RU2661231C1 - Способ водородного перегрева пара на аэс - Google Patents
Способ водородного перегрева пара на аэс Download PDFInfo
- Publication number
- RU2661231C1 RU2661231C1 RU2017133941A RU2017133941A RU2661231C1 RU 2661231 C1 RU2661231 C1 RU 2661231C1 RU 2017133941 A RU2017133941 A RU 2017133941A RU 2017133941 A RU2017133941 A RU 2017133941A RU 2661231 C1 RU2661231 C1 RU 2661231C1
- Authority
- RU
- Russia
- Prior art keywords
- steam
- hydrogen
- oxygen
- combustion
- superheater
- Prior art date
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 57
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 57
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000013021 overheating Methods 0.000 title abstract description 13
- 238000002485 combustion reaction Methods 0.000 claims abstract description 60
- 239000001301 oxygen Substances 0.000 claims abstract description 57
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 57
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000002156 mixing Methods 0.000 claims abstract description 26
- 239000000446 fuel Substances 0.000 claims abstract description 16
- 239000007800 oxidant agent Substances 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 abstract description 10
- 230000005611 electricity Effects 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 description 19
- 238000005474 detonation Methods 0.000 description 8
- 238000010494 dissociation reaction Methods 0.000 description 7
- 230000005593 dissociations Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 102220023198 rs387907448 Human genes 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D5/00—Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
- G21D5/04—Reactor and engine not structurally combined
- G21D5/08—Reactor and engine not structurally combined with engine working medium heated in a heat exchanger by the reactor coolant
- G21D5/12—Liquid working medium vaporised by reactor coolant
- G21D5/16—Liquid working medium vaporised by reactor coolant superheated by separate heat source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Изобретение относится к энергетике. Способ водородного перегрева пара на АЭС, имеющей в своем составе основной реакторный парогенератор, паротурбинную установку, котел-пароперегреватель, подвод топлива и окислителя, причем подача кислорода в котел-пароперегреватель через смесительное устройство осуществляется с определенным избытком для снижения температуры продуктов сгорания и исключения недожога, при этом продукты сгорания после котла-пароперегревателя направляются в охладитель-конденсатор для отделения непрореагировавшего избытка кислорода от водяного пара путем его конденсации с последующей подачей непрореагировавшего избытка кислорода посредством компрессора обратно в смесительное устройство котла-пароперегревателя для сжигания водородного топлива и перегрева пара после основного реакторного парогенератора для повышения мощности и эффективности АЭС. Изобретение позволяет повысить эффективность и безопасность сжигания водорода с кислородом посредством замкнутой системы сжигания для выработки дополнительной электроэнергии на АЭС за счет повышения параметров острого пара или пара после промежуточного перегрева. 1 ил.
Description
Изобретение относится к области энергетики и предназначено для использования на атомных электрических станциях (АЭС) с водо-охлаждаемыми реакторами.
Известна принципиальная схема двухконтурной АЭС с водородным перегревом пара (см., например, Малышенко С.П., Назарова О.В., Сарумов Ю.А. Некоторые термодинамические и технико-экономические аспекты применения водорода как энергоносителя в энергетике // Атомно-водородная энергетика и технология. М.: Энергоатомиздат. 1986. Вып. 7, с. 106-108). Водород и кислород вырабатываются в электролизере, сжимаются компрессорами до давления, соответствующего давлению пара на входе в паровую турбину, и поступают в соответствующие хранилища. За счет высокотемпературных продуктов сгорания водорода в кислороде при стехиометрическом соотношении в камере сгорания водородного пароперегревателя, подмешиваемых в рабочее тело перед паровой турбиной, осуществляется перегрев водяного пара. Вследствие этого повышается КПД паросилового цикла и осуществляется дополнительная выработка электроэнергии.
Недостаток известной схемы заключается в постоянном принудительном водяном охлаждении, что снижает эффективность использования теплоты высокотемпературных продуктов сгорания водорода в кислороде, в связи со значительным количеством отводимой теплоты, необходимой для изменения фазового состояния балластировочной воды. Кроме этого, недостатком является образование солевых отложений в тракте внешнего охлаждения камеры сгорания балластировочной водой, что со временем становится причиной неработоспособного состояния водородного пароперегревателя. Смешение перегреваемого пара с продуктами сгорания водорода и кислорода опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.
Известен ряд устройств: парогенератор (см. патент РФ на изобретение №2309325, МПК F22B 1/26, опубл. 27.10.2007 г.), мини-парогенератор (см. патент РФ на изобретение №2300049, МПК F22B 1/26, опубл. 27.05.2007 г.). Эти устройства предназначены для использования в газо- и паротурбинных установках, в которых генерируется пар посредством перемешивания высокотемпературных продуктов сгорания водорода и кислорода с балластировочным компонентом - водой или водяным паром. При этом применяется наружное принудительное водяное охлаждение камеры сгорания вследствие образования факела высокой температуры.
Недостаток вышеприведенных устройств заключается в постоянном принудительном водяном охлаждении, что снижает эффективность использования теплоты высокотемпературных продуктов сгорания водорода в кислороде, в связи со значительным количеством отводимой теплоты, необходимой для изменения фазового состояния балластировочной воды. Кроме этого, недостатком является образование солевых отложений в тракте внешнего охлаждения камеры сгорания балластировочной водой, что со временем становится причиной неработоспособного состояния водородного пароперегревателя. Смешение перегреваемого пара с продуктами сгорания водорода и кислорода опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре
Известен ряд устройств: водородный высокотемпературный парогенератор с комбинированным охлаждением камеры сгорания (см. патент РФ на изобретение №2358191, МПК F22B 1/26, опубл. 10.06.2009 г.), водородный высокотемпературный парогенератор с комбинированным испарительным охлаждением камеры смешения (см. патент РФ на изобретение №2358190, МПК F22B 1/26, опубл. 10.06.2009), парогенератор (варианты) (см. патент РФ на изобретение №2431079, МПК F22B 1/26, опубл. 10.10.2011). Эти устройства предназначены для выработки пара высоких параметров и могут быть использованы в парогенераторах для повышения давления и температуры рабочего тела и повышения КПД паросиловой установки в целом. При этом применяется наружное принудительное водяное охлаждение камеры сгорания и смешения с подмешиванием балластной воды к продуктам сгорания.
Недостаток вышеприведенных устройств заключается в неэффективном использовании теплоты высокотемпературных продуктов сгорания водорода в кислороде вследствие их постоянного принудительного охлаждения в цилиндрической части камеры сгорания, что связано с отведением значительного количества теплоты, а также постоянного принудительного охлаждения в промежуточном сопле и в камере смешения, что связано с отведением значительного количества теплоты, необходимой для изменения фазового состояния балластировочной воды по сравнению с их охлаждением в процессе осуществления перегрева основного рабочего тела паротурбинной установки, например свежего пара АЭС. Кроме этого, недостатком является образование солевых отложений в тракте внешнего охлаждения промежуточного сопла балластировочной водой и магистрали подвода балластировочной воды, что со временем становится причиной неработоспособного состояния парогенератора. Также, недостатком является менее эффективное охлаждение водород-кислородного пара балластировочной водой в полости промежуточного сопла, поскольку охлаждение осуществляется через разделяющую стенку вследствие использования рубашки охлаждения, что не допускает прямого контакта балластировочной воды с охлаждаемой средой. Это снижает эффективность и надежность пароводородного перегрева свежего пара в цикле влажно-паровой АЭС. Также недостатком является наличие в получаемом паре продуктов химического недожога, что опасно детонацией в процессе расширения пара в паротурбинной установке.
Известен способ образования пара в парогазогенераторе и устройство для его осуществления (см. патент РФ на изобретение №2371594, МПК F02С 6/00, опубл. 27.10.2009). Изобретение заключается в том, что сжигают компоненты топлива, испаряют воду и разогревают пар за счет полученной энергии, образуют в камере сгорания водяную вихреобразную оболочку с разрежением внутри ее центральной области, внутри этой области сжигают компоненты топлива, а интенсивное испарение воды и разогрев пара осуществляют после свертывания вихреобразной водяной оболочки. Предлагаемый способ реализован в парогазогенераторе, содержащем камеру сгорания, запальное устройство, испарительную камеру, устройство подвода воды, в котором согласно изобретению подвод воды расположен в верхней части камеры сгорания (возле головки) и выполнен в виде втулки с тангенциальными каналами для закручивания водяного потока и образования вихреобразной оболочки, а в испарительной камере установлена диафрагма, выполненная в виде сопла, расположенного в месте свертывания вихреобразной водяной оболочки, причем диафрагма расположена широким срезом сопла внутрь камеры испарения. Предложенное изобретение позволяет повысить эффективность, снизить тепловую нагрузку на элементы конструкции устройства за счет более эффективного охлаждения и упростить конструкцию.
Недостаток известного парогазогенератора заключается в неэффективном использовании теплоты высокотемпературных продуктов сгорания водорода в кислороде вследствие их постоянного принудительного охлаждения в камере сгорания, что связано со значительным количеством отводимой теплоты, необходимой для изменения фазового состояния балластировочной воды по сравнению с их охлаждением в процессе осуществления перегрева основного рабочего тела паротурбинной установки, например, свежего пара АЭС. Это снижает эффективность и надежность пароводородного перегрева свежего пара в цикле влажно-паровой АЭС. Также недостатком является наличие в получаемом паре продуктов химического недожога, что опасно детонацией в процессе расширения пара в паротурбинной установке.
Известно электрогенерирующее устройство с высокотемпературной паровой турбиной, включающее паровой котел, высокотемпературный Н2/О2-пароперегреватель, теплоутилизационный котел, паровую турбину с электрогенератором и конденсатором, установку для получения водорода из природного газа методом конверсии, установку для производства кислорода методом разделения воздуха (см. патент РФ на полезную модель №2335642, МПК F01K 13/00, опубл. 27.05.2007 г.). В высокотемпературном Н2/О2-пароперегревателе водяной пар перегревается за счет поступления и сжигания в нем водорода с кислородом в среде водяного пара без промежуточной теплообменной поверхности. Для полезного использования энергии уходящих газов из установки для конверсии природного газа в водород установлен утилизационный котел, выход пара из которого связан с промежуточным вводом пара в турбину с электрогенератором и (или) с системой охлаждения проточной части турбины. Устройство предназначено для производства электроэнергии с использованием высокотемпературной паровой турбины с комбинированным, в том числе водородным, топливом.
Недостатком данной полезной модели является невозможность ее использования в случае, когда получаемый водяной пар имеет температуру меньше, чем температура самовоспламенения водорода в смеси с кислородом, а также когда расход пара снижен или полностью отсутствует, поскольку не обеспечивается понижение (регулирование) температуры водородно-кислородного пара. Смешение пара с продуктами сгорания водорода и кислорода опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.
Известен вихревой водород-кислородный пароперегреватель (см. патент РФ на изобретение №2361146, МПК F22G1/16, опубл. 10.07.2009). Вихревой водород-кислородный пароперегреватель, содержащий запальное устройство, магистрали подвода горючего (водорода) и окислителя (кислорода), камеры сгорания и смешения, форсунки окислителя и горючего, дополнительно содержит диафрагмированное выходное сопло, а также патрубок и кольцевой канал подачи вторичного пара, конический стабилизатор пламени, пламенную трубу, аксиальное закручивающее устройство, конический стабилизатор пламени, зону смешения вторичного пара с окислителем. Водяной пар из котла или низкотемпературного перегревателя с температурой 100-250°C перегревается за счет сжигания водорода в кислороде и смешивается с основным паром. Изобретение обеспечивает повышение качества равномерности температурного поля на выходе из пароперегревателя, обеспечение возможности регулирования температуры горения, обеспечение условий устойчивого горения.
Недостатком данного изобретения является невозможность работы данной системы в условиях сниженного расхода водяного пара или полном его отсутствии из котла или низкотемпературного перегревателя, поскольку не обеспечивается понижение температуры водородно-кислородного пара. Это снижает надежность пароводородного перегрева свежего пара в цикле влажно-паровой АЭС. Смешение пара с продуктами сгорания водорода и кислорода опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.
Известна система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции (см. патент РФ №2427048, МПК G21D 5/16, F22B 1/26, F01K 3/18, опубл. 10.11.2010 г.). Система сжигания водорода для пароводородного перегрева свежего пара в цикле АЭС, включающая водород-кислородный парогенератор, снабженный запальным устройством, содержащая магистрали подвода окислителя (кислорода) и горючего (водорода), водород-кислородную камеру сгорания первоначального нестехиометрического окисления, дожигающую водород-кислородную камеру сгорания стехиометрического окисления, полость смешения высокотемпературного пара со свежим паром на участке перед цилиндром высокого давления паровой турбины, при этом дожигающая водород-кислородная камера сгорания стехиометрического окисления выполнена в виде диффузора, размещенного в полости смешения высокотемпературного пара со свежим паром, в связи с чем камера сгорания охлаждается за счет обтекания свежим паром.
Недостатком данного изобретения является невозможность работы системы в условиях сниженного расхода свежего пара или полном его отсутствии, поскольку не обеспечивается понижение (регулирование) температуры водород-кислородного пара. Это снижает надежность пароводородного перегрева свежего пара в цикле влажно-паровой АЭС. Смешение перегреваемого пара с продуктами сгорания водорода и кислорода опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.
Известна система сжигания водорода в цикле АЭС с регулированием температуры водород-кислородного пара (см. патент РФ №2488903, МПК G21D 5/16, опубл. 27.07.2013 г.). Изобретение относится к области атомной энергетики и предназначено для использования на паротурбинных установках атомных электрических станций (АЭС) при температуре рабочего тела ниже температуры самовоспламенения водорода в смеси с кислородом, а также пара в условиях сниженного расхода свежего пара или полном его отсутствии. Система сжигания водорода в цикле АЭС включает водород-кислородный парогенератор с запальным устройством, магистрали подвода окислителя (кислорода) и горючего (водорода), водород-кислородную камеру сгорания первоначального нестехиометрического окисления, дожигающую водород-кислородную камеру сгорания стехиометрического окисления, полость смешения высокотемпературного пара со свежим паром на участке перед цилиндром высокого давления паровой турбины. Дожигающая камера выполнена в виде диффузора и размещена в полости смешения высокотемпературного пара со свежим паром. К ней подсоединены магистрали подачи балластировочной воды со встроенными форсунками, пролегающие вдоль камеры сгорания с противоположных сторон. Встроенные форсунки сообщаются с внутренней областью дожигающей камеры.
Недостатком данного изобретения является смешение перегреваемого пара с продуктами сгорания водорода и кислорода, что опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.
Наиболее близким аналогом является способ повышения КПД и мощности двухконтурной атомной станции (см. патент РФ на изобретение №2335641, МПК F01К 3/18; G 21D 5/16, опубл. 10.10.2013 г.). Известный способ предназначен для повышения КПД и мощности двухконтурной атомной станции путем перегрева пара после реакторного парогенератора в котле-пароперегревателе с независимым источником тепловой энергии. Известный способ заключается в том, что в котле-пароперегревателе температуру пара повышают до 800-850°C, при которой при расширении пара в паротурбинной установке из последней ступени цилиндра низкого давления получают насыщенный пар со степенью сухости не менее 99% или слабо перегретый пар с температурой перегрева не более 5°C, тем самым обеспечивается повышение КПД паротурбинной установки и мощности атомной станции.
Недостатком известного способа (первый вариант) является то, что в данном варианте в качестве окислителя используется воздух, что не может обеспечить эффективное сжигание водорода и приводит к значительным выбросам окислов азота в атмосферу. Недостатком известного способа (второй вариант) является то, что при сжигании водорода в кислородной среде с получением высокотемпературного пара и смешение перегреваемого пара с продуктами сгорания при температуре получаемого перегретого пара 800-850°C опасно детонацией продуктов химического недожога, а также продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.
Задачей настоящего изобретения является обеспечение безопасного и эффективного сжигания водорода в кислороде для повышения маневренности и эффективности атомных электрических станций.
Техническим результатом, достигаемым при использовании настоящего изобретения, является эффективное и безопасное сжигание водорода с кислородом посредством замкнутой системы сжигания для выработки дополнительной электроэнергии на АЭС за счет повышения параметров острого пара или пара после промперегрева.
Указанный технический результат достигается тем, что на АЭС, содержащей основной реакторный парогенератор (ПГ), паротурбинную установку (ПТУ), котел-пароперегреватель (КП), подвод топлива и окислителя, согласно изобретению подача кислорода в КП через смесительное устройство (СУ) осуществляется с определенным избытком, при этом продукты сгорания после КП направляются в охладитель-конденсатор (О) для отделения непрореагировавшего избытка кислорода от водяного пара с последующей подачей непрореагировавшего избытка кислорода посредством компрессора (К) обратно в СУ КП для сжигания водородного топлива и перегрева пара после основного реакторного парогенератора для повышения мощности и эффективности АЭС.
Сущность изобретения заключается в обеспечении безопасного и эффективного сжигания водорода в кислородной среде посредством замкнутой системы сжигания для повышения мощности и эффективности АЭС за счет водородного перегрева пара в цикле паротурбинной установки. Это достигается за счет того, что сжигание водорода осуществляется с избытком кислорода, что приводит к снижению температуры продуктов сгорания до требуемого уровня и исключению недожога, а непрореагировавший избыток кислорода после конденсации водяного пара из продуктов сгорания в охладителе-конденсаторе возвращается на вход в котел-пароперегреватель посредством компрессора для реализации процесса горения водородного топлива.
Изобретение иллюстрируется чертежом (фиг. 1), где показана принципиальная технологическая схема водородного перегрева пара на АЭС. Позиции на чертежах обозначают следующее: 1 - котел-пароперегреватель; 2 - смесительное устройство; 3 - охладитель-конденсатор; 4 - компрессор; СРП - система регенеративного подогрева.
Работа осуществляется следующим способом. Сухой насыщенный пар из ПГ поступает в котел-пароперегреватель 1, где за счет сжигания водородного топлива в кислороде, подаваемых в смесительное устройство 2, осуществляется перегрев пара. После котла-пароперегревателя 1 перегретый пар поступает в основную ПТУ для выработки мощности. Для снижения температуры продуктов сгорания и предотвращения прожога теплообменных поверхностей котла-пароперегревателя 1 и исключения недожога в смесительное устройство 2 подается избыточного количество кислорода. Продукты сгорания после котла-пароперегревателя 1 направляются в охладитель-конденсатор 3, где за счет конденсации водяного пара происходит отделение непрореагировавшего кислорода от водяного пара, образующегося при сжигании водорода. Сконденсировавшийся водяной пар в виде горячей воды направляется в систему регенеративного подогрева основной ПТУ, а отделенный кислород посредством компрессора 4 направляется в смесительное устройство 2 для реализации процесса горения.
Отличительным признаком способа водородного перегрева пара на АЭС является обеспечение безопасного и эффективного сжигания водорода в кислородной среде посредством замкнутой системы сжигания при повышении эффективности и мощности АЭС посредством повышения температуры пара в цикле паротурбинной установки за счет сжигания водородного топлива в кислороде.
Claims (1)
- Способ водородного перегрева пара на АЭС, содержащей основной реакторный парогенератор, паротурбинную установку, котел-пароперегреватель, подвод топлива и окислителя, отличающийся тем, что подача кислорода в котел-пароперегреватель через смесительное устройство осуществляется с определенным избытком для снижения температуры продуктов сгорания и исключения недожога, при этом продукты сгорания после котла-пароперегревателя направляются в охладитель-конденсатор для отделения непрореагировавшего избытка кислорода от водяного пара путем его конденсации с последующей подачей непрореагировавшего избытка кислорода посредством компрессора обратно в смесительное устройство котла-пароперегревателя для сжигания водородного топлива и перегрева пара после основного реакторного парогенератора для повышения мощности и эффективности АЭС.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017133941A RU2661231C1 (ru) | 2017-09-28 | 2017-09-28 | Способ водородного перегрева пара на аэс |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017133941A RU2661231C1 (ru) | 2017-09-28 | 2017-09-28 | Способ водородного перегрева пара на аэс |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2661231C1 true RU2661231C1 (ru) | 2018-07-13 |
Family
ID=62917202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017133941A RU2661231C1 (ru) | 2017-09-28 | 2017-09-28 | Способ водородного перегрева пара на аэс |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2661231C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2707182C1 (ru) * | 2019-02-25 | 2019-11-25 | Рашид Зарифович Аминов | Способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом |
RU2709783C1 (ru) * | 2019-06-07 | 2019-12-20 | Рашид Зарифович Аминов | Способ водородного подогрева питательной воды на АЭС |
RU2736603C1 (ru) * | 2019-08-15 | 2020-11-19 | Артём Николаевич Байрамов | Система безопасного использования водорода при повышении мощности двухконтурной аэс выше номинальной |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7178339B2 (en) * | 2004-04-07 | 2007-02-20 | Lockheed Martin Corporation | Closed-loop cooling system for a hydrogen/oxygen based combustor |
RU2335642C1 (ru) * | 2007-02-19 | 2008-10-10 | Олег Николаевич Фаворский | Электрогенерирующее устройство с высокотемпературной паровой турбиной |
RU2335641C2 (ru) * | 2006-08-17 | 2008-10-10 | Закрытое акционерное общество "ЭНТЭК" (ЗАО "ЭНТЭК") | Способ повышения кпд и мощности двухконтурной атомной станции |
RU2361146C1 (ru) * | 2007-12-17 | 2009-07-10 | Государственное образовательное учреждение высшего профессионального образования Рыбинская государственная авиационная технологическая академия имени П.А. Соловьева | Вихревой водород-кислородный пароперегреватель |
RU2427048C2 (ru) * | 2009-05-04 | 2011-08-20 | Рашид Зарифович Аминов | Система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции |
RU2488903C1 (ru) * | 2012-05-03 | 2013-07-27 | Рашид Зарифович Аминов | Система сжигания водорода в цикле аэс с регулированием температуры водород-кислородного пара |
-
2017
- 2017-09-28 RU RU2017133941A patent/RU2661231C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7178339B2 (en) * | 2004-04-07 | 2007-02-20 | Lockheed Martin Corporation | Closed-loop cooling system for a hydrogen/oxygen based combustor |
RU2335641C2 (ru) * | 2006-08-17 | 2008-10-10 | Закрытое акционерное общество "ЭНТЭК" (ЗАО "ЭНТЭК") | Способ повышения кпд и мощности двухконтурной атомной станции |
RU2335642C1 (ru) * | 2007-02-19 | 2008-10-10 | Олег Николаевич Фаворский | Электрогенерирующее устройство с высокотемпературной паровой турбиной |
RU2361146C1 (ru) * | 2007-12-17 | 2009-07-10 | Государственное образовательное учреждение высшего профессионального образования Рыбинская государственная авиационная технологическая академия имени П.А. Соловьева | Вихревой водород-кислородный пароперегреватель |
RU2427048C2 (ru) * | 2009-05-04 | 2011-08-20 | Рашид Зарифович Аминов | Система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции |
RU2488903C1 (ru) * | 2012-05-03 | 2013-07-27 | Рашид Зарифович Аминов | Система сжигания водорода в цикле аэс с регулированием температуры водород-кислородного пара |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2707182C1 (ru) * | 2019-02-25 | 2019-11-25 | Рашид Зарифович Аминов | Способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом |
RU2709783C1 (ru) * | 2019-06-07 | 2019-12-20 | Рашид Зарифович Аминов | Способ водородного подогрева питательной воды на АЭС |
RU2736603C1 (ru) * | 2019-08-15 | 2020-11-19 | Артём Николаевич Байрамов | Система безопасного использования водорода при повышении мощности двухконтурной аэс выше номинальной |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2427048C2 (ru) | Система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции | |
RU2488903C1 (ru) | Система сжигания водорода в цикле аэс с регулированием температуры водород-кислородного пара | |
KR100363071B1 (ko) | 가스터빈및증기터빈플랜트와그리고가스터빈및증기터빈플랜트를작동시키기위한방법 | |
RU2635012C1 (ru) | Парогазогенератор | |
RU2644668C1 (ru) | Парогазогенератор | |
RU2633741C1 (ru) | Парогазогенератор | |
MY190688A (en) | Low calorific value coal gas power generation system and power generation method | |
RU2371594C1 (ru) | Способ образования пара в парогазогенераторе и устройство для его осуществления | |
RU2661231C1 (ru) | Способ водородного перегрева пара на аэс | |
RU2012101463A (ru) | Способ удаления увлеченного газа в системе генерирования мощности с комбинированным циклом | |
RU2624690C1 (ru) | Газотурбинная установка и способ функционирования газотурбинной установки | |
RU2709237C1 (ru) | Система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции с закрученным течением компонентов и с использованием ультравысокотемпературных керамических материалов | |
SE9601898D0 (sv) | Sätt att generera el i gasturbin på basis av gasformiga bränslen i cykel med restprodukterna koldioxid respektive vatten | |
RU2707182C1 (ru) | Способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом | |
RU2612491C1 (ru) | Парогазогенератор | |
RU2758644C1 (ru) | Система сжигания водорода в кислороде в закрученном потоке повышенной безопасности с использованием ультравысокотемпературных керамических материалов для перегрева рабочего тела в паротурбинном цикле атомной электрической станции | |
RU2709783C1 (ru) | Способ водородного подогрева питательной воды на АЭС | |
JPS6332110A (ja) | 水素・酸素燃焼蒸気タ−ビンプラント | |
RU2076929C1 (ru) | Способ получения пиковой мощности на парогазовой газотурбинной установке и парогазовая установка для осуществления способа | |
RU2711260C1 (ru) | Парогазовая установка | |
RU167924U1 (ru) | Бинарная парогазовая установка | |
RU2774007C1 (ru) | Способ работы контактной газотурбинной установки на метановодородной парогазовой смеси | |
RU2416131C1 (ru) | Способ управления мощностью турбоустановки атомной станции | |
CN218095950U (zh) | 一种废液和燃油的加热装置及危险废弃物的焚烧发电系统 | |
JPH0323807B2 (ru) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190929 |