[go: up one dir, main page]

RU2670479C2 - Штанговый насос с магнитными элементами для предотвращения образования газовых пробок - Google Patents

Штанговый насос с магнитными элементами для предотвращения образования газовых пробок Download PDF

Info

Publication number
RU2670479C2
RU2670479C2 RU2016136998A RU2016136998A RU2670479C2 RU 2670479 C2 RU2670479 C2 RU 2670479C2 RU 2016136998 A RU2016136998 A RU 2016136998A RU 2016136998 A RU2016136998 A RU 2016136998A RU 2670479 C2 RU2670479 C2 RU 2670479C2
Authority
RU
Russia
Prior art keywords
valve
head
discharge valve
seat
suction valve
Prior art date
Application number
RU2016136998A
Other languages
English (en)
Other versions
RU2016136998A3 (ru
RU2016136998A (ru
Inventor
Кеннет Т. БЕБАК
Карролл Скотт ДИРМЕН
Шон Н. ГАНТЕР
Original Assignee
Бейкер Хьюз Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бейкер Хьюз Инкорпорейтед filed Critical Бейкер Хьюз Инкорпорейтед
Publication of RU2016136998A publication Critical patent/RU2016136998A/ru
Publication of RU2016136998A3 publication Critical patent/RU2016136998A3/ru
Application granted granted Critical
Publication of RU2670479C2 publication Critical patent/RU2670479C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
    • E21B43/127Adaptations of walking-beam pump systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • F04B53/1005Ball valves being formed by two closure members working in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/102Disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/108Valves characterised by the material
    • F04B53/1082Valves characterised by the material magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • F04B7/0266Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated the inlet and discharge means being separate members

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Magnetically Actuated Valves (AREA)
  • Lift Valve (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

Изобретение относится к области нефтяных скважинных насосов для выкачивания скважинного флюида. Скважинный насос содержит седло всасывающего клапана с всасывающим клапаном, установленное на нижнем конце цилиндра. Внутри цилиндра расположен плунжер, совершающий возвратно-поступательное движение в осевом направлении. На нижнем конце плунжера смонтировано седло нагнетательного клапана с нагнетательным клапаном. Нагнетательный клапан содержит головку, которая садится на седло нагнетательного клапана, когда последний находится в положении закрытия. Нагнетательный клапан содержит шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана. Шток представляет собой постоянный магнит. Другой постоянный магнит расположен на цилиндре под подвижным магнитом. Полярности этих магнитов таковы, что их взаимодействие вызывает подъем нагнетательного клапана относительно своего седла в положение открытия по мере приближения плунжера к нижней точке рабочего хода. Предотвращается сохранение положения закрытия нагнетательного клапана на всем протяжении рабочего хода вниз, что предотвращает образование газовой пробки, которая приведет к срыву подачи насосом жидкости в направлении устья скважины. 3 н. и 17 з.п. ф-лы, 6 ил.

Description

Ссылки на родственные заявки
Настоящая заявка притязает на приоритет предварительной патентной заявки US 61/940667, зарегистрированной 17 февраля 2014 г. и целиком включенной в настоящую заявку посредством ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение относится в целом к скважинным насосным установкам с возвратно-поступательным движением и, в частности, к нагнетательным и всасывающим клапанам, отталкивающим друг друга вследствие намагничивания.
Уровень техники
Штанговые насосы обычно используются в нефтяных скважинах для выкачивания скважинного флюида. Типичный штанговый насос крепится к колонне насосно-компрессорных труб (НКТ), спускаемой в скважину. Насос содержит цилиндр с плунжером, перемещающимся внутри этого цилиндра, обычно с помощью колонны насосных штанг, простирающейся до расположенного на поверхности механизма, сообщающего движение. Нагнетательный (подвижный) клапан монтируется на плунжере, а всасывающий (неподвижный) клапан - на цилиндре под плунжером.
Во время рабочего хода вверх скважинный флюид, вошедший в плунжер, поднимается вверх по колонне НКТ. Во время рабочего хода вверх нагнетательный клапан находится в положении закрытия, а всасывающий клапан открывается и дает возможность скважинному флюиду войти в цилиндр. Во время рабочего хода вниз всасывающий клапан закрывается, а нагнетательный клапан переходит в положение открытия, что позволяет скважинному флюиду, поступившему в цилиндр, войти в плунжер.
Наряду с жидким флюидом, в некоторых скважинах присутствует газ. Если скважинный флюид, втекающий в цилиндр, содержит газ, то плунжер будет стремиться сжать этот газ во время рабочего хода вниз. Сжатие газа может привести к тому, что жидкости в цилиндре окажется недостаточно для перевода нагнетательного клапана обратно в положение открытия во время рабочего хода вниз. Как следствие, в насосе может возникнуть газовая пробка, что приведет к срыву подачи насосом жидкости в направлении устья скважины.
Раскрытие изобретения
Предлагаемая в настоящем изобретении скважинная насосная установка содержит цилиндр с осью (осевой линией) и выполнена с возможностью подвешивания в скважине. Седло всасывающего клапана смонтировано в цилиндре. Всасывающий клапан (запорный элемент) располагается на седле всасывающего клапана и может перемещаться относительно этого седла между положениями открытия и закрытия. Плунжер располагается внутри цилиндра, совершая возвратно-поступательное движение в осевом направлении. На нижнем конце плунжера смонтировано седло нагнетательного клапана. Нагнетательный клапан располагается на седле нагнетательного клапана и может перемещаться относительно этого седла между положениями открытия и закрытия. Магнитное поле, взаимодействующее с нагнетательным клапаном, толкает его в положение открытия, когда плунжер приближается к нижней точке своего рабочего хода.
В представленном варианте осуществления настоящего изобретения магнитное поле частично создается подвижным магнитом, которым снабжен нагнетательный клапан для его перемещения. Магнитное поле также создается неподвижным магнитом, которым снабжен цилиндр, расположенным под подвижным магнитом. Подвижный и неподвижный магниты имеют такие полярности, что они отталкивают друг друга, вследствие чего нагнетательный клапан совершает подъем от своего седла, когда подвижный магнит приближается к неподвижному магниту.
В представленном варианте осуществления настоящего изобретения нагнетательный клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана в положении закрытия. Шток содержит подвижный магнит, определяющий (создающий) часть магнитного поля. Один полюс магнита находится на нижнем конце штока, а противоположный полюс - на верхнем. Седло нагнетательного клапана выполнено из немагнитного материала.
В представленном варианте осуществления настоящего изобретения шток простирается вниз от головки сквозь отверстие в седле нагнетательного клапана. Головка располагается на верхней стороне седла нагнетательного клапана и перекрывает отверстие в положении закрытия. Наружный диаметр штока меньше внутреннего диаметра отверстия, что позволяет скважинному флюиду проходить сквозь отверстие в кольцевое пространство вокруг штока, когда нагнетательный клапан находится в положении открытия.
Всасывающий клапан тоже может содержать головку и шток. Шток всасывающего клапана простирается вниз от его головки сквозь отверстие в седле всасывающего клапана. В положении закрытия всасывающего клапана его головка располагается на верхней стороне его седла. Седло всасывающего клапана тоже выполнено из немагнитного материала. В представленном варианте осуществления настоящего изобретения шток всасывающего клапана содержит неподвижный магнит, у которого один полюс находится на нижнем конце штока, а противоположный полюс - у головки всасывающего клапана. Полярность неподвижного магнита у головки всасывающего клапана такова, что он отталкивает подвижный магнит. Шток всасывающего клапана, находящийся в отверстии в седле всасывающего клапана, окружен кольцевым пространством, образованным во всасывающем клапане. Когда всасывающий клапан находится в положении открытия, скважинный флюид проходит через это кольцевое пространство. В положении закрытия всасывающего клапана кольцевое пространство перекрывается головкой клапана.
Краткое описание чертежей
Для получения более детального представления об отличительных признаках, преимуществах и целях настоящего изобретения и прочих его особенностях, которые станут очевидными, ниже приведено более подробное описание изобретения, кратко описанного выше, в котором представлен вариант осуществления изобретения, иллюстрируемый приложенными чертежами, образующими часть настоящей заявки. Следует, однако, отметить, что эти чертежи иллюстрируют только один из предпочтительных вариантов осуществления изобретения и поэтому не должны рассматриваться как ограничивающие его объем, поскольку изобретение допускает реализацию и других, в равной степени эффективных, вариантов осуществления. На чертежах показано:
фиг. 1 - схематическое изображение (вид сбоку) штанговой насосной установки, установленной в скважине и соответствующей настоящему изобретению,
фиг. 2 - увеличенное изображение в разрезе нагнетательного клапана насосной установки, показанной на фиг. 1,
фиг. 3 - увеличенное изображение в разрезе всасывающего клапана насосной установки, показанной на фиг. 1,
фиг. 4 - вид в разрезе насосной установки, показанной на фиг. 1, с плунжером, находящемся в верхней точке рабочего хода,
фиг. 5 - вид в разрезе насосной установки, показанной на фиг. 1, с плунжером, совершающим рабочий ход вниз в цилиндре,
фиг. 6 - вид в разрезе насосной установки, показанной на фиг. 1, с плунжером, совершающим рабочий ход вверх.
Подробное описание изобретения
Способы и системы, предлагаемые в настоящем изобретении, более подробно описываются ниже со ссылками на приложенные чертежи, на которых показаны варианты осуществления изобретения. Эти способы и системы могут быть реализованы во многих разных формах и не должны рассматриваться как ограничивающиеся вариантами осуществления, описанными и проиллюстрированными в настоящей заявке; скорее, эти варианты осуществления обеспечивают детализацию и полноту представления изобретения, позволяющего донести его в полном объеме до сведения специалистов в данной области. Одинаковые численные ссылочные обозначения везде относятся к одинаковым элементам.
Следует, далее, иметь в виду, что объем настоящего изобретения не ограничивается описанными или показанными точными деталями конструкции, работы, конкретными материалами или вариантами осуществления, поскольку специалистам в данной области будут очевидны возможные модификации и эквивалентные варианты осуществления. Варианты осуществления изобретения, представленные на чертежах и в описании, являются иллюстративными и, несмотря на употребление специальных терминов, используются лишь в обобщенном и описательном смысле, а не с целями ограничения.
На фиг. 1 показана скважина 11, содержащая обсадную колонну 13 с отверстиями, например перфорационными отверстиями 14, обеспечивающими поступление скважинного флюида. Насосная установка 15 опирается на эксплуатационную колонну НКТ 17, простирающуюся в скважину 11. В альтернативном варианте осуществления насосная установка 15 может поддерживаться другим конструктивным элементом, например колонной гибких насосно-компрессорных труб (ГНКТ).
Насосная установка 15 относится к установкам штангового типа и содержит цилиндр 19, который крепится к нижнему концу колонны НКТ 17. Цилиндр 19 представляет собой трубчатый элемент, имеющий отверстие с полированной поверхностью. На нижнем конце цилиндра 19 расположено седло 21 всасывающего клапана. Всасывающий клапан 23 расположен на седле 21 и перемещается относительно него в осевом направлении между положениями открытия и закрытия.
Плунжер 25 находится в плотном контакте с цилиндром 19 и совершает рабочий ход между верхним и нижним положениями, обеспечиваемый системой подъема, например колонной насосных штанг 27. Плунжер 25 содержит седло 29 нагнетательного клапана, которое движется вместе с плунжером 25.
Нагнетательный клапан 31 расположен на седле 29 и может перемещаться относительно него в осевом направлении между положениями открытия и закрытия.
Устьевое оборудование 33 скважины располагается у верхнего конца обсадной колонны 13 и поддерживает эксплуатационную колонну НКТ 17. Насосная штанга 27 проходит с уплотнением сквозь устьевое оборудование 33 к механизму, сообщающему движение этой штанге, например к станку-качалке 35. Выкидная линия 37 соединена с устьевым оборудованием 33. Когда станок-качалка 35 поднимает насосную штангу 27 и плунжер 25, нагнетательный клапан 31 закрывается, а плунжер 25 поднимает столб скважинного флюида в НКТ 17, вследствие чего часть флюида в этом столбе поступает в выкидную линию 37. Одновременно с этим движение плунжера 25 вверх вызывает открытие всасывающего клапана 23, в результате чего скважинный флюид поступает из перфорационных отверстий 14 в цилиндр 19.
Когда насосная штанга 27 перемещает плунжер 25 обратно вниз, нагнетательный клапан 31 открывается, позволяя флюиду в цилиндре 19 пройти через седло 29 этого клапана. По мере перемещения плунжера 25 вниз закрывается всасывающий клапан 23. Понижение давления внутри цилиндра 19, вызванное движением плунжера 25 вверх, приводит к подъему всасывающего клапана 23 вверх от его седла 21. Всасывающий клапан 23 закрывается под действием силы тяжести, когда плунжер 25 достигает верхней точки своего рабочего хода. Аналогичным образом, повышение давления в цилиндре 19, вызванное движением плунжера 25 вниз, приводит к открытию нагнетательного клапана 31.
В некоторых скважинах наряду с жидкостью присутствует газ, который может образовать газовую пробку. При движении плунжера 25 вниз может происходить сжатие газа, который ранее вошел в цилиндр 19 и который затем будет давить на нагнетательный клапан 31, вынуждая того открыться. Отличительные признаки настоящего изобретения, описанные ниже, позволяют предотвратить образование газовой пробки.
Как показано на фиг. 2, седло 29 нагнетательного клапана содержит пластину, крепящуюся к нижнему концу плунжера 25 и имеющую отверстие, или проход, 39. В данном примере нагнетательный клапан 31 выполнен в форме толкателя, содержащего головку 41 в форме диска, которая в положении закрытия располагается на седле 29 нагнетательного клапана. Диаметр головки 41 превышает диаметр отверстия 39, что позволяет перекрывать нисходящий поток через это отверстие, когда плунжер 25 движется вверх. Нагнетательный клапан 31 содержит шток 43, простирающийся вниз от головки 41 сквозь отверстие 39. Нагнетательный клапан 31 намагничен, причем один магнитный полюс находится на головке 41, а другой - на нижнем конце штока 43. В данном примере на головке 41 находится северный полюс 45, а на нижнем конце штока 43 - южный полюс 47, но расположение полюсов может быть и обратным. Шток 43 нагнетательного клапана содержит постоянный магнит. В альтернативном варианте постоянный магнит может быть прикреплен к штоку 43 нагнетательного клапана или представлять собой одну из частей последнего.
В показанном варианте осуществления настоящего изобретения наружный диаметр штока 43 значительно меньше внутреннего диаметра отверстия 39, определяющего кольцевое пространство, окружающее шток 43. Когда нагнетательный клапан 31 находится в положении открытия, поток скважинного флюида проходит через это кольцевое пространство с нижней стороны седла 29 нагнетательного клапана на его верхнюю сторону. В альтернативном варианте отверстие 39 может лишь незначительно отличаться по размеру от штока 43, а вокруг отверстия 39 могут быть предусмотрены дополнительные отверстия (не показаны) для прохождения потока скважинного флюида. Головка 41 клапана при этом должна быть достаточно большой, чтобы перекрывать поток сквозь эти дополнительные отверстия в положении закрытия.
Как показано на фиг. 3, седло 21 всасывающего клапана содержит пластину, крепящуюся к нижнему концу цилиндра 19 и имеющую отверстие, или проход, 49. В данном варианте осуществления изобретения всасывающий клапан 23 выполнен в форме толкателя, содержащего головку 51 в форме диска, которая в положении закрытия располагается на седле 21 всасывающего клапана. Диаметр головки 51 превышает диаметр отверстия 49, что позволяет перекрывать нисходящий поток через это отверстие, когда плунжер 25 движется вниз. Всасывающий клапан 23 содержит шток 53, простирающийся вниз от головки 51 сквозь отверстие 49. Всасывающий клапан 23 намагничен либо одна из его частей, например шток 53, содержит постоянный магнит. Один магнитный полюс 55 находится на головке 51 штока 53, а другой полюс 57 - на нижнем конце последнего. Полярность всасывающего клапана 23 противоположна полярности нагнетательного клапана 31. Если, как показано на чертеже, южный полюс 47 находится на нижнем конце штока 43 нагнетательного клапана 31, то южный полюс 55 всасывающего клапана 23 будет находиться на головке 51. Северный полюс 57 будет находиться на нижнем конце штока 53.
Седло 29 нагнетательного клапана и по меньшей мере части плунжера 25, расположенные рядом с седлом 29, выполнены из немагнитного материала. Кроме того, из немагнитного материала выполнены седло 21 всасывающего клапана и по меньшей мере расположенные рядом с ним части цилиндра 19.
В показанном варианте осуществления настоящего изобретения наружный диаметр штока 53 значительно меньше внутреннего диаметра отверстия 49, определяющего кольцевое пространство, окружающее шток 53. Когда всасывающий клапан 23 находится в положении открытия, поток скважинного флюида проходит через это кольцевое пространство с нижней стороны седла 21 всасывающего клапана на его верхнюю сторону. В альтернативном варианте отверстие 49 может лишь незначительно отличаться от размера штока 53, а вокруг отверстия 49 могут быть предусмотрены дополнительные отверстия (не показаны) для прохождения потока скважинного флюида. Головка 51 клапана при этом должна быть достаточно большой, чтобы перекрывать поток сквозь эти дополнительные отверстия в положении закрытия.
Как показано на фиг. 4, плунжер 25 имеет цилиндрическую наружную поверхность, которая находится с внутренней поверхностью цилиндра 19 в плотном контакте с возможностью скольжения как в случае обычного поршня. Показанные на чертеже зазоры между наружной поверхностью плунжера и внутренней поверхностью цилиндра 19 значительно увеличены для наглядности. Плунжер 25 соединен с насосной штангой 27 посредством любого подходящего соединительного элемента 61. Часть плунжера 25, находящаяся над седлом 29 нагнетательного клапана, представляет собой не замкнутую камеру, а полость, открытую для прохождения скважинного флюида в эксплуатационную колонну НКТ 17 (фиг. 1), расположенную над плунжером 25.
На фиг. 4 показан плунжер 25, который в процессе работы находится в верхней точке рабочего хода. Оба клапана, нагнетательный 31 и всасывающий 23, находятся в положении закрытия, обусловленном действием силы тяжести, и перекрывают любой нисходящий поток скважинного флюида через отверстие 39 в седле нагнетательного клапана и отверстие 49 в седле всасывающего клапана. В цилиндре 19 имеется камера 63 переменного объема, нижний конец которой находится у седла 21 всасывающего клапана, а верхний конец - у седла 29 нагнетательного клапана. В результате предыдущего рабочего хода вверх камера 63 заполняется скважинным флюидом. Скважинный флюид может целиком состоять из жидкости и в этом случае является по существу несжимаемым. В альтернативном варианте скважинный флюид в камере 63 может представлять собой смесь жидкости и газа или целиком состоять из газа. Если в скважинном флюиде в камере 63 присутствует газ, то этот скважинный флюид является сжимаемым.
Как показано на фиг. 5, если скважинный флюид в камере 63 целиком состоит из жидкости, то по мере движения плунжера 25 вниз он будет прикладывать к скважинному флюиду в камере 63 сжимающее усилие. Во время движения плунжера 25 вниз всасывающий клапан 23 остается закрытым. Движение плунжера 25 вниз приводит к тому, что скважинный флюид, находящийся в камере 63, толкает нагнетательный клапан 31 вверх в положение открытия. В результате этого скважинный флюид в камере 63 проходит сквозь отверстие 39 в пространство над седлом 29 нагнетательного клапана, что показано стрелками 65.
Во время рабочего хода вверх (фиг. 6) действие силы тяжести вынуждает нагнетательный клапан 31 переместиться вниз в положение закрытия, перекрывая любой поток сквозь отверстие 39 в седле нагнетательного клапана. Плунжер 25 поднимает массу столба скважинного флюида в колонну НКТ 17 на длину рабочего хода вверх. Движение плунжера 25 вверх создает разрежение, или понижение давления, в камере 63 цилиндра, что вынуждает всасывающий клапан 23 переместиться вверх в положение открытия, позволяя скважинному флюиду войти в камеру 63 как показано стрелками 65.
Если скважинный флюид в камере 63 содержит значительное количество газа, то при рабочем ходе вниз нагнетательный клапан 31 может остаться закрытым из-за действия силы тяжести, поскольку при движении плунжера 25 вниз будет происходить сжатие газа в камере 63. Усилия, направленного вверх и прикладываемого к нагнетательному клапану 31 вследствие сжатия газа, может оказаться недостаточно для подъема нагнетательного клапана в положение открытия. Однако при вхождении штока 43 нагнетательного клапана в магнитное поле всасывающего клапана 23 магнитные полюса 47, 55 (фиг. 2 и 3) будут взаимно отталкиваться. Это усилие отталкивания вынуждает нагнетательный клапан 31 перемещаться вверх в положение открытия, позволяя скважинному флюиду, сжатому в камере 63, пройти сквозь отверстие 39 в седле нагнетательного клапана в колонну НКТ 17. Магнитные поля предпочтительно являются достаточно сильными для подъема нагнетательного клапана 31 до достижения плунжером 25 нижней точки своего рабочего хода вниз. Таким образом, противодействующие магнитные полюса 47, 55 (фиг. 2 и 3) предотвращают сохранение положения закрытия нагнетательного клапана 31 на всем протяжении рабочего хода вниз, что может привести к образованию газовой пробки.
Хотя настоящее изобретение представлено только в одной из своих форм, ясно, что оно предполагает возможность внесения различных изменений. Например, могут быть предусмотрены другие конструкции и формы всасывающего клапана 23 и нагнетательного клапана 31, где вместо толкателя может быть использован шар и связанный с ним соединительный элемент, обеспечивающий фиксированную ориентацию каждого из магнитных полюсов 45, 47 и 55, 57. В альтернативном варианте толкатель может быть предусмотрен только в нагнетательном клапане 31, а всасывающий клапан 23 может иметь обычную конструкцию, не предполагающую создание магнитного поля. Могут быть реализованы и многие другие конструкции, обеспечивающие получение усилия отталкивания, направленного вверх, обусловленного магнитным полем и прикладываемого к нагнетательному клапану 31, когда плунжер 25 приближается к нижней точке своего рабочего хода. Например, магнит с противоположной полярностью может быть смонтирован в цилиндре 19 или на седле 21 всасывающего клапана, а не на самом всасывающем клапане 23. Вместо постоянных магнитов в нагнетательном клапане 31 и всасывающем клапане 23 можно использовать электромагниты. Однако при этом возникла бы необходимость подвода электроэнергии. Плунжер 25 может приводиться в движение не насосными штангами, а скважинным электродвигателем.

Claims (74)

1. Скважинная насосная установка, содержащая:
цилиндр, имеющий ось и выполненный с возможностью подвешивания в скважине;
седло всасывающего клапана, установленное в цилиндре;
всасывающий клапан;
плунжер, размещенный внутри цилиндра с возможностью возвратно-поступательного движения в осевом направлении;
седло нагнетательного клапана, установленное на нижнем конце плунжера;
нагнетательный клапан; и
магнитное поле, взаимодействующее с нагнетательным клапаном и толкающее его в положение открытия при совершении плунжером рабочего хода.
2. Установка по п. 1, в которой магнитное поле создается:
подвижным магнитом, которым снабжен нагнетательный клапан для его перемещения;
неподвижным магнитом, которым снабжен цилиндр под подвижным магнитом;
причем подвижный и неподвижный магниты имеют такие полярности, что они отталкивают друг друга, вследствие чего нагнетательный клапан совершает подъем от седла нагнетательного клапана, когда подвижный магнит приближается к неподвижному магниту.
3. Установка по п. 1, в которой нагнетательный клапан и всасывающий клапан намагничены с противоположными друг другу полярностями, так что они отталкивают друг друга, когда нагнетательный клапан приближается к всасывающему клапану, тем самым создавая магнитное поле.
4. Установка по п. 1, в которой нагнетательный клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана, причем в положении закрытия головка садится на
седло нагнетательного клапана, а шток содержит подвижный магнит, определяющий часть магнитного поля.
5. Установка по п. 1, в которой нагнетательный клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана, причем в положении закрытия головка садится на седло нагнетательного клапана, а шток содержит подвижный магнит, у которого один полюс находится на нижнем конце штока, а противоположный полюс находится у головки, причем магнитное поле частично определяется подвижным магнитом.
6. Установка по п. 1, в которой:
нагнетательный клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана, причем в положении закрытия головка садится на верхнюю сторону седла нагнетательного клапана;
седло нагнетательного клапана выполнено из немагнитного материала;
шток содержит подвижный магнит, у которого один полюс находится на нижнем конце штока, а противоположный полюс находится у головки;
цилиндр снабжен неподвижным магнитом, расположенным ниже подвижного магнита и имеющим на верхнем конце такую полярность, что он отталкивает магнит нагнетательного клапана; и
подвижный и неподвижный магниты определяют магнитное поле.
7. Установка по п. 1, в которой:
нагнетательный клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана, причем в положении закрытия головка садится на верхнюю сторону седла нагнетательного клапана и перекрывает отверстие;
шток перемещается вместе с головкой и имеет наружный диаметр меньше внутреннего диаметра отверстия, что позволяет скважинному флюиду проходить сквозь отверстие в кольцевое пространство вокруг штока, когда нагнетательный клапан находится в положении открытия;
седло нагнетательного клапана выполнено из немагнитного материала;
шток содержит подвижный магнит, у которого один полюс находится на нижнем конце штока, а противоположный полюс находится у головки;
цилиндр снабжен неподвижным магнитом, размещенным ниже подвижного магнита и имеющим на верхнем конце такую же полярность, что и полярность магнита нагнетательного клапана на нижнем конце штока; и
подвижный и неподвижный магниты определяют магнитное поле.
8. Установка по п. 1, в которой:
нагнетательный клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле нагнетательного клапана, причем в положении закрытия головка нагнетательного клапана садится на верхнюю сторону седла нагнетательного клапана;
седло нагнетательного клапана выполнено из немагнитного материала;
шток нагнетательного клапана содержит подвижный магнит, у которого один полюс находится на нижнем конце штока нагнетательного клапана, а противоположный полюс находится у головки нагнетательного клапана;
всасывающий клапан содержит головку и шток, простирающийся вниз от головки сквозь отверстие в седле всасывающего клапана, причем в положении закрытия головка всасывающего клапана садится на верхнюю сторону седла всасывающего клапана;
седло всасывающего клапана выполнено из немагнитного материала;
шток всасывающего клапана содержит неподвижный магнит, у которого один полюс находится на нижнем конце штока всасывающего клапана, а противоположный полюс находится у головки всасывающего клапана, причем у головки всасывающего клапана неподвижный магнит имеет такую полярность, что он отталкивает подвижный магнит; и
подвижный и неподвижный магниты определяют магнитное поле.
9. Установка по п. 1, содержащая:
кольцевое пространство в нагнетательном клапане, окружающее шток нагнетательного клапана в отверстии в седле нагнетательного клапана, сквозь которое проходит скважинный флюид, когда нагнетательный клапан находится в
положении открытия, причем в положении закрытия головка нагнетательного клапана перекрывает это кольцевое пространство; и
кольцевое пространство во всасывающем клапане, окружающее шток всасывающего клапана в отверстии в седле всасывающего клапана, сквозь которое проходит скважинный флюид, когда всасывающий клапан находится в положении открытия, причем в положении закрытия головка всасывающего клапана перекрывает это кольцевое пространство.
10. Скважинная насосная установка, содержащая:
цилиндр, имеющий ось и выполненный с возможностью подвешивания в скважине;
седло всасывающего клапана, установленное на нижнем конце цилиндра;
всасывающий клапан, расположенный на седле всасывающего клапана с возможностью перемещения в осевом направлении относительно этого седла между положением открытия, в котором скважинный флюид может войти в цилиндр, и положением закрытия, в котором происходит перекрытие нисходящего потока из цилиндра;
плунжер, размещенный внутри цилиндра с возможностью возвратно-поступательного движения в осевом направлении;
седло нагнетательного клапана, установленное на нижнем конце плунжера и имеющее сквозное отверстие;
нагнетательный клапан, содержащий подвижную головку, которая в положении закрытия нагнетательного клапана садится на седло нагнетательного клапана, и шток, простирающийся вниз от головки нагнетательного клапана сквозь отверстие и содержащий подвижный магнит; и
неподвижный магнит, которым снабжен цилиндр ниже подвижного магнита, причем неподвижный и подвижный магниты имеют полярности, при взаимодействии которых друг с другом нагнетательный клапан совершает подъем относительно своего седла в положение открытия при приближении плунжера к нижней точке рабочего хода.
11. Установка по п. 10, в которой подвижный магнит имеет полюс на нижнем конце, а неподвижный магнит имеет полюс на верхнем конце, который отталкивает полюс на нижнем конце подвижного магнита.
12. Установка по п. 10, в которой шток нагнетательного клапана имеет наружный диаметр меньше внутреннего диаметра отверстия, что позволяет скважинному флюиду проходить сквозь отверстие в кольцевое пространство вокруг штока нагнетательного клапана, когда нагнетательный клапан находится в положении открытия.
13. Установка по п. 10, в которой всасывающий клапан содержит головку и шток, простирающийся вниз от головки всасывающего клапана сквозь отверстие в седле всасывающего клапана, причем головка всасывающего клапана садится на верхнюю сторону седла всасывающего клапана в положении закрытия всасывающего клапана, а шток всасывающего клапана содержит неподвижный магнит.
14. Установка по п. 10, в которой:
всасывающий клапан содержит головку и шток, простирающийся вниз от головки всасывающего клапана сквозь отверстие в седле всасывающего клапана, причем в положении закрытия всасывающего клапана головка всасывающего клапана садится на верхнюю сторону седла всасывающего клапана;
неподвижный магнит образует часть всасывающего клапана и имеет полюс у головки всасывающего клапана, который отталкивает подвижный магнит; и
шток всасывающего клапана имеет наружный диаметр меньше внутреннего диаметра отверстия в седле всасывающего клапана, что позволяет скважинному флюиду проходить сквозь отверстие в седле всасывающего клапана в кольцевое пространство вокруг штока всасывающего клапана, когда всасывающий клапан находится в положении открытия.
15. Установка по п. 10, в которой седло нагнетательного клапана и седло всасывающего клапана выполнены из немагнитного материала.
16. Способ выкачивания скважинного флюида из скважины, включающий:
(а) обеспечение насоса с возвратно-поступательным движением, содержащего цилиндр, всасывающий клапан, установленный на цилиндре, нагнетательный клапан, установленный на плунжере, причем с нагнетательным клапаном связано верхнее магнитное поле, а с цилиндром под плунжером связано нижнее магнитное поле;
(б) подвешивание насоса в скважине;
(в) осуществление рабочего хода плунжера вниз в цилиндре; и
(г) взаимодействие верхнего магнитного поля с нижним магнитным полем при перемещении плунжера вниз и ответное перемещение нагнетательного клапана в положение открытия.
17. Способ по п. 16, включающий подъем плунжера после достижения нижней точки рабочего хода на этапе (г), что вызывает перемещение нагнетательного клапана в положение закрытия и прекращение взаимодействия верхнего и нижнего магнитных полей.
18. Способ по п. 16, в котором этап (а) включает:
оснащение нагнетательного клапана седлом;
монтаж подвижного магнита на нагнетательном клапане для обеспечения перемещения последнего относительно своего седла;
причем на этапе (г) нагнетательный клапан перемещается вверх относительно своего седла.
19. Способ по п. 18, в котором этап (а) включает:
оснащение всасывающего клапана седлом, образующим узел всасывающего клапана;
монтаж на узле всасывающего клапана неподвижного магнита с полярностью, обеспечивающей отталкивание подвижного магнита.
20. Способ по п. 16, в котором этап (а) включает:
оснащение нагнетательного клапана седлом, имеющим сквозное отверстие;
оснащение нагнетательного клапана головкой, которая садится на верхнюю сторону седла нагнетательного клапана, и штоком, простирающимся сквозь упомянутое отверстие и содержащим подвижный магнит;
причем на этапе (г) нагнетательный клапан перемещается вверх относительно своего седла, а скважинный флюид проходит через кольцевое пространство между штоком и отверстием.
RU2016136998A 2014-02-17 2015-01-16 Штанговый насос с магнитными элементами для предотвращения образования газовых пробок RU2670479C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461940667P 2014-02-17 2014-02-17
US61/940,667 2014-02-17
PCT/US2015/011784 WO2015122990A1 (en) 2014-02-17 2015-01-16 Magnetic anti-gas lock rod pump

Publications (3)

Publication Number Publication Date
RU2016136998A RU2016136998A (ru) 2018-03-22
RU2016136998A3 RU2016136998A3 (ru) 2018-08-14
RU2670479C2 true RU2670479C2 (ru) 2018-10-23

Family

ID=53797698

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016136998A RU2670479C2 (ru) 2014-02-17 2015-01-16 Штанговый насос с магнитными элементами для предотвращения образования газовых пробок

Country Status (7)

Country Link
US (1) US9915256B2 (ru)
AR (1) AR099471A1 (ru)
AU (1) AU2015217567B2 (ru)
CA (1) CA2938934C (ru)
MX (1) MX375634B (ru)
RU (1) RU2670479C2 (ru)
WO (1) WO2015122990A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364658B2 (en) 2015-09-14 2019-07-30 Vlp Lift Systems, Llc Downhole pump with controlled traveling valve
RU185543U1 (ru) * 2018-05-24 2018-12-10 Публичное акционерное общество "Акционерная нефтяная Компания "Башнефть" Самоустанавливающийся магнитный клапан штангового глубинного насоса
US11466681B1 (en) * 2021-05-27 2022-10-11 Saudi Arabian Oil Company Anti-gas locking pumps and related methods in oil and gas applications
US11542797B1 (en) 2021-09-14 2023-01-03 Saudi Arabian Oil Company Tapered multistage plunger lift with bypass sleeve
US12258954B2 (en) 2021-12-15 2025-03-25 Saudi Arabian Oil Company Continuous magnetic positive displacement pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476355A (en) * 1968-01-15 1969-11-04 John F Sherwood Magnetic valve
US3485441A (en) * 1966-09-28 1969-12-23 Texas Gas Transmission Corp Magnetically biased compressor check valves
US5472326A (en) * 1993-03-30 1995-12-05 Tarpley; Leon Valve assemblies for sucker rod operated subsurface pumps
RU74426U1 (ru) * 2008-02-18 2008-06-27 ГОУ ВПО "Тюменский государственный нефтегазовый университет" Клапан штангового скважинного насоса
RU2424448C1 (ru) * 2010-06-16 2011-07-20 Анатолий Михайлович Данч Способ добычи пластовой негазированной жидкости
US20130039780A1 (en) * 2011-08-09 2013-02-14 Weatherford/Lamb, Inc. Reciprocating Rod Pump for Sandy Fluids

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2192945A (en) * 1938-08-15 1940-03-12 John R Beddingfield Oil well bottom release valve
US2764940A (en) * 1953-07-27 1956-10-02 Emsco Mfg Company Oil well pump with diluent delivery means
US3055306A (en) * 1960-10-26 1962-09-25 Camco Inc Magnetic valve for well plunger
US3510234A (en) * 1968-04-16 1970-05-05 William C Wolf Submersible cable pumping unit
US3578886A (en) * 1968-09-11 1971-05-18 Texas Petroleum Co Downhole producing pump
US3773439A (en) * 1972-09-01 1973-11-20 F Sheridan Reciprocating in-line magnetic actuator
US3941516A (en) * 1974-09-04 1976-03-02 Soberg Arnold S Waterwell pump assembly
US4173451A (en) * 1978-05-08 1979-11-06 Reserve Oil, Inc. Downhole pump
US4694860A (en) * 1984-11-28 1987-09-22 Eidsmore Paul G Fluid-flow isolation and control apparatus and method
US4481389A (en) * 1982-08-02 1984-11-06 Liquid Level Lectronics, Inc. Magnetic control device
US4565246A (en) * 1983-12-19 1986-01-21 Texaco, Inc. Reciprocating pump with partial flow reversal
CA1259224A (en) * 1985-05-31 1989-09-12 Amerada Minerals Corporation Of Canada Ltd. Gas-lock breaking device
US4770389A (en) * 1986-05-14 1988-09-13 Chevron Research Company Electric valve device
DE3766676D1 (de) * 1986-09-01 1991-01-24 Siemens Ag Kolbenpumpe fuer ein medikamentendosiergeraet.
US4848454A (en) * 1987-12-01 1989-07-18 Spears Harry L Downhole tool for use with a ball and seat traveling valve for a fluid pump
US4968226A (en) * 1989-04-28 1990-11-06 Brewer Carroll L Submergible reciprocating pump with perforated barrel
US5039061A (en) * 1990-01-26 1991-08-13 John H. Carter Co., Inc. Magnetically actuated linear valve operator and method
US5141411A (en) * 1990-05-03 1992-08-25 Klaeger Joseph H Center-anchored, rod actuated pump
US5249936A (en) * 1990-05-23 1993-10-05 Mcconnell Kenneth R Downhold reciprocating pump with automatically trippable travelling valve for prevention of gas lock
US5141404A (en) * 1990-06-25 1992-08-25 Q.E.D. Environmental Systems, Inc. Pump apparatus
US5048604A (en) * 1990-11-07 1991-09-17 Intevep, S.A. Sucker rod actuated intake valve assembly for insert subsurface reciprocating pumps
US5139398A (en) * 1991-04-08 1992-08-18 D & L Valve, Inc. Neutralizer valve for a downhole pump
EP0605903B1 (en) * 1993-01-07 1997-06-11 TDK Corporation Movable magnet type pump
US5655604A (en) * 1994-05-04 1997-08-12 Newton Technologies, Inc. Down-hole, production pump and circulation system
DE69614263T2 (de) * 1995-05-31 2002-05-16 Weatherford Lamb Mittel zur aktivierung eines werkzeugs im bohrloch
US6273690B1 (en) * 1999-06-25 2001-08-14 Harbison-Fischer Manufacturing Company Downhole pump with bypass around plunger
US6347668B1 (en) * 2000-04-21 2002-02-19 Mcneill John L. Relievable check valve assembly for oil wells and water wells
US20050053503A1 (en) * 2003-09-05 2005-03-10 Gallant Raymond Denis Anti gas-lock pumping system
US7328688B2 (en) * 2005-06-14 2008-02-12 Cummins, Inc Fluid pumping apparatus, system, and method
US7487829B2 (en) * 2006-06-20 2009-02-10 Dexter Magnetic Technologies, Inc. Wellbore valve having linear magnetically geared valve actuator
US20080122299A1 (en) * 2006-11-27 2008-05-29 Michael Cristoforo Magnetic force reciprocating motor
US8174347B2 (en) * 2010-07-12 2012-05-08 Correlated Magnetics Research, Llc Multilevel correlated magnetic system and method for using the same
US7750781B2 (en) * 2008-04-04 2010-07-06 Cedar Ridge Research Llc Coded linear magnet arrays in two dimensions
US7817004B2 (en) * 2008-05-20 2010-10-19 Cedar Ridge Research, Llc. Correlated magnetic prosthetic device and method for using the correlated magnetic prosthetic device
WO2011041572A1 (en) * 2009-09-30 2011-04-07 Conocophillips Company Double string pump for hydrocarbon wells
US8297367B2 (en) * 2010-05-21 2012-10-30 Schlumberger Technology Corporation Mechanism for activating a plurality of downhole devices
US9857370B2 (en) * 2013-07-22 2018-01-02 National Technology & Engineering Solutions Of Sandia, Llc Amplification of biological targets via on-chip culture for biosensing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485441A (en) * 1966-09-28 1969-12-23 Texas Gas Transmission Corp Magnetically biased compressor check valves
US3476355A (en) * 1968-01-15 1969-11-04 John F Sherwood Magnetic valve
US5472326A (en) * 1993-03-30 1995-12-05 Tarpley; Leon Valve assemblies for sucker rod operated subsurface pumps
US5472326B1 (en) * 1993-03-30 1999-03-02 Leon Tarpley Valve assemblies for sucker rod operated subsurface pumps
RU74426U1 (ru) * 2008-02-18 2008-06-27 ГОУ ВПО "Тюменский государственный нефтегазовый университет" Клапан штангового скважинного насоса
RU2424448C1 (ru) * 2010-06-16 2011-07-20 Анатолий Михайлович Данч Способ добычи пластовой негазированной жидкости
US20130039780A1 (en) * 2011-08-09 2013-02-14 Weatherford/Lamb, Inc. Reciprocating Rod Pump for Sandy Fluids

Also Published As

Publication number Publication date
CA2938934C (en) 2019-04-16
AR099471A1 (es) 2016-07-27
MX2016010611A (es) 2016-11-15
MX375634B (es) 2025-03-06
AU2015217567B2 (en) 2018-08-16
CA2938934A1 (en) 2015-08-20
US20150233370A1 (en) 2015-08-20
WO2015122990A1 (en) 2015-08-20
AU2015217567A1 (en) 2016-08-18
RU2016136998A3 (ru) 2018-08-14
RU2016136998A (ru) 2018-03-22
US9915256B2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
RU2670479C2 (ru) Штанговый насос с магнитными элементами для предотвращения образования газовых пробок
US11053784B2 (en) Downhole pump with traveling valve and pilot
US6817409B2 (en) Double-acting reciprocating downhole pump
US3861471A (en) Oil well pump having gas lock prevention means and method of use thereof
CA2934914C (en) Downhole motor driven reciprocating well pump
CA2898261A1 (en) Anti-gas lock valve for a reciprocating downhole pump
US9518457B2 (en) Downhole tool for opening a travelling valve assembly of a reciprocating downhole pump
US20160069167A1 (en) Downhole gas release apparatus
US4781543A (en) Artificial lift system for oil wells
US9784254B2 (en) Tubing inserted balance pump with internal fluid passageway
US20170306735A1 (en) System, apparatus and method for artificial lift, and improved downhole actuator for same
RU2567919C1 (ru) Штанговая насосная установка
US2906210A (en) Plunger pump
US2312228A (en) Pump
RU135373U1 (ru) Глубинно-насосная установка
RU2576560C1 (ru) Скважинный штанговый насос
EP4326971B1 (en) Anti-gas locking pumps and related methods in oil and gas applications
RU2736101C1 (ru) Скважинная штанговая насосная установка (варианты)
RU2346183C1 (ru) Скважинный штанговый насос
US20140178225A1 (en) Tubing inserted balance pump
RU163755U1 (ru) Скважинный вставной штанговый насос
RU26606U1 (ru) Скважинный штанговый насос
RU2246636C2 (ru) Скважинный штанговый насос
WO2014175776A1 (ru) Электромагнитный глубинный насос
GB2414773A (en) A pressure counter - balancing apparatus for a downhole pump