 K. Температура обратной стороны матрицы (сторона на которой не протекает горение) составляла 520±10 K, горения на ее поверхности не наблюдалось. Процесс проводили в течение 3 часов.
В результате конверсии получали газовую смесь в количестве 10,9 м.куб./час и сажу в количестве 116 г/час. После осушки газовая смесь содержала (% объемные): 55% водорода, 32% монооксида углерода, 7,5% диоксида углерода и 5,5% метана. Конверсия метана составляет 90,1%.
Таким образом, заявленный способ обеспечивает более высокую конверсию исходного углеводородного сырья, достижение существенно более стабильного температурного режима конверсии углеводородного сырья и снижение сажеобразования по сравнению с прототипом.

Claims (1)

  1. Способ получения синтез-газа при горении смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1, осуществляемый внутри полости, полностью или частично образованной объемной матрицей, проницаемой для смеси газа с окислителем, отличающийся тем, что для стабилизации процесса в реакционную смесь предварительно примешивают водяной пар, нагретый до температуры 400-600 К, в количестве от 30 до 100 об.% от подаваемого углеводородного сырья.
RU2017123236A 2017-06-30 2017-06-30 Способ получения синтез-газа RU2675561C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017123236A RU2675561C1 (ru) 2017-06-30 2017-06-30 Способ получения синтез-газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017123236A RU2675561C1 (ru) 2017-06-30 2017-06-30 Способ получения синтез-газа

Publications (1)

Publication Number Publication Date
RU2675561C1 true RU2675561C1 (ru) 2018-12-19

Family

ID=64753140

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017123236A RU2675561C1 (ru) 2017-06-30 2017-06-30 Способ получения синтез-газа

Country Status (1)

Country Link
RU (1) RU2675561C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU217582U1 (ru) * 2022-12-27 2023-04-06 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН) Реактор автотермического риформинга природного газа

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022547A1 (en) * 1995-12-18 1997-06-26 Shell Internationale Research Maatschappij B.V. A process for preparing synthesis gas
RU2320531C2 (ru) * 2006-05-04 2008-03-27 Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) Способ получения синтез-газа при горении и устройство для его осуществления
RU2374173C1 (ru) * 2008-06-17 2009-11-27 Владимир Сергеевич Арутюнов Способ получения синтез-газа
RU2574464C1 (ru) * 2014-07-10 2016-02-10 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ получения синтез-газа из водородсодержащего сырья в реакторе с обращаемым потоком и реактор для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022547A1 (en) * 1995-12-18 1997-06-26 Shell Internationale Research Maatschappij B.V. A process for preparing synthesis gas
RU2320531C2 (ru) * 2006-05-04 2008-03-27 Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) Способ получения синтез-газа при горении и устройство для его осуществления
RU2374173C1 (ru) * 2008-06-17 2009-11-27 Владимир Сергеевич Арутюнов Способ получения синтез-газа
RU2574464C1 (ru) * 2014-07-10 2016-02-10 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ получения синтез-газа из водородсодержащего сырья в реакторе с обращаемым потоком и реактор для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU217582U1 (ru) * 2022-12-27 2023-04-06 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН) Реактор автотермического риформинга природного газа

Similar Documents

Publication Publication Date Title
US11701632B2 (en) Method and reactor for producing one or more products
Chun et al. Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer
RU2374173C1 (ru) Способ получения синтез-газа
JP2004224690A5 (ru)
UA63966C2 (en) A partial oxidation of light carbohydrates with oxygen by means of electric discharge
RU2320531C2 (ru) Способ получения синтез-газа при горении и устройство для его осуществления
CN106854127B (zh) 烃制乙炔和/或合成气的方法及装置
WO2013095190A1 (ru) Многостадийный способ получения водородосодержащего газообразного топлива и теплогазогенераторная установка
US1965770A (en) Production of acetylene
RU2675561C1 (ru) Способ получения синтез-газа
Vostrikov et al. Features of low-temperature oxidation of isobutane in water vapor and carbon dioxide with increased density of reagents
RU2664526C2 (ru) Энергосберегающий унифицированный способ генерации синтез-газа из углеводородов
RU177152U1 (ru) Устройство для получения синтез-газа
AU2015276574B2 (en) Process for heating and gasifying a carbonaceous fuel
US1903845A (en) Process of converting natural gas and similar gaseous hydrocarbons into a mixture ofcarbon monoxide and hydrogen in controlled proportions
JP5886443B2 (ja) 合成ガスの生成方法及び装置
AU2015243290B2 (en) A process for heating an ATR
JPS5817122B2 (ja) ゴウセイガスノセイホウ
US2135695A (en) Process for producing a mixture of nitrogen and hydrogen
RU2769311C1 (ru) Способ получения водородсодержащего газа
RU196737U1 (ru) Устройство для получения водорода, монооксида углерода и этилена
RU2571149C1 (ru) Реактор конверсии метана
US20250066190A1 (en) Method and system for the production of synthesis gas, by means of an oxy-flame, from various sources of carbon and hydrogen
RU2554577C2 (ru) Способ получения синтез-газа
US3415628A (en) Apparatus for the thermal decomposition of saturated hydrocarbons to produce unsaturated hydrocarbons