[go: up one dir, main page]

RU2658906C1 - Статический тиристорный компенсатор - Google Patents

Статический тиристорный компенсатор Download PDF

Info

Publication number
RU2658906C1
RU2658906C1 RU2017112007A RU2017112007A RU2658906C1 RU 2658906 C1 RU2658906 C1 RU 2658906C1 RU 2017112007 A RU2017112007 A RU 2017112007A RU 2017112007 A RU2017112007 A RU 2017112007A RU 2658906 C1 RU2658906 C1 RU 2658906C1
Authority
RU
Russia
Prior art keywords
thyristors
group
terminals
network
groups
Prior art date
Application number
RU2017112007A
Other languages
English (en)
Inventor
Илья Николаевич Джус
Original Assignee
Илья Николаевич Джус
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Илья Николаевич Джус filed Critical Илья Николаевич Джус
Priority to RU2017112007A priority Critical patent/RU2658906C1/ru
Application granted granted Critical
Publication of RU2658906C1 publication Critical patent/RU2658906C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

Изобретение относится к области электротехники и электроэнергетики. Блок (7) управления подает на тиристоры (3 и 4) симметричные отпирающие импульсы. В зависимости от величины этого угла изменяется реактивная мощность, потребляемая реакторами (1 и 2). По гармоническому воздействию на сеть такое симметричное управление эквивалентно обычному статическому тиристорному компенсатору (СТК). Одна полуволна тока протекает через тиристор, а другая - через диод. Так как одна полуволна тока течет через диод и падение напряжения на диоде меньше, чем на тиристоре, это позволяет снизить общие потери энергии. 3 н. и 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области электротехники и электроэнергетики. Широко известен статический тиристорный компенсатор реактивной мощности /1/ (далее СТК), содержащий трехфазную группу реакторов, одними выводами предназначенных для подключения к сети, а вторые выводы подключены к парам встречно-параллельных тиристоров, объединенных вторыми выводами. Мощность такого устройства ограничена из-за ограниченной величины номинального тока тиристоров. Наиболее близким по сути - прототипом является /2/ СТК, содержащий две трехфазные группы реакторов, одними выводами предназначенных для подключения к сети, а одна группа вторыми выводами подключена к катодам тиристоров, а вторая группа - к анодам других тиристоров. Вторые выводы тиристоров внутри каждой группы объединены. Параллельно встречно упомянутым тиристорам включены другие тиристоры. Недостаток такого СТК состоит в сложности, обусловленной необходимостью использования двух тиристорных мостов, относительно низком К.П.Д. Техническая задача, решаемая в предложении, состоит в упрощении и повышении К.П.Д.
Техническая задача решается в первом варианте СТК, содержащего две трехфазные группы реакторов (электродвигателей), одними выводами предназначенных для подключения к сети, а одна группа вторыми выводами подключена к катодам тиристоров, а вторая группа - к анодам других тиристоров и вторые выводы тиристоров внутри каждой группы объединены за счет того, что встречно параллельно тиристорам подключены диоды. Во втором варианте СТК, содержащего трехобмоточный реактор-трансформатор, выводами сетевой обмотки предназначенный для подключения к сети, а вторичные обмотки соединены звездой или треугольником, образуя две трехфазные одинаковые группы, одна группа вторыми выводами подключена к катодам тиристоров, а вторая группа - к анодам других тиристоров и вторые выводы тиристоров внутри каждой группы объединены, задача решается за счет того, что встречно параллельно тиристорам подключены диоды. В третьем варианте в СТК, содержащем трехобмоточный реактор-трансформатор, выводами сетевой обмотки предназначенный для подключения к сети, а вторичные обмотки соединены звездой или треугольником, образуя две трехфазные группы, связанные с тиристорами, задача решается за счет того, что группы имеют диаметрально противоположные номера групп соединения обмоток и каждая подключена к одноименным выводам троек тиристоров, а вторыми выводами эти тройки тиристоров соединены и встречно параллельно тиристорам подключены диоды. Дополнительно к 2 вариантам тройки тиристоров вторыми выводами соединены. И в последнем варианте в СТК снабжен вторым аналогичным блоком, и два блока за счет разного типа соединения первичных или вторичных обмоток обеспечивают взаимный сдвиг токов на n30 электроградусов (12-пульсный режим), где n=1, 3, 5, 7, 11.
На фиг. 1 приведена однолинейная схема СТК к первому пункту формулы. Здесь обозначено 1 и 2 две трехфазные группы реакторов (электродвигателей, нагревателей), последовательно с которыми в каждой фазе включены тиристоры 3 и 4 встречного направления. Встречно параллельно последним включены диоды 5 и 6. Имеется блок управления 7.
СТК работает следующим образом. Блок 7 управления подает на тиристоры 3 и 4 симметричные отпирающие импульсы с определенным углом запаздывания по отношению к переходам напряжения сети через ноль. В зависимости от величины этого угла изменяется реактивная мощность, потребляемая реакторами 1 и 2. Если 1 и 2 асинхронные электродвигатели, то регулируемое таким образом напряжение позволяет изменять как потребление реактивной мощности, так и скорость вращения. Если 1 и 2 нагреватели, то таким образом регулируется температура. По гармоническому воздействию на сеть такое симметричное управление эквивалентно обычному СТК /1, 2/. На фиг. 2, 3, 4 приведена однолинейная схема СТК ко второму, третьему и четвертому пунктам формулы. Здесь вместо реакторов используется трансреактор, представляющий собой трехфазный трансформатор (или три однофазных трансформатора, объединенных в трехфазную группу) с высокой индуктивностью рассеяния (до 100%), с первичной обмоткой 8 и двумя вторичными - 9, 10. На фиг. 2 номера групп соединения обмоток 8 и 9 одинаковы (N), а на фиг. 3 векторы напряжений взаимно противоположные -N и N+6. На фиг. 4 вентильные группы объединены общими точками звезд соединения вентилей. При необходимости (целесообразности) эта точка может быть заземлена. На фиг. 5 приведена блочная схема к пятому пункту формулы. Блоки 11 и 12 аналогичны фиг. 2-4. Но в таком варианте первичные или вторичные обмотки реактор-трансформаторов обеспечивают взаимный сдвиг напряжений на n30 электроградусов, где n=1, 3, 5, 7, 11. Такой сдвиг обеспечивает аналогичный сдвиг токов, что дает 12-пульсный режим. Этим снижаются искажения суммарного тока сети. При отсутствии импульсов с блока 7 управления ток в обмотках 8, 9 не протекает, так как все диоды 5, 6 направлены встречно. Во всех схемах при работе через реакторы 1 и 2 протекает ток в обоих направлениях. Одна полуволна тока протекает через тиристор, а другая через диод. Падение напряжения на диоде меньше, чем на тиристоре, что позволяет снизить общие потери энергии. Упрощается также система охлаждения.
Источники информации
1. Авторское свидетельство СССР №538454, кл. H02J 3/18, 1972.
2. Ивакин В.Н. и др. Электропередачи и вставки постоянного тока и статические тиристорные компенсаторы. М.: Энергоатомиздат, 1993, стр. 128, рис. 3.28.

Claims (5)

1. Статический тиристорный компенсатор, содержащий две трехфазные группы реакторов (электродвигателей, нагревателей), одними выводами предназначенных для подключения к сети, а одна группа вторыми выводами подключена к катодам тиристоров, а вторая группа - к анодам других тиристоров и вторые выводы тиристоров внутри каждой группы объединены, отличающийся тем, что встречно параллельно тиристорам подключены диоды.
2. Статический тиристорный компенсатор, содержащий трехобмоточный реактор-трансформатор, выводами сетевой обмотки предназначенный для подключения к сети, а вторичные обмотки соединены звездой или треугольником, образуя две трехфазные одинаковые группы, одна группа вторыми выводами подключена к катодам тиристоров, а вторая группа - к анодам других тиристоров, и вторые выводы тиристоров внутри каждой группы объединены, отличающийся тем, что встречно параллельно тиристорам подключены диоды.
3. Статический тиристорный компенсатор, содержащий трехобмоточный реактор-трансформатор, выводами сетевой обмотки предназначенный для подключения к сети, а вторичные обмотки соединены звездой или треугольником, образуя две трехфазные группы, связанные с тиристорами, отличающийся тем, что группы имеют диаметрально противоположные номера групп соединения обмоток и каждая подключена к одноименным выводам троек тиристоров, а вторыми выводами эти тройки тиристоров соединены и встречно параллельно тиристорам подключены диоды.
4. Статический тиристорный компенсатор по пп. 2, 3, отличающийся тем, что тройки тиристоров вторыми выводами соединены.
5. Статический тиристорный компенсатор по пп. 2, 3, 4, отличающийся тем, что он снабжен вторым аналогичным блоком и два блока за счет разного типа соединения первичных или вторичных обмоток обеспечивают взаимный сдвиг токов на n30 электроградусов (12-пульсный режим), где n=1, 3, 5, 7, 11.
RU2017112007A 2017-04-10 2017-04-10 Статический тиристорный компенсатор RU2658906C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017112007A RU2658906C1 (ru) 2017-04-10 2017-04-10 Статический тиристорный компенсатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017112007A RU2658906C1 (ru) 2017-04-10 2017-04-10 Статический тиристорный компенсатор

Publications (1)

Publication Number Publication Date
RU2658906C1 true RU2658906C1 (ru) 2018-06-26

Family

ID=62713554

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017112007A RU2658906C1 (ru) 2017-04-10 2017-04-10 Статический тиристорный компенсатор

Country Status (1)

Country Link
RU (1) RU2658906C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU734863A1 (ru) * 1977-12-08 1980-05-15 Сибирский энергетический институт Трехфазный преобразователь напр жени
US4891569A (en) * 1982-08-20 1990-01-02 Versatex Industries Power factor controller
RU2254658C1 (ru) * 2004-03-02 2005-06-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Трёхфазный транзисторный источник реактивных токов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU734863A1 (ru) * 1977-12-08 1980-05-15 Сибирский энергетический институт Трехфазный преобразователь напр жени
US4891569A (en) * 1982-08-20 1990-01-02 Versatex Industries Power factor controller
RU2254658C1 (ru) * 2004-03-02 2005-06-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Трёхфазный транзисторный источник реактивных токов

Similar Documents

Publication Publication Date Title
Abdollahi et al. Inclusive design and implementation of novel 40-pulse AC–DC converter for retrofit applications and harmonic mitigation
US9209679B2 (en) Method and apparatus for transferring power between AC and DC power systems
AU2012216369A1 (en) Power conversion system and method
Yang et al. DC voltage compensation strategy for parallel hybrid multilevel voltage-source converter
CN105790606B (zh) 混合式p型24脉冲自耦变压整流器
Bevin et al. Flexible step-voltage regulator for unbalanced distribution networks
WO2018192845A1 (en) Longitudinal voltage regulation at the line terminals of a phase shifting transformer
CN106662611A (zh) 用于对大功率半导体元件进行测试的方法
Van Hertem et al. High voltage direct current (HVDC) electric power transmission systems
RU2365019C1 (ru) Устройство для межфазного распределения тока
RU2658906C1 (ru) Статический тиристорный компенсатор
Xiao-Qiang et al. Thirty-six pulse rectifier scheme based on zigzag auto-connected transformer
Li et al. Voltage control on unbalanced LV networks using tap changing transformers
Babu et al. Power upgrading of transmission line by combining AC–DC transmission
RU2657474C1 (ru) Реактор-трансформаторный тиристорный компенсатор (варианты)
Bosneaga et al. Investigation of Supply Phase Failure in Phase-Shifting Transformer with Hexagon Scheme and Regulating Autotransformer
US10938213B2 (en) Power transmission via a bipolar high-voltage DC transmission link
Roy et al. A paper of determination of controlling characteristics of the monopolar HVDC system
EP3133710A1 (en) Adaptable modular multilevel converter
RU2469457C1 (ru) Преобразователь трехфазного переменного напряжения в постоянное (варианты)
Khramshin et al. Methodic of calculation of the non-sinusoidal voltage index within electrical networks with high-voltage frequency convertors
Kumari et al. Multi-winding transformer based high resolution power flow controller
RU2642488C1 (ru) Система возбуждения асинхронизированной электрической машины
Mohapatra Power Upgradation By Simultaneous AC-DC Power Transmission System
RU2604491C1 (ru) Каскадный преобразователь трехфазного переменного напряжения (варианты)