[go: up one dir, main page]

RU2665008C1 - Компактная судовая абсорбционная холодильная установка - Google Patents

Компактная судовая абсорбционная холодильная установка Download PDF

Info

Publication number
RU2665008C1
RU2665008C1 RU2017114777A RU2017114777A RU2665008C1 RU 2665008 C1 RU2665008 C1 RU 2665008C1 RU 2017114777 A RU2017114777 A RU 2017114777A RU 2017114777 A RU2017114777 A RU 2017114777A RU 2665008 C1 RU2665008 C1 RU 2665008C1
Authority
RU
Russia
Prior art keywords
evaporator
absorber
generator
steam
condenser
Prior art date
Application number
RU2017114777A
Other languages
English (en)
Inventor
Вера Сергеевна Бурцева
Александр Константинович Рубцов
Александр Владимирович Бараненко
Игорь Александрович Рубцов
Original Assignee
Закрытое акционерное общество "БЮРО ТЕХНИКИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "БЮРО ТЕХНИКИ" filed Critical Закрытое акционерное общество "БЮРО ТЕХНИКИ"
Priority to RU2017114777A priority Critical patent/RU2665008C1/ru
Application granted granted Critical
Publication of RU2665008C1 publication Critical patent/RU2665008C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Изобретение относится к холодильным установкам и может быть использовано в системах кондиционирования воздуха и системах хладоснабжения предприятий, для установки на кораблях и судах. Генератор пара, конденсатор, испаритель и абсорбер соединены трубо- и паропроводами. Испаритель и абсорбер оснащены собственными циркуляционными насосами, обеспечивающими кратность циркуляции жидкости в аппарате в 1-5 раз в час. Распределительные трубопроводы от циркуляционных насосов проложены вдоль трубных пучков тепломассообменных аппаратов генератора, испарителя и абсорбера, подключенных к забортной воде. Выпуск жидкости из трубопроводов осуществляется в направлении трубного пучка из прямоугольных отверстий в образующей трубы. Паропровод, соединяющий генератор и конденсатор, подсоединен к корпусу конденсатора через прямоугольное отверстие в корпусе, причем все упомянутые отверстия имеют соотношение сторон от 1:1 до 1:4 и перекрыты арочными элементами. Техническим результатом является снижение массогабаритных характеристик установки и повышение эксплуатационной надежности. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к источникам технологического холода и предназначено, в частности, для систем кондиционирования воздуха кораблей и судов, а также может быть использовано в системах хладоснабжения предприятий пищевой, химической, нефтехимической и других отраслей промышленности, для установки на судах речного и морского транспорта.
Известны абсорбционные холодильные установки, описанные в учебнике для ВУЗов Бадылькес И.С., Данилов Р.Л. «Абсорбционные холодильные машины». - М: Пищепромиздат, 1966. - 356 с.
Известна абсорбционная установка по а.с. №1096463, аппараты которой, для повышения эксплуатационной надежности, имеют системы циркуляции рабочей жидкости. Недостатком этого устройства является невозможность избирательной интенсификации тепломассообмена в том или ином аппарате, а, следовательно, невозможно обеспечить оптимальный режим работы холодильной установки в целом при изменении внешних воздействий на нее (изменения потребности в холоде, повышение температуры охлаждающей забортной воды).
Известна абсорбционная установка по патенту №2460020, содержащая генератор пара, конденсатор, испаритель, абсорбер, корпусные оболочки которых выполнены из металла с толщиной стенки 1÷3 мм, тепломассообменные аппараты, выполненные в виде тепломассообменных пучков труб, насос для перекачки слабого раствора абсорбента, форсунки для распыла слабого раствора абсорбента, форсунки для распыла крепкого раствора абсорбента, автономные системы циркуляции жидкости с циркуляционными насосами и распределительными трубопроводами, паропровод, соединяющей генератор пара и конденсатор.
Наиболее близким по технической сущности и достигаемому результату является абсорбционная бромистолитиевая холодильная установка по а.с. №233700, принятая за прототип, содержащая генераторы для выпаривания слабого раствора, конденсаторы паров хладагента после генераторов, испарители для производства холода, абсорберы, в которых крепким раствором поглощаются пары хладагента после испарителей, и теплообменники -регенераторы тепла между крепким и слабым растворами. При этом теплообменные поверхности ее генераторов, конденсаторов, испарителей, абсорберов и теплообменников выполнены в виде заключенных в общий кожух однотипных прямоугольных блоков, вертикальные ряды которых образуют параллельно включенные автономные холодильные агрегаты равной производительности, а в каждом их горизонтальных рядов размещены аппараты одного назначения, например, генераторы, испарители, подключенные к общим паровым и жидкостным коммуникациям установки.
Однако указанные известные устройства обладают относительно низкой эксплуатационной надежностью при повышенных массогабаритных характеристиках.
Задачей изобретения является создание компактной абсорбционной холодильной установки со сниженными массогабаритными характеристиками, обладающей повышенной эксплуатационной надежностью.
Указанный технический результат достигается в техническом решении компактной судовой абсорбционной холодильной установке, содержащей генератор пара, конденсатор, испаритель и абсорбер, соединенные трубо- и паропроводами. При этом в отличие от прототипа генератор пара, испаритель и абсорбер оснащены собственными циркуляционными насосами, обеспечивающими кратность циркуляции жидкости в аппарате от 1 до
Figure 00000001
, причем распределительные трубопроводы от циркуляционных насосов проложены вдоль трубных пучков тепломассообменных аппаратов генератора, испарителя и абсорбера, подключенных к забортной воде, а выпуск жидкости из трубопроводов осуществляется в направлении трубного пучка из прямоугольных отверстий в образующей трубы с соотношением сторон от 1:1 до 1:4, причем отверстия, со стороны потока набегающей жидкости, перекрыты арочным элементом.
В частном случае заявляемого изобретения паропровод, соединяющий генератор и конденсатор, подсоединен к корпусу конденсатора через прямоугольное отверстие в корпусе со сторонами от 1:1 до 1:4, а само отверстие со стороны набегающего пара содержит арочный элемент.
В другом частном случае заявляемого изобретения корпуса аппаратов абсорбционной установки выполнены из тонкостенного металла, толщиной 1,0÷3,0 мм, а трубные пучки аппаратов - из трубок 5,0÷10 мм с толщиной стенки 0,3÷1,0 мм. Такие корпусные конструкции, выполненные по технологии изготовления тонкостенных оболочек, обеспечивают повышение компактности установки с одновременным снижением массогабаритных характеристик. Размещение тепломассообменных аппаратов установки в современных тонкостенных оболочечных корпусах с толщиной стенки 1,0÷3,0 мм позволяет перейти от теплообменных труб диаметром 15÷25 мм к интенсивным «плотным» теплообменным пучкам труб с диаметром 5÷10 мм с толщиной стенки 0,3÷1,0 мм.
В третьем частном случае заявляемого изобретения для успокоения движения жидкости в аппаратах в условиях качки заявляемая установка оборудована успокоителями волн в виде взаимно перпендикулярных перегородок из тонкого листового инертного для сред материала с устройством квадратных ячеек со стороной 20÷100 мм, причем верхний край перегородок на 50÷70 мм выше уровня жидкой фазы в аппаратах: генераторе пара, испарителе и в абсорбере, а нижний край на 50÷70 мм ниже уровня жидкой фазы.
Сущность предлагаемого технического решения поясняется чертежами.
На фиг. 1 представлена компактная абсорбционная установка, в условном разрезе совмещенная с ее гидравлической схемой.
На фиг. 2 показан вид сбоку абсорбционной установки.
На фиг. 3 показано устройство отверстий, перекрытых арками 18, для выпуска жидкости из распределительных трубопроводов 12, 13, 14.
На фиг. 4 показана абсорбционная установка с успокоительной решеткой 19.
Работает холодильная установка следующим образом. Насос 6 подает слабый раствор абсорбера 18 в генератор пара 1 через форсунки для распыла на основе RU-эффекта 7, которые, в случае понижения уровня раствора, позволяют эффективно орошать пучки труб 5. Внешняя греющая среда поступает в тепломассообменные пучки труб 5 генератора пара 1. В результате водяной пар 20 (если абсорбционная установка бромисто-литиевая) или аммиак (если установка водоаммиачная) выкипает из слабого раствора и уходит в конденсатор 2, где и конденсируется на трубках теплообменного пучка, в котором циркулирует охлаждающая забортная вода.
Вдоль тепломассообменных пучков труб 5 аппаратов 1, 3, 4 от насосов 9, 10, и 11 проложены распределительные трубопроводы 12, 13 и 14 систем циркуляции, в образующих которых для выпуска жидкости выполнены прямоугольные отверстия, перекрытые арками 22 со сторонами от 1:1 до 1:4, фиг. 2.
Паропровод 15 подсоединен к обечайке конденсатора через прямоугольное отверстие, перекрытое арочным элементом 16, причем соотношения сторон отверстия и арки от 1:1 до 1:4 (см. фиг. 1). Пар 20, двигаясь к конденсатору 2 по паропроводу 15, обтекает арочный элемент 16. Подтекая под арку 16, встречные потоки пара поочередно подтормаживают друг друга, возбуждая под аркой автоколебательный процесс. Частота автоколебаний при скорости пара в 30 м/с и при характерном размере отверстия, например 0,15 м, составит f=0,21⋅30/0,15=42 Гц, здесь 0,21 - число Струхаля. Результирующее течение пара за аркой имеет выраженный периодический характер, а угол его раскрытия составляет не ~ 25°, как в обычных струйных турбулентных течениях, а 90÷130° (в зависимости от соотношения сторон отверстия). Важно отметить, что арочный элемент повышает интенсивность турбулентности потока пара
Figure 00000002
с естественно-природного уровня в ~ 3% до 60-65%. Большой угол раскрытия течения с интенсивностью турбулентности ~ 60% интенсифицирует процесс конденсации: истечение пара из арочного элемента увеличивает поверхность контакта пара с трубным пучком вправо и влево от отверстия, а пульсационная компонента турбулентного течения уменьшает толщину пограничных слоев и сдувает образовавшийся конденсат, причем пульсирующий пар глубоко входит в пучок труб. Образовавшийся конденсат 21 из корпуса конденсатора 2 по соединительному трубопроводу, поступает в пространство испарителя 3, где кипит под вакуумом, забирая тепло от охлаждаемой среды, которая подается в тепломассообменные пучки труб 5 от потребителя (теплая вода из системы кондиционирования воздуха) и поступает обратно к потребителю уже охлажденная. Образовавшийся в испарителе пар по паропроводу 17 уходит в абсорбер 4. В паропроводе на входе в абсорбер 4 расположены форсунки с RU-эффектом 8, распыляющие абсорбент 19 (вода, если машина водоаммиачная, или крепкий раствор бромистого лития, если машина бромисто-литиевая). Абсорбент 19 активно поглощает пар из испарителя и поступает в зону охлаждения абсорбера 4, где расположены тепломассообменные пучки труб 5 абсорбера, по трубкам которого проходит охлаждающая забортная вода. Далее цикл повторяется.
Испаритель 3 оснащен системой циркуляции жидкости. Насос 10 забирает из объема испарителя жидкость и подает ее в распределительный трубопровод 13 проложенный вдоль тепломассообменных пучков труб 5 испарителя. Жидкость из распределительного трубопровода выходит через прямоугольные отверстия с арочными элементами 22 в направлении трубного пучка, (фиг. 2)
Арки, перекрывающие прямоугольные отверстия в стенке распределительной трубы (фиг. 2) генерируют автоколебательные процессы в потоке жидкости. Если допустить, что скорость жидкости ~ 2 м/с, а характерный размер отверстия 0,006 м, то частота автоколебаний будет
Figure 00000003
Поток циркулирующей жидкости из отверстий, перекрытыми арками 22 (фиг. 2) распределительного трубопровода 5 уходит глубоко в трубный пучок и интенсифицирует теплообмен на нем за счет активных воздействий на пограничные слои у стенок теплообменных труб.
Производительность циркуляционного насоса должна обеспечивать кратность обмена в объеме жидкости аппарата от 1 до
Figure 00000001
(т.е. кратность обмена 1-5 раз в час). Положительный эффект в интенсификации теплообмена создает не средняя скорость потока жидкости из распределительного трубопровода, а ее мощная пульсационная компонента, которая составляет 60÷65% от средней скорости.
Абсорбер 4 имеет свою циркуляционную систему, содержащую циркуляционный насос 11 и распределительный трубопровод 14 с отверстиями, перекрытыми арками 22, фиг. 2.
Температура забортной воды может изменяться, например, расти с ростом температуры наружного воздуха или с изменением района плавания судна, например, Средиземное или Красное море. Повышение температуры охлаждающей среды снижает отвод теплоты абсорбции из аппарата и снижает холодильную мощность установки. Включая циркуляционный насос 11 и интенсифицируя теплоотдачу на стенках пучка теплообменных труб удается повысить отвод теплоты от рабочей жидкости сохраняя работоспособность холодильной установки в целом и сохраняя ее холодопроизводительность.
Раствор рабочих веществ из абсорбера насос 6 подает в генератор пара 1, распыляя его в генераторе. В генератор подводится теплота из внешнего источника, например, в виде горячей воды от системы охлаждения главной силовой судовой установки, в тепломассообменные пучки труб 5. Жидкость в генераторе, за счет подвода внешней теплоты кипит и образующийся пар уходит в конденсатор 2. Если температура внешней среды по каким-либо причинам в ходе эксплуатации установки понизилась, или потребность в технологическом холоде в ходе эксплуатации возросла, то включается циркуляционный насос 9, который интенсифицирует теплообмен в трубном пучке генератора, увеличивая его мощность, это восстанавливает проектную холодопроизводительность абсорбционной установки.
В ходе эксплуатации судовой абсорбционной установки на нее будет действовать качка, вызываемая волнением моря. Рабочая жидкость в аппаратах придет в движение и часть теплообменной поверхности может время от времени обнажаться, что будет снижать производительность аппаратов и установки в целом. Для снижения негативного влияния качки в ходе эксплуатации в установке, на границе раздела сред, установлен успокоитесь волн в виде взаимно перпендикулярных перегородок из тонкого листового инертного для сред материала с устройством квадратных ячеек со стороной d, причем верхний край перегородок на с выше уровня жидкой фазы в аппарате, а нижний край на с ниже уровня жидкой фазы (фиг. 3).

Claims (3)

1. Компактная судовая абсорбционная холодильная установка, содержащая генератор пара, конденсатор, испаритель и абсорбер, соединенные трубо- и паропроводами, отличающаяся тем, что генератор пара, испаритель и абсорбер оснащены собственными циркуляционными насосами, обеспечивающими кратность циркуляции жидкости в аппарате в 1-5 раз в час, причем распределительные трубопроводы от циркуляционных насосов проложены вдоль трубных пучков тепломассообменных аппаратов генератора, испарителя и абсорбера, подключенных к забортной воде, а выпуск жидкости из трубопроводов осуществляется в направлении трубного пучка из прямоугольных отверстий в образующей трубы, а паропровод, соединяющий генератор и конденсатор, подсоединен к корпусу конденсатора через прямоугольное отверстие в корпусе, причем все упомянутые отверстия имеют соотношение сторон от 1:1 до 1:4 и перекрыты арочными элементами.
2. Установка по п. 1, отличающаяся тем, что корпуса аппаратов абсорбционной установки выполнены из тонкостенного металла толщиной 1,0÷3,0 мм, а трубные пучки аппаратов - из трубок 5,0÷10 мм с толщиной стенки 0,3÷1,0 мм.
3. Установка по п. 1, отличающаяся тем, что для успокоения движения жидкости в аппаратах в условиях качки в ней установлены успокоители волн в виде взаимно перпендикулярных перегородок из листового инертного для сред материала с устройством квадратных ячеек со стороной 20÷100 мм, причем верхний край перегородок на 50÷70 мм выше уровня жидкой фазы в генераторе пара, испарителе и в абсорбере, а нижний край на 50÷70 мм ниже уровня жидкой фазы.
RU2017114777A 2017-04-26 2017-04-26 Компактная судовая абсорбционная холодильная установка RU2665008C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017114777A RU2665008C1 (ru) 2017-04-26 2017-04-26 Компактная судовая абсорбционная холодильная установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017114777A RU2665008C1 (ru) 2017-04-26 2017-04-26 Компактная судовая абсорбционная холодильная установка

Publications (1)

Publication Number Publication Date
RU2665008C1 true RU2665008C1 (ru) 2018-08-24

Family

ID=63286819

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017114777A RU2665008C1 (ru) 2017-04-26 2017-04-26 Компактная судовая абсорбционная холодильная установка

Country Status (1)

Country Link
RU (1) RU2665008C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU233700A1 (ru) * Абсорбционная бромистолитиевая холодильнаяустановр(а
US4497689A (en) * 1980-08-22 1985-02-05 Energiagazdalkodasi Intezet Heat engineering apparatus for carrying out thermodynamical processes comprising a pair of mutually opposite phase transitions of a work medium
RU2016368C1 (ru) * 1989-04-11 1994-07-15 Товарас Николай Вячеславович Испаритель затопленного типа
US6820440B2 (en) * 2003-03-11 2004-11-23 Yue Zhang Absorption-type air conditioner core structure
RU2540573C1 (ru) * 2013-09-17 2015-02-10 Закрытое акционерное общество "БЮРО ТЕХНИКИ" Малогабаритный водоэффективный писсуар

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU233700A1 (ru) * Абсорбционная бромистолитиевая холодильнаяустановр(а
US4497689A (en) * 1980-08-22 1985-02-05 Energiagazdalkodasi Intezet Heat engineering apparatus for carrying out thermodynamical processes comprising a pair of mutually opposite phase transitions of a work medium
RU2016368C1 (ru) * 1989-04-11 1994-07-15 Товарас Николай Вячеславович Испаритель затопленного типа
US6820440B2 (en) * 2003-03-11 2004-11-23 Yue Zhang Absorption-type air conditioner core structure
RU2540573C1 (ru) * 2013-09-17 2015-02-10 Закрытое акционерное общество "БЮРО ТЕХНИКИ" Малогабаритный водоэффективный писсуар

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Форсунка для систем испарительного охлаждения и увлажнения воздуха. Рубцов А.К., Парахина Е.Г., Гурко Н.А., Научный журнал НИУ ИТМО Серия "Холодильная техника и кондиционирование", N1, 2016, 30.03.2016, стр. 42-48. *

Similar Documents

Publication Publication Date Title
CN106017168A (zh) 一种利用相变换热技术的lng汽化器及汽化方法
JPS6342291Y2 (ru)
AU2018235056B2 (en) Natural gas liquefaction installation arranged at the surface of an expanse of water, and associated cooling method
RU2665008C1 (ru) Компактная судовая абсорбционная холодильная установка
CN105645492A (zh) 一种带有海水蒸发装置的小型热泵式海水淡化系统
JP2015525869A (ja) 吸収式冷凍機
KR101291169B1 (ko) 선박의 흡수식 냉동기
JP3593480B2 (ja) 海水冷却システム
KR101335608B1 (ko) 청수 생산 시스템
JP4644631B2 (ja) 吸収式ヒートポンプ
FI71835C (fi) Vaermepump.
CN116951827A (zh) 满液型换热器和包含该满液型换热器的船用溴化锂制冷机组
CN201876011U (zh) 车载制冷装置的发生器
KR20140119929A (ko) 선박 조수기용 유동 방지 구조물
US5638696A (en) Absorption refrigeration system
CN114526621A (zh) 一种烟气温控音乐预警的热管换热装置
KR20180079889A (ko) 비산방지형 폐수냉각장치
KR101924322B1 (ko) 해수공냉장치 및 이를 포함하는 부유식 해상발전소
RU2306514C1 (ru) Теплообменный аппарат
CN109437353A (zh) 单效海水淡化装置
RU2082648C1 (ru) Система охлаждения судовой энергетической установки
SU1442506A1 (ru) Судовой горизонтально-трубный пленочный испаритель
JP2001165528A (ja) 吸収式冷凍装置
CN201327234Y (zh) 表面处理液制冷系统
KR900006808B1 (ko) 선박의 냉각장치