RU2656234C1 - Synchronization of temporary characteristics for declined (dl) transmissions in coordinated multi-point (comp) systems - Google Patents
Synchronization of temporary characteristics for declined (dl) transmissions in coordinated multi-point (comp) systems Download PDFInfo
- Publication number
- RU2656234C1 RU2656234C1 RU2017105634A RU2017105634A RU2656234C1 RU 2656234 C1 RU2656234 C1 RU 2656234C1 RU 2017105634 A RU2017105634 A RU 2017105634A RU 2017105634 A RU2017105634 A RU 2017105634A RU 2656234 C1 RU2656234 C1 RU 2656234C1
- Authority
- RU
- Russia
- Prior art keywords
- received
- node
- interacting
- nodes
- time
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims description 111
- 238000000034 method Methods 0.000 claims abstract description 25
- 230000004044 response Effects 0.000 claims description 96
- 230000002123 temporal effect Effects 0.000 claims description 63
- 239000002131 composite material Substances 0.000 claims description 50
- 238000005259 measurement Methods 0.000 claims description 28
- 238000012545 processing Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000004891 communication Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract 1
- 230000006870 function Effects 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- URWAJWIAIPFPJE-YFMIWBNJSA-N sisomycin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC=C(CN)O2)N)[C@@H](N)C[C@H]1N URWAJWIAIPFPJE-YFMIWBNJSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0404—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/007—Unequal error protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0076—Distributed coding, e.g. network coding, involving channel coding
- H04L1/0077—Cooperative coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2646—Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2662—Symbol synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
- H04L27/2675—Pilot or known symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/22—Arrangements affording multiple use of the transmission path using time-division multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
- H04W68/02—Arrangements for increasing efficiency of notification or paging channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/40—Connection management for selective distribution or broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/12—Arrangements providing for calling or supervisory signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
- H04W52/244—Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/34—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/02—Selection of wireless resources by user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/14—WLL [Wireless Local Loop]; RLL [Radio Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Radio Transmission System (AREA)
Abstract
Description
Уровень техникиState of the art
В технологии беспроводной мобильной связи используются разные стандарты и протоколы для передачи данных между узлом (например, станцией передачи) и беспроводным устройством. Некоторые беспроводные устройства выполняют обмен данными, используя ортогональное мультиплексирование с частотным разделением (OFDM), в комбинации с требуемой схемой цифровой модуляции сигнала через физический уровень. Стандарты и протоколы, в которых используются OFDM, включают в себя Долгосрочное развитие (LTE) Проекта партнерства третьего поколения (3GPP), стандарт Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.16 (например, 802.16e, 802.16m), который является общеизвестным для промышленных групп, таких как WiMAX (Всемирное взаимодействие для доступа в микроволновом диапазоне), и стандарт IEEE 802.11, который является общеизвестным для промышленных групп, как WiFi. Wireless mobile technology uses different standards and protocols for transferring data between a node (such as a transmission station) and a wireless device. Some wireless devices exchange data using orthogonal frequency division multiplexing (OFDM) in combination with the desired digital signal modulation scheme through the physical layer. The standards and protocols that use OFDM include the Long-Term Development (LTE) of the Third Generation Partnership Project (3GPP), the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard (e.g., 802.16e, 802.16m), which is well known to industrial groups, such as WiMAX (Worldwide Interoperability for Microwave Access), and the IEEE 802.11 standard, which is well known for industrial groups like WiFi.
В системах сетей радиодоступа (RAN) 3GPP LTE узел может представлять собой комбинацию Узла Развернутой универсальной наземной сети радиодоступа (e-UTRAN) (также обычно обозначается, как развитый Узел B, улучшенный Узел B, eNodeB или eNB) и контроллеров радиосети (RNC), которые выполняют обмен данными с беспроводным устройством (например, мобильным устройством), известным, как оборудование пользователя (UE). Передача по нисходящему каналу (DL) может представлять собой передачу данных из станции узла (или eNodeB) в беспроводное устройство (или UE), и передача по восходящему каналу передачи (UL), может представлять собой передачу данных из беспроводного устройства в узел. In 3GPP LTE Radio Access Network (RAN) systems, a node may be a combination of a Deployed Universal Terrestrial Radio Access Network (e-UTRAN) Node (also commonly referred to as Evolved Node B, Enhanced Node B, eNodeB or eNB) and Radio Network Controllers (RNC), which exchange data with a wireless device (e.g., a mobile device) known as user equipment (UE). Downlink (DL) transmission may be data transmission from a node station (or eNodeB) to a wireless device (or UE), and uplink transmission (UL) may be data transmission from a wireless device to a node.
В однородных сетях, узел, также называемый макроузлом, может обеспечить основный беспроводный охват для беспроводных устройств в соте. Сота может представлять собой область, в которой работают беспроводные устройства для обмена данными с макроузлом. Гетерогенные сети (HetNet) используются для обработки увеличенной нагрузки трафика на макроузлы, из-за увеличенного использования и функций беспроводных устройств. HetNet могут включать в себя уровень запланированных макроузлов большой мощности (или macro-eNB), на которые наложены уровни узлов более низкой мощности (micro-eNB, pico-eNB, femto-eNB или домашние eNB [HeNB]), которые могут быть развернуты с менее хорошо запланированным или полностью нескоординированным подходом в пределах области охвата (соты) макроузла. Узлы с малой мощностью (LPN), в общем, могут называться “узлами малой мощности”. Макроузел может использоваться для основной зоны охвата, и узлы малой мощности могут использоваться для заполнения пробелов зоны охвата, для улучшения пропускной способности в напряженных зонах или на границах между зонами охвата макроузлов, и для улучшения зоны охвата внутри помещения, где конструкции зданий мешают передаче сигналов. Координация взаимных помех между сотами (ICIC) или улучшенная ICIC (eICIC) может использоваться для координации ресурса, для уменьшения взаимных помех между узлами, такими как макроузлы и узлы малой мощности в HetNet. In homogeneous networks, a node, also called a macro node, can provide basic wireless coverage for wireless devices in a cell. A cell may be an area in which wireless devices for communicating with a macro node operate. Heterogeneous networks (HetNet) are used to handle the increased traffic load on macro nodes, due to the increased use and features of wireless devices. HetNet can include the level of planned high-power macro nodes (or macro-eNBs) that are superimposed with levels of lower-power nodes (micro-eNBs, pico-eNBs, femto-eNBs, or home eNBs [HeNBs] that can be deployed with less well-planned or completely uncoordinated approach within the scope of the macro node. Low Power Nodes (LPNs) can generally be called “low power nodes”. A macro node can be used for the main coverage area, and low power nodes can be used to fill the gaps in the coverage area, to improve throughput in stressed areas or at the boundaries between macro coverage areas, and to improve the indoor coverage area where building structures interfere with signal transmission. Inter-cell interference coordination (ICIC) or enhanced ICIC (eICIC) can be used to coordinate resources, to reduce mutual interference between nodes, such as macro nodes and low power nodes in HetNet.
Краткое описание чертежейBrief Description of the Drawings
Особенности и преимущества раскрытия будут понятны из следующего подробного описания, которое следует рассматривать совместно с приложенными чертежами, которые вместе иллюстрируют, в качестве примера, особенности раскрытия; и на которых: The features and advantages of the disclosure will be apparent from the following detailed description, which should be read in conjunction with the attached drawings, which together illustrate, by way of example, the features of the disclosure; and on which:
на фиг. 1 иллюстрируется схема передачи символа с мультиплексированием с ортогональным частотным разделением (OFDM) из макроузла и узла малой мощности (LPN) в наборе координации и принятого символа OFDM в беспроводном устройстве, и с регулированием окна быстрого преобразования Фурье (FFT), используя временные характеристики самого раннего принятого опорного сигнала (RS), в соответствии с примером;in FIG. 1 illustrates an orthogonal frequency division multiplexing (OFDM) symbol transmission scheme from a macro node and a low power node (LPN) in a coordination set and a received OFDM symbol in a wireless device, and by adjusting a fast Fourier transform (FFT) window using the time characteristics of the earliest a received reference signal (RS), in accordance with an example;
на фиг. 2 иллюстрируется схема передачи символа ортогонального мультиплексирования с разделением по частоте (OFDM) из макроузла и узла малой мощности (LPN) в наборе координации и принятого символа OFDM в беспроводном устройстве, и с регулированием окна быстрого преобразования Фурье (FFT), используя принятую мощность опорного сигнала (RSRP) и временные характеристики принятого опорного сигнала (RS), в соответствии с примером;in FIG. 2 illustrates a transmission scheme of an orthogonal frequency division multiplexing (OFDM) symbol from a macro node and a low power node (LPN) in a coordination set and a received OFDM symbol in a wireless device, and by adjusting a fast Fourier transform (FFT) window using the received reference signal power (RSRP) and temporal characteristics of a received reference signal (RS), in accordance with an example;
на фиг. 3 иллюстрируется схема передачи символа ортогонального мультиплексирования с разделением по частоте (OFDM) из множества взаимодействующих узлов в наборе координации и принятого символа OFDM в беспроводном устройстве, и с регулированием окна быстрого преобразования Фурье (FFT), используя принимаемую мощность опорного сигнала (RSRP) и временные характеристики принятого опорного сигнала (RS), в соответствии с примером;in FIG. 3 illustrates a transmission scheme of an orthogonal frequency division multiplexing (OFDM) symbol from a plurality of interacting nodes in a coordination set and a received OFDM symbol in a wireless device, and by adjusting the fast Fourier transform (FFT) window using received reference signal power (RSRP) and time characteristics of the received reference signal (RS), in accordance with an example;
на фиг. 4 иллюстрируется схема передачи символа ортогонального мультиплексирования с разделением по частоте (OFDM) из множества взаимодействующих узлов в наборе координации и принятого символа OFDM в беспроводном устройстве, и с регулированием окна обратного быстрого преобразования Фурье (IFFT) первого взаимодействующего узла, используя временные характеристики регулирования в соответствии с примером;in FIG. 4 illustrates a transmission scheme of an orthogonal frequency division multiplexing (OFDM) symbol from a plurality of interacting nodes in a coordination set and a received OFDM symbol in a wireless device, and by adjusting an inverse fast Fourier transform (IFFT) window of a first interacting node using timing control characteristics in accordance with an example;
на фиг. 5 иллюстрируется блок-схема фрейма радиоресурсов в соответствии с примером;in FIG. 5 illustrates a block diagram of a radio resource frame in accordance with an example;
на фиг. 6 показана блок-схема последовательности операций синхронизации временных характеристик для нисходящего канала (DL) передачи в скоординированной многоточечной (CoMP) системе в соответствии с примером; in FIG. 6 is a flowchart showing timing synchronization for a downlink (DL) transmission in a coordinated multipoint (CoMP) system in accordance with an example;
на фиг. 7 иллюстрируется блок-схема физического уровня передатчика и приемника в беспроводной сети с ортогональном мультиплексированием с разделением по частоте (OFDM), в соответствии с примером;in FIG. 7 illustrates a block diagram of a physical layer of a transmitter and a receiver in an orthogonal frequency division multiplexing (OFDM) wireless network, in accordance with an example;
на фиг. 8 показана блок-схема последовательности операций способа регулирования временных характеристик приемника беспроводного устройства в скоординированной многоточечной (CoMP) системе, в соответствии с примером; in FIG. 8 is a flowchart of a method for adjusting the timing of a receiver of a wireless device in a coordinated multipoint (CoMP) system, in accordance with an example;
на фиг. 9 показана блок-схема последовательности операций способа синхронизации временных характеристик нисходящего канала (DL) передачи первого взаимодействующего узла относительно передачи по нисходящему каналу второго взаимодействующего узла в скоординированной многоточечной (CoMP) системе, в соответствии с примером;in FIG. 9 is a flowchart of a method for synchronizing the timing of a downlink (DL) transmission of a first interacting node with respect to transmitting a downlink of a second interacting node in a coordinated multipoint (CoMP) system, in accordance with an example;
на фиг. 10 иллюстрируется блок-схема беспроводного устройства и множества взаимодействующих узлов, в соответствии с примером; иin FIG. 10 illustrates a block diagram of a wireless device and multiple interacting nodes, in accordance with an example; and
на фиг. 11 иллюстрируется схема беспроводного устройства в соответствии с примером.in FIG. 11 illustrates a diagram of a wireless device in accordance with an example.
Ниже будет сделана ссылка на примерные варианты осуществления, и конкретная терминология будет использоваться здесь для их описания. Однако следует понимать, что, таким образом, не предполагается какое-либо ограничение объема изобретения. Reference will be made below to exemplary embodiments, and specific terminology will be used here to describe them. However, it should be understood that, thus, no limitation of the scope of the invention is intended.
Подробное описание изобретенияDETAILED DESCRIPTION OF THE INVENTION
Перед раскрытием и описанием настоящего изобретения следует понимать, что настоящее изобретение не ограничено конкретными структурами, этапами процесса или материалами, раскрытыми здесь, но может быть расширено до его эквивалентов, которые будут понятны для специалиста в соответствующих областях техники. Следует также понимать, что применяемая здесь терминология, используется только для описания конкретных примеров и не предназначена для ограничения. Одинаковыми номерами ссылочных позиций на разных чертежах обозначены одинаковые элементы. Числа, представленные в блок-схемах последовательности операций и процессах, представлены для ясности иллюстрации этапов и операций и не обязательно обозначают конкретный порядок или последовательность. Before the disclosure and description of the present invention, it should be understood that the present invention is not limited to the specific structures, process steps or materials disclosed herein, but can be expanded to its equivalents, which will be understood by a person skilled in the relevant technical fields. It should also be understood that the terminology used here is used only to describe specific examples and is not intended to be limiting. The same reference numerals in different drawings denote the same elements. The numbers shown in the flowcharts and processes are presented for clarity of illustration of the steps and operations and do not necessarily indicate a specific order or sequence.
Примерные варианты осуществленияExemplary Embodiments
Исходный обзор вариантов осуществления технологии представлен ниже, и далее будут более подробно описаны конкретные варианты осуществления технологии. Данный исходный раздел краткого описания предназначен для того, чтобы читатели могли быстрее понять технологию, но не предназначены для идентификации ключевых особенностей или существенных особенностей технологии, и при этом он не предназначен для ограничения объема заявленного предмета изобретения. An initial overview of technology embodiments is presented below, and specific technology embodiments will be described in more detail below. This initial section of the brief description is intended so that readers can more quickly understand the technology, but are not intended to identify key features or significant features of the technology, nor is it intended to limit the scope of the claimed subject matter.
Скоординированная многоточечная (CoMP) система может использоваться для уменьшения помех от соседних узлов, как в однородных сетях, так и в HetNet. В скоординированной многоточечной (CoMP) системе узлы, называемые взаимодействующими узлами, также могут быть сгруппированы вместе с другими узлами, где узлы из множества сот могут передавать сигналы в беспроводное устройство и принимать сигналы из беспроводного устройства. Взаимодействующие узлы могут представлять собой узлы в однородной сети или макроузлы, и/или узлы малой мощности (LPN) в HetNet. Передача по нисходящему каналу передачи CoMP может быть разделена на две категории: скоординированное планирование или скоординированное формирование луча (CS/CB или CS/CBF), и общая обработка или общая передача (JP/JT). Используя CS/CB, заданный подфрейм может быть передан из одной соты в заданное беспроводное устройство (UE), и планирование, используя скоординированное формирование луча, динамически координируют между сотами, для управления и/или уменьшения взаимных помех между разными передачами. Для общей обработки общая передача может быть выполнена множеством сот в беспроводное устройство (UE), в котором множество узлов выполняют передачу одновременно, используя одни и те же временные и частотные радиоресурсы и/или динамический выбор соты.A coordinated multipoint (CoMP) system can be used to reduce interference from neighboring nodes, both in homogeneous networks and in HetNet. In a coordinated multipoint (CoMP) system, nodes, called cooperating nodes, can also be grouped together with other nodes, where nodes from multiple cells can transmit signals to a wireless device and receive signals from a wireless device. Interacting nodes can be nodes in a homogeneous network or macro nodes and / or low power nodes (LPN) in HetNet. CoMP downlink transmission can be divided into two categories: coordinated scheduling or coordinated beamforming (CS / CB or CS / CBF), and general processing or common transmission (JP / JT). Using CS / CB, a given subframe can be transmitted from one cell to a given wireless device (UE), and scheduling using coordinated beamforming is dynamically coordinated between cells to control and / or reduce mutual interference between different transmissions. For general processing, a common transmission can be performed by multiple cells to a wireless device (UE), in which many nodes transmit simultaneously using the same time and frequency radio resources and / or dynamic cell selection.
В системах, не являющихся CoMP, синхронизация временных характеристик в беспроводном устройстве (например, UE), может осуществляться, используя первичные сигналы синхронизации (PSS) и/или опорные сигналы, специфичные для соты (CRS). В системах передачи по нисходящему каналу (DL) CoMP и при развертывании с распределенными антеннами в разных географических местах положения, оценка временных характеристик, используя PSS и/или CRS, может не быть точной, поскольку точка передачи PSS и/или CRS (например, макроузел 210 в макросоте 212) может не быть той же, что и точка передачи физического нисходящего совместно используемого канала (PDSCH) (например, узел 220 малой мощности [LPN] в соте LPN 222), как представлено на фиг. 1. В примере динамического выбора точки (DPS) DL CoMP, используя общий идентификатор (ID) соты, показанный на фиг. 1, передача 250 DL (включая в себя PSS и/или CRS) из макроузла в беспроводное устройство (например, UE 230), и отдельная передача 260 DL (включая в себя данные или PDSCH) из LPN в беспроводное устройство, по существу, могут быть выполнены одновременно. Передачи DL могут поступать в беспроводное устройство в разное время из-за разных географических мест размещения узлов (например, макроузла и LPN) и/или из-за других факторов. Беспроводное устройство может быть синхронизировано с точкой передачи PSS и/или CRS (например, макроузлом). Например, символ ортогонального мультиплексирования с частотным разделением (OFDM) при передаче 252 макроузла и, по существу, такой же символ OFDM при передаче 262 LPN могут быть приняты беспроводным устройством (например, UE) в разные моменты времени, из-за задержки на распространение. Символ OFDM может включать в себя циклический префикс (CP). Прием UE передачи 254 макроузла DL может иметь большую задержку 256 на распространение, чем задержка 266 на распространение при приема UE передачи 264 LPN DL, из-за того, что UE расположено ближе к LPN, чем макроузел. Если PSS и/или CRS из макроузла используются для синхронизации временных характеристик, временные характеристики окна 280 быстрого преобразования Фурье (FFT) используемые для выборки символа OFDMA, могут быть синхронизированы с передачей макроузла DL, и эти передачи могут не быть самыми ранними передачами в наборе координации. Следовательно, передачи из других узлов (в наборе координации) с временными характеристиками символов OFDM, которые опережают окно выборки FFT могут применяться беспроводным устройством. Кроме того, в некоторых случаях передачи из макроузла могут не иметь набольшую мощность сигнала (например, принятую мощность опорного сигнала (RSRP)) и/или могут не обеспечивать передачу данных (например, PDSCH). В этих случаях может возникать взаимная помеха 270 между несущими (ICI) и взаимная помеха между символами (ISI), из-за неправильной установки временных характеристик FFT в беспроводном устройстве. Для уменьшения ICI и ISI и улучшения приема символа OFDMA, могут быть отрегулированы временные характеристики приемника, которые могут выполнять сдвиг окна FFT. Множество выборок FFT символа OFDM может быть захвачено в окне FFT, используемом для приема символа OFDM. Хотя на фиг. 1-2 представлены макроузел и LPN, могут использоваться любые типы узлов в системе DL CoMP. In non-CoMP systems, time synchronization in a wireless device (eg, UE) can be accomplished using primary synchronization signals (PSS) and / or cell-specific reference signals (CRS). In CoMP downlink (DL) transmission systems and when deployed with distributed antennas in different geographic locations, the estimation of temporal characteristics using PSS and / or CRS may not be accurate because the transmission point is PSS and / or CRS (for example, a macro node 210 in macro cell 212) may not be the same as the physical downlink shared channel (PDSCH) transmission point (for example, low power [LPN]
Синхронизация временных характеристик для временных характеристик приемника беспроводного устройства может быть модифицирована для использования оценок временных характеристик, генерируемых из опорных сигналов, специфичных для узла набора измерений CoMP, где в основной синхронизации временных характеристик используют PSS и/или CRS. Опорный сигнал, специфичный для узла, может включать в себя опорный сигнал информации состояния канала (CSI - RS). Временные характеристики приемника могут представлять собой внутренние временные характеристики приемника, такие как временные характеристики, когда приемник выполняет поиск границ символов OFDM или движений, когда приемник выполняет FFT (например, выборки символов OFDM). Поскольку разные конфигурации CSI- RS могут быть назначены для разных географических разделенных точек передачи (например, макроузел и LPN), оценка временных характеристик может осуществляться для каждой точки передачи независимо. Беспроводное устройство может рассчитывать фактические временные характеристики для приема данных или PDSCH из множества узлов на основе множества оценок временных характеристик из CSI- RS.The timing of the timing for the timing of the receiver of the wireless device may be modified to use timing estimates generated from reference signals specific to the CoMP measurement set node, where PSS and / or CRS is used in the timing timing of the main timing. The node-specific reference signal may include a channel status information reference signal (CSI-RS). The receiver timing may be the receiver's internal timing, such as timing when the receiver searches for OFDM symbol boundaries or motions when the receiver performs FFT (eg, OFDM symbol samples). Since different CSI-RS configurations can be assigned to different geographically separated transmission points (for example, macro node and LPN), time characteristics can be estimated for each transmission point independently. The wireless device can calculate the actual time characteristics for receiving data or PDSCH from a plurality of nodes based on a plurality of time response estimates from CSI-RS.
В одном примере беспроводное устройство может принимать множество опорных сигналов, специфичных для узла (RS), таких как CSI-RS, из множества взаимодействующих узлов (например, макроузла и LPN) в наборе координации системы CoMP (например, набор измерений CoMP). Набор координации может включать в себя, по меньшей мере, два взаимодействующих узла. Взаимодействующий узел может включать в себя узел обслуживания, макроузел или LPN. Беспроводное устройство может принимать RS, специфичный для узла, из, по меньшей мере, двух взаимодействующих узлов. Беспроводное устройство может генерировать или рассчитывать принятые временные характеристики RS из RS, специфичных для узла, для взаимодействующего узла. Беспроводное устройство может выполнять оценку композитных принятых временных характеристик RS из множества принятых временных характеристик RS. Принятые временные характеристики RS могут представлять собой временные характеристики из, по меньшей мере, двух взаимодействующих узлов. Беспроводное устройство может регулировать временные характеристики приемника на основе композитных принятых временных характеристик RS. Отрегулированные принятые временные характеристики могут представлять собой время, в которое приемники беспроводного устройства выполняют выборки или обрабатывают FFT для принятого сигнала или символа OFDM.In one example, a wireless device may receive a variety of node specific reference signals (RS), such as CSI-RS, from a plurality of interacting nodes (e.g., macro node and LPN) in a CoMP system coordination set (e.g., CoMP measurement set). The coordination set may include at least two interacting nodes. An interworking node may include a service node, a macro node, or an LPN. A wireless device may receive a node-specific RS from at least two communicating nodes. The wireless device can generate or calculate the received RS time characteristics from the node-specific RSs for the communicating node. The wireless device may evaluate the composite received RS timing from a plurality of received RS timing. The received RS timing characteristics may be timing characteristics of at least two interacting nodes. The wireless device can adjust the time characteristics of the receiver based on the composite received RS time characteristics. The adjusted received timing may be the time at which the receivers of the wireless device sample or process the FFT for the received signal or OFDM symbol.
В одном варианте осуществления беспроводное устройство может определять самые ранние принятые временные характеристики RS из множества принятых временных характеристик RS, представляющих различные взаимодействующие узлы. Оценка композитных принятых временных характеристик RS, используемых для регулирования временных характеристик приемника и/или окна FFT, может использовать или может включать в себя самые ранние принятые 282 RS. Самые ранние принятые временные характеристики RS могут представлять передачу DL с самой короткой задержкой на распространение относительно других взаимодействующих узлов. Оценка композитных принятых временных характеристик RS или фактических временных характеристик PDSCH может быть установлена как самая ранняя временная характеристика среди всех рассчитанных временных характеристик для набора измерений CoMP, представленного , где представляет собой временные характеристики физического нисходящего совместно используемого канала (PDSCH), представляет собой расчетную временную характеристику опорного сигнала информации о состоянии канала (CSI-RS) для каждого узла набора измерений CoMP, min() представляет собой функцию минимума, и I представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP (то есть, существует i узлов в наборе измерений CoMP). В беспроводном устройстве регулирование временных характеристик приемника или окна FFT на основе временных характеристик самого раннего принятого RS позволяет уменьшить временные характеристики сигналов, которые являются опережающими относительно интервала выборки FFT беспроводного устройства. В примере, оценки временных характеристик композитного принятого RS, используя временные характеристики самого раннего принятого RS, можно использовать при совместной передаче (JP/JT) совместной обработки (JP), таким образом, что интервал выборки FFT можно регулировать в соответствии с временными характеристиками CSI-RS ближайшего узла. При совместной передаче (JT) передача PDSCH может быть выполнена из множества взаимодействующих узлов скоординированных сот. In one embodiment, the wireless device may determine the earliest received RS time characteristics from a plurality of received RS time characteristics representing various communicating nodes. An estimate of the composite received RS time characteristics used to adjust the time characteristics of the receiver and / or the FFT window may use or may include the earliest received 282 RSs. The earliest received RS timing characteristics may represent DL transmission with the shortest propagation delay relative to other communicating nodes. Evaluation of the composite received RS time characteristics or the actual PDSCH time characteristics can be set as the earliest time characteristic among all calculated time characteristics for the CoMP measurement set represented by where represents the temporal characteristics of a physical downlink shared channel (PDSCH), is the estimated time response of the channel status information reference signal (CSI-RS) for each node of the CoMP measurement set, min () is a minimum function, and I is a positive integer representing the nodes in the CoMP measurement set (i.e., there is i nodes in the CoMP measurement set). In a wireless device, adjusting the timing of the receiver or FFT window based on the timing of the earliest received RS can reduce timing of signals that are ahead of the FFT sampling interval of the wireless device. In the example, estimates of the temporal characteristics of the composite received RS using the temporal characteristics of the earliest received RS can be used in joint transmission (JP / JT) joint processing (JP), so that the FFT sampling interval can be adjusted in accordance with the temporal characteristics CSI- RS nearest node. In joint transmission (JT), PDSCH transmission may be performed from a plurality of interacting nodes of coordinated cells.
В другом варианте осуществления беспроводное устройство может определять минимальные принятые временные характеристики RS и максимальные принятые временные характеристики RS из множества принятых временных характеристик RS, представляющих различные взаимодействующие узлы. Оценка композитных принятых временных характеристик RS может представлять собой значение или временные характеристики приемника RS, по существу, между минимальной принятой временной характеристикой RS и максимальной принятой временной характеристикой RS. Как показано на фиг. 3, минимальная принятая временная характеристика 362 RS может включать в себя самую раннюю принятую временную характеристику RS, представляющую передачу DL с самой короткой задержкой распространения относительно других взаимодействующих узлов. Максимальная принятая временная характеристика 364 RS может включать в себя самую последнюю принятую временную характеристику RS, представляющую передачу DL с самой длинной задержкой на распространение относительно других взаимодействующих узлов. In another embodiment, the wireless device may determine the minimum received RS time characteristics and the maximum received RS time characteristics from a plurality of received RS time characteristics representing various interacting nodes. An estimate of the composite received RS time characteristics may be the value or time characteristics of the RS receiver, essentially between the minimum received RS time characteristic and the maximum received RS time characteristic. As shown in FIG. 3, the minimum received RS time characteristic 362 may include the earliest received RS time characteristic representing DL transmission with the shortest propagation delay with respect to other interacting nodes. The maximum received RS time characteristic 364 may include the most recent RS received time characteristic representing the DL transmission with the longest propagation delay relative to other interacting nodes.
В другом варианте осуществления композитная принятая временная характеристика RS, используемая для регулирования временной характеристики приемника и/или окна FFT, может быть определена или рассчитана с помощью комбинации мощности принятого опорного сигнала (RSRP) для взаимодействующих узлов и принятой временной характеристики RS, генерируемых из RS специфичных для узла для взаимодействующих узлов. Например, оценка композитной принятой временной характеристики 284 RS или фактическая временная характеристика могут быть рассчитаны, используя взвешенную сумму временных характеристик CSI-RS, представленную следующим образом, где представляет собой временную характеристику физического нисходящего совместно используемого канала (PDSCH), представляет собой каждую из рассчитанных временных характеристик опорного сигнала информации о состоянии канала набора измерений CoMP (CSI-RS) набора измерений, представляет собой мощность принятого сигнала в антенном порту CSI-RS, i представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP, и f() представляет собой монотонную функцию ее аргумента (то есть, аргумента функции). Регулируя временные характеристики приема или окна FFT на основе RSRP, можно получить вес или приоритет принятых символов OFDM из каналов или сигналов с наибольшей или самой сильной мощностью сигнала. Композитные принятые временные характеристики RS, используя комбинацию принятой мощности опорного сигнала (RSRP), и принятые временные характеристики RS для взаимодействующих узлов могут использоваться при динамическом выборе точки (DPS) или динамическом выборе соты (DCS) при совместной обработке (JP). При динамическом выборе соты (DCS) PDSCH передают из одного взаимодействующего узла в наборе координации, который может быть выбран динамически.In another embodiment, the composite received RS time response used to control the time response of the receiver and / or the FFT window can be determined or calculated using a combination of received reference signal power (RSRP) for the interacting nodes and the received RS time response generated from RS specific for a node for interacting nodes. For example, an estimate of the composite received
В другом варианте осуществления передающий, взаимодействующий узел или контроллер в основной сети могут выбирать выбранный взаимодействующий узел из множества взаимодействующих узлов, предназначенных для использования для опорного взаимодействующего узла при регулировании временных характеристик приемника беспроводного устройства. Передающий, взаимодействующий узел может быть одновременно взаимодействующим узлом или другим взаимодействующим узлом из выбранного взаимодействующего узла. Передающий, взаимодействующий узел может передавать выбор из выбранного взаимодействующего узла в беспроводное устройство. Беспроводное устройство может принимать из взаимодействующего узла выбор в виде выбранного взаимодействующего узла. Выбор в виде выбранного взаимодействующего узла может быть передан или может быть передан, как сигналы, в информации управления при передаче по нисходящему каналу (DCI) передачи, нацеленные на беспроводное устройство. Беспроводное устройство может принимать множество специфичных для узла RS из различных взаимодействующих узлов. Беспроводное устройство может генерировать временные характеристики синхронизации RS из RS, специфичного для узла, из выбранного взаимодействующего узла. Временные характеристики синхронизации RS можно использовать для регулирования временных характеристик приемника беспроводного устройства (для синхронизации временных характеристик) для принятых данных, или принятого физического нисходящего совместно используемого канала (PDSCH). Композитные принятые временные характеристики RS могут включать в себя временные характеристики синхронизации RS. Таким образом, взаимодействующий узел (например, передающий, взаимодействующий узел) или контроллер в основной сети, может выбирать временные характеристики RS для использования композитных принятых временных характеристик RS, используемых для регулирования временных характеристик приемника, для приема PDSCH. In another embodiment, a transmitting, communicating node or controller in a core network may select a selected communicating node from a plurality of communicating nodes to be used for a reference communicating node in adjusting the timing of a receiver of a wireless device. A transmitting, interacting node may be a simultaneously interacting node or another interacting node from a selected interacting node. A transmitting, interacting node may transmit a selection from a selected interacting node to a wireless device. The wireless device may receive a selection from a communicating node in the form of a selected communicating node. A selection in the form of a selected interacting node can be transmitted or can be transmitted, like signals, in control information in a downlink transmission (DCI) transmission aimed at a wireless device. A wireless device may receive a variety of node-specific RSs from various communicating nodes. The wireless device may generate RS timing characteristics from a site-specific RS from a selected communicating node. The timing characteristics of the RS timing can be used to adjust the timing of the receiver of the wireless device (for timing timing) for the received data, or the received physical downlink shared channel (PDSCH). The composite received RS timing characteristics may include RS timing timing characteristics. Thus, a communicating node (e.g., a transmitting, communicating node) or a controller in a core network can select RS time characteristics to use the composite received RS time characteristics used to control the time characteristics of the receiver to receive PDSCH.
На фиг. 3 иллюстрируется регулирование временных характеристик приемника беспроводного устройства в скоординированной многоточечной (CoMP) системе с двумя взаимодействующими узлами 310A-B (например, первым и вторым взаимодействующими узлами), передающими для узла специфичные опорные сигналы (RS NS) 350A-B в беспроводное устройство 330, в наборе 320 координации. Беспроводное устройство первоначально может быть синхронизировано с PSS и/или точкой передачи CRS (например, вторым взаимодействующим узлом). Например, символ OFDM при первой передаче 352B взаимодействующего узла и, по существу, тот же символ OFDM при второй взаимодействующей передаче 352A могут быть приняты беспроводным устройством в разное время, из-за задержки при распространении. Прием беспроводным устройством (WD) передачи 354A второго взаимодействующего узла (CN) DL может иметь большую задержку 356A на распространение, чем задержка 356B на распространение при приеме беспроводного устройства (WD) передачи 354B первого взаимодействующего узла (CN) DL, из-за того, что беспроводное устройство расположено ближе к первому взаимодействующему узлу, чем ко второму взаимодействующему узлу. Если PSS и/или CRS из макроузла используются для синхронизации временных характеристик, временные характеристики окна 380 быстрого преобразования Фурье (FFT), используемые для выборки символа OFDM, могут быть синхронизированы с передачей макроузла DL. Оценка композитных принимаемых временных характеристик 384 RS, используемых для регулировки временных характеристик приемника и/или окна FFT, может использовать или включать в себя самые ранние принятые временные характеристики RS или может быть определена или рассчитана по комбинации принятой мощности опорного сигнала (RSRP) для взаимодействующих узлов и принятых временных характеристик RS. Взаимодействующие узлы могут передавать специфичный для узла RS в беспроводное устройство перед тем, как беспроводное устройство сгенерирует принятые временные характеристики RS из множества взаимодействующих узлов.In FIG. 3 illustrates the timing of a wireless device receiver in a coordinated multipoint (CoMP) system with two interacting
На фиг. 4 иллюстрируется другой пример синхронизации временных характеристик передачи DL первого взаимодействующего узла относительно передачи по нисходящему каналу второго взаимодействующего узла в скоординированной многоточечной (CoMP) системе для уменьшения ICI и ISI. Символ OFDM может быть принят из двух взаимодействующих узлов, по существу, одновременно. Временные характеристики 396 регулирования могут быть получены в таймере передатчика взаимодействующего узла, который может сдвигать окно модуляции обратного быстрого преобразования Фурье (IFFT). Модулятор IFFT или модуль IFFT можно использовать для генерирования модулированных сигналов. Беспроводное устройство может передавать в первый взаимодействующий узел данные обратной связи с временными характеристиками, включающие в себя композитную принятую временную характеристику RS, или первую принятую взаимодействующим узлом временную характеристику RS, генерируемую из RS, специфичных для узла, из первого взаимодействующего узла. Первый взаимодействующий узел может принимать обратную связь, содержащую временные характеристики, из беспроводного устройства. Первый взаимодействующий узел может модифицировать временные характеристики передачи по нисходящему каналу передачи (например, передача 392 первого взаимодействующего узла DL), с помощью временных характеристик 396 RS регулирования, используя композитные принятые временные характеристики RS или принятые временные характеристики RS первого взаимодействующего узла. Модификация временных характеристик передачи по нисходящему каналу передачи может включать в себя сдвиг (например, задержку или продвижение вперед) временных характеристик обратного быстрого преобразования Фурье (IFFT), сигнала нисходящего канала передачи, используемого для передачи по нисходящему каналу передачи на композитные принятые временные характеристики RS, или принятые временные характеристики RS первого взаимодействующего узла. Изменение приема беспроводного устройства (WD) передачи 394 первого взаимодействующего узла (CN) DL может уменьшить время между минимальными принятыми временными характеристиками RS и максимальными принятыми временными характеристиками RS, которые могут выравнивать принятые символы OFDM и уменьшать ICI и ISI. В другом примере передача по нисходящему каналу, по меньшей мере, из двух взаимодействующих узлов в множестве взаимодействующих узлов может быть принята беспроводным устройством, по существу, одновременно. В другом примере передача DL взаимодействующих узлов может быть отрегулирована для синхронизации приема передачи DL в беспроводном устройстве до установленных временных характеристик, таких, как существующие PSS и/или CRS.In FIG. 4 illustrates another example of timing synchronization of the DL transmission of a first interacting node with respect to downlink transmission of a second interacting node in a coordinated multipoint (CoMP) system to reduce ICI and ISI. The OFDM symbol can be received from two interacting nodes, essentially simultaneously. The timing characteristics 396 of the regulation can be obtained in the timer of the transmitter of the interacting node, which can shift the modulation window of the inverse fast Fourier transform (IFFT). An IFFT modulator or an IFFT module can be used to generate modulated signals. The wireless device may transmit time-sensitive feedback data to the first interacting node, including a composite received RS time response, or a first RS received time response of the interacting node generated from the node-specific RSs from the first interacting node. The first interacting node may receive feedback containing time characteristics from a wireless device. The first interacting node may modify the temporal characteristics of the downlink transmission (for example, transmission 392 of the first DL interacting node) using the timing RS characteristics 396 using the composite received RS time characteristics or the received RS time characteristics of the first interacting node. Modification of the temporal characteristics of the transmission on the downstream transmission channel may include shifting (for example, delaying or advancing) the temporal characteristics of the inverse fast Fourier transform (IFFT), a signal of the downstream transmission channel used for transmission on the downward transmission channel to the composite received temporal characteristics RS, or the received RS time characteristics of the first interacting node. Changing the reception of the wireless device (WD) of transmitting 394 of the first DL DL interacting node (CN) can reduce the time between the minimum received RS time characteristics and the maximum received RS time characteristics, which can equalize the received OFDM symbols and reduce the ICI and ISI. In another example, a downlink transmission of at least two interacting nodes in a plurality of interacting nodes can be received by a wireless device substantially simultaneously. In another example, the DL transmission of the interacting nodes can be adjusted to synchronize the reception of DL transmission in the wireless device to set time characteristics, such as existing PSS and / or CRS.
В другом примере временные характеристики приемника беспроводного устройства можно отрегулировать, используя информацию из RS, специфичных для узла, из множества взаимодействующих узлов, и временные характеристики передатчика, по меньшей мере, одного взаимодействующего узла можно отрегулировать, используя обратную связь временных характеристик, для уменьшения времени между минимальными принятыми временными характеристиками RS и максимальными принятыми временными характеристиками RS. In another example, the temporal characteristics of the receiver of the wireless device can be adjusted using information from the host-specific RSs from the plurality of interacting nodes, and the temporal characteristics of the transmitter of at least one interacting node can be adjusted using the feedback of the temporal characteristics to reduce the time between minimum accepted RS time characteristics and maximum accepted RS time characteristics.
В одном примере символы OFDM и RS, специфичные для узла, могут представлять элементы структуры радиофрейма, передаваемой по одному физическому (PHY) уровню при передаче по нисходящему каналу или при передаче во восходящему каналу передачи между узлом (или eNodeB) и беспроводным устройством (или UE), используя обобщенную структуру фрейма программы долгосрочного развития (LTE), как представлено на фиг. 5. В то время, как изображена структура фрейма LTE, также может использоваться структура фрейма для стандарта IEEE 802.16 (WiMax), стандарта IEEE 802.11 (Wi-Fi), или другого типа стандарта передачи данных, использующего OFDM. In one example, node-specific OFDM and RS symbols may represent structural elements of a radio frame transmitted on a single physical (PHY) layer when transmitted in a downlink or when transmitted in an uplink transmission channel between a node (or eNodeB) and a wireless device (or UE ) using the generalized frame structure of the Long Term Evolution (LTE) program, as shown in FIG. 5. While the LTE frame structure is shown, the frame structure for IEEE 802.16 (WiMax), IEEE 802.11 (Wi-Fi), or another type of data transfer standard using OFDM can also be used.
На фиг. 5 иллюстрируется структура типа 2 радиофрейма для нисходящего канала. В этом примере радиофрейм 100 сигнала, используемого для передачи данных, может быть выполнен так, чтобы он имел длительность Tf, 10 миллисекунд (мс). Каждый радиофрейм может быть сегментирован или разделен на десять подфреймов 110i так, что каждый из них имеет длительность 1 мс. Каждый подфрейм может быть дополнительно подразделен на два интервала 120a и 120b, каждый длительностью, Tslot, 0,5 мс. Каждый интервал составляющей несущей (CC), используемый для передающей станции и приемной станции, может включать в себя множество блоков 130a, 130b, 130i, 130 m и 130n ресурса (RB) на основе полосы пропускания частоты CC. CC может иметь частоту несущей, имеющую полосу пропускания и центральную частоту. Каждый RB (физический RB или PRB) 130i может включать в себя 12 - 15 кГц поднесущих 136 (на оси частот) и 6 или 7 символов 132 ортогонального мультиплексирования с частотным разделением (OFDM) (по оси времени) на поднесущие. RB может использовать семь символов OFDM, если используется короткий или нормальный циклический префикс. RB может использовать шесть символов OFDM, если используется расширенный циклический префикс. Блок ресурса может быть отображен на 84 элемента (RE) 140i ресурса, используя короткие или нормальные циклические префиксы, или блок ресурса может быть отображен на 72 RE (не показано), используя расширенные циклические префиксы. RЕ может представлять собой блок из одного символа 142 OFDM на одну поднесущую (то есть, 15 кГц) 146. Каждый RЕ может передавать два бита 150a и 150b информации, в случае модуляция с квадратурной фазовой манипуляцией (QPSK). Другие типы модуляции также можно использовать, такие как 16 квадратурных амплитудных манипуляций (QAM) или 64 QAM, для передачи большего количества битов на каждый RЕ, или такую модуляцию, как двухфазная модуляция (BPSK), для передачи меньшего количества битов (один бит) в каждом RЕ. RB может быть выполнен с возможностью передачи по нисходящему каналу передачи из eNodeB в UE, или RB может быть выполнен с возможностью передачи по восходящему каналу передачи из UE в eNodeB.In FIG. 5 illustrates a
Опорные сигналы могут быть переданы по символами OFDM через элементы ресурса в блоках ресурса. Опорные сигналы (или пилотные сигналы или тоны) могут представлять собой известный сигнал, используемый по различным причинам, например, для синхронизации временных характеристик, для оценки канала и/или шумов в канале. Опорные сигналы могут быть приняты и переданы передающими станциями и устройствами мобильной передачи данных. Разные типы опорных сигналов (RS) могут использоваться в RB. Например, в системах LTE, типы нисходящего опорного сигнала могут включать в себя опорный сигнал, специфичный для соты (CRS), опорный сигнал одночастотной сети многоадресной передачи/широковещательной передачи (MBSFN), опорный сигнал, специфичный для UE (UE,специфичный для RS или UE-RS) или опорный сигнал демодуляции (DMR), устанавливающий положение опорный сигнал (PRS), и опорный сигнал информации о состоянии канала (CSI-RS).Reference signals may be transmitted over OFDM symbols through resource elements in resource blocks. The reference signals (or pilot signals or tones) may be a known signal used for various reasons, for example, to synchronize time characteristics, to estimate the channel and / or noise in the channel. Reference signals may be received and transmitted by transmitting stations and mobile data devices. Different types of reference signals (RS) can be used in RB. For example, in LTE systems, the types of downlink reference signal may include a cell specific reference (CRS), a single frequency multicast / broadcast reference signal (MBSFN), a reference signal specific to a UE (UE specific to RS or UE-RS) or a demodulation reference signal (DMR) setting the position of the reference signal (PRS) and a channel status information reference signal (CSI-RS).
CRS может быть передан в подфреймах нисходящего канала передачи в соту, поддерживающую PDSCH. Данные передают из eNodeB в UE через PDSCH. Опорный сигнал MBSFN может быть передан, когда передают физический многоадресный канал (PMCH) в подфрейме MBSFN. UE-RS или DMR могут быть переданы в подфреймах нисходящего канала передачи, поддерживающих PDSCH. UE-RS (DMR) может быть передан в блоке ресурса, назначенном для передачи совместно используемого нисходящего канала передачи, канал (DL-SCH) в определенный терминал (например, устройство мобильной связи), используемый для формирования луча для одного UE, используя множество антенн, и используемый для демодуляции PDSCH. PRS может быть передан в RB, в подфрейме нисходящего канала передачи, выполненном с возможностью передачи PRS, но может не быть отображен физический канал широковещательной передачи (PBCH), первичный сигнал синхронизации (PSS) или вторичный сигнал синхронизации (SSS). CSI-RS может использоваться для измерений качества канала нисходящего канала передачи.CRS may be transmitted in downlink subframes to a cell supporting PDSCH. Data is transmitted from the eNodeB to the UE via PDSCH. The MBSFN reference signal may be transmitted when a physical multicast channel (PMCH) in the MBSFN subframe is transmitted. UE-RS or DMR may be transmitted in downlink subframes supporting PDSCH. A UE-RS (DMR) may be transmitted in a resource unit assigned to transmit a shared downlink transmission channel (DL-SCH) to a specific terminal (eg, a mobile communication device) used to beam out one UE using multiple antennas , and used to demodulate PDSCH. PRS may be transmitted in RB, in a subframe of a downlink transmission channel configured to transmit PRS, but the physical broadcast channel (PBCH), primary synchronization signal (PSS) or secondary synchronization signal (SSS) may not be displayed. CSI-RS can be used for downlink channel quality measurements.
На фиг. 6 иллюстрируется примерная блок-схема последовательности операций синхронизации 560 временных характеристик и дополнительной синхронизации 580 временных характеристик для передачи по нисходящему каналу (DL) передачи в скоординированной многоточечной (CoMP) системе. Первоначально, может быть сгенерирована оценка временных характеристик для приемника, для беспроводного устройства, используя PSS и/или CRS 562, из взаимодействующего узла. Конфигурация 572 набора измерений CoMP может быть сгенерирована с помощью, по меньшей мере, одного взаимодействующего узла. В другом варианте осуществления конфигурация 572 набора измерений CoMP может быть принята, по меньшей мере, одним взаимодействующим узлом из контроллера в основной сети. По меньшей мере, сегмент конфигурации набора измерений CoMP может быть передан в беспроводное устройство. Сегмент набора измерений CoMP, переданный в беспроводное устройство, может включать в себя взаимодействующие узлы в наборе координации, используемом для измерения RS, специфичных для узла (например, CSI-RS). Дополнительная синхронизация временных характеристик может включать в себя оценку временных характеристик для каждого антенного порта CSI-RS в наборе 582 измерений CoMP, и расчет композитных принятых временных характеристик RS по оценке набора временных характеристик 584, используемых для регулирования или генерирования фактических временных характеристик приемника беспроводного устройства. In FIG. 6 illustrates an example flowchart of timing synchronization 560 of temporal characteristics and
Дополнительная синхронизация временных характеристик, используя специфичный для узла RS или CSI-RS путем управления синхронизации временных характеристик, используя только сигналы PSS, SSS и/или CRS, может позволить регулировать временные характеристики приемника, для приема символов OFDM данных из разных взаимодействующих узлов таким образом, что большая часть границ символов OFDM попадает в пределы защитного интервала символа OFDM, что позволяет уменьшить ICI и ISI. Временные характеристики приемника могут включать в себя временные характеристики внутренней обработки приемника, временные характеристики, где приемник выполняет поиск границы символов OFDM, или моменты, когда приемник принимает или выполняет выборку FFT. При дополнительной синхронизации временных характеристик используется несколько принятых временных характеристик опорного сигнала из разных взаимодействующих узлов вместо только сигналов PSS, SSS и/или CRS из одного узла. Каждая принятая временная характеристика опорного сигнала (RS) может поступать из i-ого взаимодействующего узла, где i представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP. Границы символов OFDM могут находиться в сигнале, принятом из i-ого взаимодействующего узла, который может включать в себя обслуживающий узел. Значения для принятых временных характеристик RS могут быть измерены или сгенерированы, используя специфичные для узла RS или CSI-RS из i-ого взаимодействующего узла. Временные характеристики могут включать в себя возможные задержки, такие как задержка передатчика (TX), задержка на распространение, задержка приемника (RX) и другая задержка на обработку.Additional timing synchronization using a node-specific RS or CSI-RS by controlling timing synchronization using only PSS, SSS and / or CRS signals can allow you to adjust the timing of the receiver to receive OFDM data symbols from different interacting nodes in this way that most of the boundaries of OFDM symbols fall within the guard interval of the OFDM symbol, which reduces ICI and ISI. The temporal characteristics of the receiver may include the temporal characteristics of the internal processing of the receiver, the temporal characteristics where the receiver searches for an OFDM symbol boundary, or the moments when the receiver receives or performs FFT sampling. With additional synchronization of time characteristics, several received time characteristics of the reference signal from different interacting nodes are used instead of only PSS, SSS and / or CRS signals from one node. Each received time characteristic of the reference signal (RS) may come from the i-th interacting node, where i is a positive integer representing the nodes in the CoMP measurement set. The OFDM symbol boundaries may be in a signal received from the i-th interacting node, which may include a serving node. Values for the received RS time characteristics can be measured or generated using the node-specific RS or CSI-RS from the i-th interacting node. Timing may include possible delays such as transmitter delay (TX), propagation delay, receiver delay (RX), and other processing delay.
На фиг. 7 иллюстрируется демодулятор OFDM, включающий в себя демодулятор FFT в приемнике (RX), используемом для нисходящей передачи в беспроводном устройстве, и модулятор OFDM, включающий в себя модулятор IFFT в передатчике, используемый для нисходящей передачи во взаимодействующем узле. Временные характеристики демодулятора FFT могут быть отрегулированы для символов OFDM, используя дополнительную синхронизацию временных характеристик.In FIG. 7 illustrates an OFDM demodulator including an FFT demodulator in a receiver (RX) used for downlink transmission in a wireless device and an OFDM modulator including an IFFT modulator in a transmitter used for downlink transmission in a communicating node. The timing of the FFT demodulator can be adjusted for OFDM symbols using additional timing timing.
Система беспроводной передачи данных может быть подразделена на различные блоки, называемые уровнями. В системе LTE уровни передачи данных могут включать в себя физический (PHY) уровень, уровень управления доступом к среде (MAC), уровень управления радиосоединением (RLC), уровень протокола сходимости пакетных данных (PDCP), и уровень управления радиоресурсом (RRC). Физический уровень может включать в себя основные аппаратные компоненты передачи системы 400 беспроводной передачи данных, как представлено на фиг. 7. Основная система с множеством вводов, множеством выводов (MIMO), используется для простоты при иллюстрации основных аппаратных компонентов передачи, но компоненты также могут быть выполнены для сложной системы MIMO, системы SISO или аналогичной системы. Например, в системе MIMO, в передатчике 410, двоичные входные данные 420 могут быть защищены с помощью кодирования, используя кодер 422 канала, с перемежением для борьбы с явлением затухания, используя перемежитель 424, и с отображением для улучшения надежности, используя преобразователь 426. Отображенные данные могут быть разделены на уровни для антенных портов с помощью формирователя 434 луча передатчиком (TX), и уровни могут быть модулированы OFDM в символы OFDM, используя модуляторы 428A-B. В модуляторах может использоваться алгоритм обратного быстрого преобразования Фурье (IFFT), для расчета обратного дискретного преобразования Фурье (IDFT), для генерирования модулированных сигналов (вектор x для каждого антенного порта). Модулированные сигналы могут быть преобразованы в аналоговые сигналы с помощью цифро-аналоговых преобразователей (DAC) 430A-B. Аналоговые сигналы могут быть переданы через радиочастоту (RF), передатчики (Tx) 432A-B, выполненные с возможностью передачи сигналов в передающие антенны 440A-B, которые во время работы выполнены с возможностью передавать сигнал. Аналоговые сигналы следуют пути, называемому каналом 450. Физический уровень может включать в себя другие компоненты (не показаны), такие как " параллельно-последовательные" (S/P) преобразователи, параллельно-последовательные (P/S) преобразователи, модули вставки и удаления циклического префикса (CP), модули вставки и удаления защитной полосы и другие требуемые компоненты. A wireless data transmission system can be subdivided into various blocks, called layers. In an LTE system, data transmission layers may include a physical (PHY) layer, a medium access control (MAC) layer, a radio connection control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a radio resource control (RRC) layer. The physical layer may include basic hardware transmission components of the wireless
Сигнал, переданный через канал 450, может быть подвергнут воздействию шумов 452 и взаимных помех 454. Шумы и взаимные помехи представлены, как дополнение 456 к сигналу канала, который может быть принят приемными антеннами 490A-B и одним или больше радиочастотными (RF) приемниками (Rx) 482A-B в приемнике 460. Сигнал канала в комбинации с шумом и взаимной помехой, может быть преобразован в цифровой модулированный сигнал, используя аналого-цифровые преобразователи (ADC) 480A-B. Цифровой сигнал может быть OFDM демодулируемым, используя демодуляторы 478A-B. В демодуляторах может использоваться алгоритм быстрого преобразования Фурье (FFT), для расчета дискретного преобразования Фурье (DFT), для генерирования демодулированных сигналов (вектор y для каждого антенного порта). Блок 462 оценки канала может использовать демодулированный сигнал оценки канала 450 и шумов и взаимных помех, которые возникают в канале. Блок оценки канала может включать в себя генератор с обратной связью или может сообщаться с генератором с обратной связью, который может генерировать отчет для передаче по каналу обратной связи о физическом восходящем совместно используемом канале передачи (PUSCH), такой как отчет - индикатор качества канала (CQI), отчет - индикатор матрицы предварительного кодирования (PMI), или отчет индикатора ранга передачи (RI). CQI может использоваться так, чтобы он способствовал модам передачи MIMO. Демодулированные сигналы могут быть скомбинированы, используя декодер 484 MIMO, после обратного преобразования, используя обратный преобразователь 476, обратного перемежения, используя обратный перемежитель 474, и декодирование декодером 472 канала для генерирования двоичных выходных данных 470, которые могут использоваться другими уровнями приемной станции. The signal transmitted through channel 450 may be affected by noise 452 and
В другом примере предусмотрен способ 500 для регулирования временных характеристик приемника беспроводного устройства в скоординированной многоточечной (CoMP) системе, как показано в блок-схеме последовательности операций на фиг. 8. Способ может быть исполняться, как инструкции в устройстве, где инструкции включены, по меньшей мере, в один считываемый компьютером носитель информации или один энергонезависимый считываемый устройством носитель информации. Способ включает в себя операцию приема множества специфичных для узла опорных сигналов (RS) в беспроводном устройстве из множества взаимодействующих узлов в наборе координации системы CoMP, в которой набор координации включает в себя, по меньшей мере, два взаимодействующих узла, как в блоке 510. Операция по оценке композитных принимаемых RS временных характеристик из множества принятых временных характеристик RS, генерируемых из множества специфичных для узла RS, в которых принятые временные характеристики RS представляют временные характеристики, по меньшей мере, из двух взаимодействующих узлов, выполняют затем, как в блоке 520. Следующая операция способа может представлять собой регулирование временной характеристики приемника на основе, по меньшей мере, части композитных временных характеристик принятых RS, как в блоке 530.In another example, a
RS, специфичный для узла, может включать в себя опорный сигнал, содержащий информацию состояния канала (CSI-RS). Отрегулированные временные характеристики приемника могут представлять собой время, когда в приемнике беспроводного устройства выполняется обработка быстрого преобразования Фурье (FFT) для принятого сигнала. The site-specific RS may include a reference signal containing channel status information (CSI-RS). The adjusted receiver timing may be the time that fast Fourier transform (FFT) processing for the received signal is performed at the receiver of the wireless device.
В одном варианте осуществления операция по оценке композитных принятых временных RS характеристик может дополнительно включать в себя выбор самых ранних принятых временных характеристик RS для композитных принятых RS временных характеристик. Композитные принятые RS временные характеристики могут быть представлены, как, где представляет собой временные характеристики совместно используемого физического нисходящего канала (PDSCH), в каждой из рассчитанных временных характеристик опорного сигнала информации о состоянии канала (CSI-RS) для набора измерений CoMP, min () представляет собой минимальную функцию, и i представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP.In one embodiment, the operation of evaluating the composite received RS time characteristics may further include selecting the earliest received RS time characteristics for the composite received RS time characteristics. Composite received RS temporal characteristics can be represented as where represents the temporal characteristics of a shared physical downlink channel (PDSCH), in each of the calculated temporal characteristics of the channel state information reference signal (CSI-RS) for the CoMP measurement set, min () is the minimum function, and i is a positive integer representing the nodes in the CoMP measurement set.
В другом варианте осуществления операция по оценке композитной принятой RS временной характеристики может дополнительно включать в себя: выбирают временную характеристику RS приемника, по существу, между минимальной принятой временной характеристикой RS и максимальной принятой временной характеристикой RS. Минимальная принятая временная характеристика RS может включать в себя временную характеристику, генерируемую из первого принятого RS, специфичного для узла, первого взаимодействующего узла, и максимальная принятая временная характеристика RS может включать в себя временную характеристику, генерируемую из последнего принятого RS, специфичного для узла, последнего взаимодействующего узла. В примере композитная принятая RS временная характеристика может быть определена путем комбинирования принятой мощности опорного сигнала (RSRP) для взаимодействующих узлов и принятой временной характеристики RS, генерируемой из RS, специфичной для узла, для взаимодействующих узлов. В другом примере композитная принятая RS временная характеристики может быть представлена следующей формулой, где представляет собой временную характеристику физического нисходящего совместно используемого канала (PDSCH), представляет собой каждую из рассчитанных временных характеристик опорного сигнала информации о состоянии канала (CSI-RS) для набора измерений CoMP, представляет собой мощность (RSRP) принятого опорного сигнала антенного порта CSI-RS, i представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP, и f () представляет собой монотонную функцию ее аргумента. In another embodiment, the operation of evaluating the composite received RS time response may further include: selecting a time response of the RS receiver, essentially between the minimum received time response of the RS and the maximum received time response of the RS. The minimum received time characteristic of the RS may include a time characteristic generated from the first received RS specific to the node, the first interacting node, and the maximum received time characteristic RS may include the time characteristic generated from the last received RS, specific to the node last interacting node. In the example, the composite received RS time characteristic can be determined by combining the received reference signal power (RSRP) for the interacting nodes and the received RS time characteristic generated from the node-specific RS for the interacting nodes. In another example, a composite RS received temporal response may be represented by the following formula where is a temporal response of a physical downlink shared channel (PDSCH), represents each of the calculated time characteristics of the reference signal state information channel (CSI-RS) for a set of CoMP measurements, represents the power (RSRP) of the received reference signal of the CSI-RS antenna port, i is a positive integer representing the nodes in the CoMP measurement set, and f () is the monotonic function of its argument.
Способ может дополнительно включать в себя передачу беспроводным устройством, выполняемую из взаимодействующего узла, информации обратной связи с временными характеристиками, включающей с себя композитную принятую временную характеристику RS. В другом примере способ может дополнительно включать в себя беспроводное устройство, передающее из взаимодействующего узла информацию обратной связи с временными характеристиками, включающими в себя принятую временную характеристику RS, cгенерированную из RS, специфичного для узла, для взаимодействующего узла. RS, специфичный для узла, может включать в себя первичный сигнал синхронизации (PSS), вторичный сигнал синхронизации (SSS), опорный сигнал (CRS), специфичный для соты, или опорный сигнал, содержащий информацию состояния канала (CSI-RS). The method may further include transmitting, by a wireless device, executed from the interacting node, feedback information with time characteristics, including a composite received time characteristic RS. In another example, the method may further include a wireless device transmitting time response information from the interacting node including the received RS time characteristic generated from the node-specific RS for the interacting node. The node-specific RS may include a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a cell-specific reference signal (CRS), or a reference signal containing channel status information (CSI-RS).
В другом примере предусмотрен способ 600 для синхронизации временной характеристик передачи по нисходящему каналу (DL) первого взаимодействующего узла в отношении передачи по нисходящему каналу второго взаимодействующего узла в скоординированной многоточечной (CoMP) системе, как показано в блок-схеме последовательности операций на фиг. 9. Способ может быть выполнен, как инструкции в устройстве, где инструкции содержатся на, по меньшей мере, одном считываемом компьютером носителе информации или одном энергонезависимом считываемом в устройстве носителе информации. Способ включает в себя операцию приема в первом взаимодействующем узле из беспроводного устройства, обратную связь временных характеристик, в котором обратная связь включает в себя, по меньшей мере, одну принятую временную характеристику опорного сигнала (RS), генерируемую из RS, специфичного для узла, по меньшей мере, одного взаимодействующего узла, как в блоке 610. Операция по модификации временной характеристики передачи по нисходящему каналу передачи данных в первом взаимодействующем узле путем регулирования временной характеристики регулирования, используя обратную связь по временной характеристике, следует дальше, как в блоке 620.In another example, a
Обратная связь временной характеристики включает в себя композитную принятую RS временную характеристику, или первую принятую RS временную характеристику взаимодействующего узла. Оценка композитной принятой RS временной характеристики может быть получена из множества принятых временных характеристик RS, представляющих временные характеристики из, по меньшей мере, двух взаимодействующих узлов. Первая временная характеристика взаимодействующего узла принятой RS может быть сгенерирована из RS, специфичных для узла, первого взаимодействующего узла. Принятые временные характеристики RS могут быть сгенерированы из множества RS, специфичных для узла. The time response feedback includes a composite RS received time response, or a first RS received time response of an interacting node. An estimate of the composite received RS temporal response can be obtained from a plurality of received RS temporal responses representing temporal characteristics from at least two interacting nodes. The first temporal response of the interacting node of the received RS can be generated from the node-specific RSs of the first interacting node. Accepted RS timing characteristics may be generated from a plurality of node specific RSs.
В примере композитные принятые RS временные характеристики могут включать в себя первую принятую RS временную характеристику взаимодействующего узла, сгенерированную из второй RS, специфичной для узла, из первого взаимодействующего узла. Специфичный для узла опорный сигнал включает в себя опорный сигнал информации состояния канала (CSI-RS). Передача по нисходящему каналу передачи включает в себя данные или совместно используемый физический нисходящий канал (PDSCH). Операция модификации временной характеристики передачи нисходящего канала передачи может дополнительно включать в себя сдвиг временной характеристики обратного быстрого преобразования Фурье (IFFT) для нисходящего сигнала, используемого для передачи по нисходящему каналу передачи, на основе временной характеристики композитного принятого RS или принятых временных характеристик RS первого взаимодействующего узла. Способ может дополнительно включать в себя первый взаимодействующий узел (например, взаимодействующий передающий узел) выбирает выбранный взаимодействующий узел из множества взаимодействующих узлов. Специфичный для узла RS из выбранного взаимодействующего узла может использоваться беспроводным устройством для генерирования временной характеристики синхронизации RS, и синхронизация RS может использоваться для синхронизации временных характеристик для принятых данных, или принятого физического нисходящего совместно используемого канала (PDSCH). Первый взаимодействующий узел может передавать выбор из выбранного взаимодействующего узла в беспроводное устройство. Временная характеристика синхронизации RS может использоваться для регулирования временной характеристики приемника беспроводного устройства для принятых данных или принятого PDSCH. Способ может дополнительно включать в себя первый взаимодействующий узел, передающий специфичный для узла RS в беспроводное устройство перед приемом обратной связи с временной характеристикой. In an example, the composite received RS time characteristics may include a first received RS time characteristic of an interacting node generated from a second node-specific RS from the first interacting node. The site-specific reference signal includes a channel status information reference signal (CSI-RS). A downlink transmission includes data or a physical downlink shared channel (PDSCH). The operation of modifying the transmission timing of the downlink transmission channel may further include shifting the timing of the inverse fast Fourier transform (IFFT) for the downlink signal used for transmission on the downlink, based on the timing of the composite received RS or the received timing of the RS of the first interacting node . The method may further include a first interacting node (eg, a cooperating transmitting node) selects a selected interacting node from a plurality of interacting nodes. The site-specific RS from the selected interacting node can be used by the wireless device to generate the timing of the RS timing, and RS timing can be used to synchronize the timing of the received data, or the received physical downlink shared channel (PDSCH). The first interacting node may transmit the selection from the selected interacting node to the wireless device. The timing characteristic of the RS timing can be used to adjust the timing of the receiver of the wireless device for received data or a received PDSCH. The method may further include a first interacting node transmitting the node-specific RS to the wireless device before receiving feedback with a time response.
На фиг. 10 иллюстрируется пример взаимодействующих узлов 710A-B и пример беспроводного устройства 720 в скоординированной многоточечной (CoMP) системе. Взаимодействующие узлы могут включать в себя макроузел (например, macro-eNB) или узел малой мощности (например, micro-eNB, pico-eNB, femto-eNB или HeNB). In FIG. 10 illustrates an example of interworking nodes 710A-B and an example of a wireless device 720 in a coordinated multipoint (CoMP) system. Interacting nodes may include a macro node (e.g., macro-eNB) or a low power node (e.g., micro-eNB, pico-eNB, femto-eNB, or HeNB).
Беспроводное устройство 720 (например, UE) может выполнять обмен данными со взаимодействующими узлами 710A-B. Беспроводное устройство может включать в себя устройство 718 оценки синхронизации для оценки синхронизации приемника беспроводного устройства в скоординированной многоточечной (CoMP) системе. Устройство оценки временной характеристики может включать в себя модуль 722 приема нисходящего канала и блок 724 оценки временной характеристики. В некоторых вариантах осуществления устройство оценки временной характеристики может включать в себя модуль 726 регулирования временной характеристики и модуль 728 передачи по восходящему каналу (UL). Беспроводное устройство может включать в себя приемопередатчик, выполненный с возможностью приема информации о передаче DL из взаимодействующих узлов и передачи информации об UL передачи во взаимодействующие узлы. A wireless device 720 (e.g., a UE) may communicate with communicating nodes 710A-B. The wireless device may include a
Модуль 722 приема нисходящего канала передачи может быть выполнен с возможностью приема множества специфичных для узла опорных сигналов (RS) в беспроводном устройстве из множества взаимодействующих узлов в наборе координации системы CoMP. Набор координации может включать в себя, по меньшей мере, два взаимодействующих узла. Модуль приема нисходящего канала передачи может быть дополнительно выполнен с возможностью приема выбора из выбранного взаимодействующего узла. Выбранный взаимодействующий узел может быть выбран либо с помощью контроллера в основной сети или взаимодействующего узла из множества взаимодействующих узлов. RS, специфичный для узла, из выбранного взаимодействующего узла может использоваться беспроводным устройством для генерирования временной характеристики синхронизации RS, и временная характеристика синхронизации RS может использоваться для синхронизации временной характеристики или для регулирования временной характеристики приемника беспроводного устройства для принятых данных, или принятого физического нисходящего совместно используемого канала (PDSCH). Блок 724 оценки временной характеристики может быть выполнен с возможностью оценки композитной временной характеристики принятого RS из множества принятых временных характеристик RS, генерируемых из множества специфичных для узла RS. Временные характеристики принятых RS могут представлять временные характеристики из, по меньшей мере, двух взаимодействующих узлов. Специфичный для узла RS включает в себя опорный сигнал информации о состоянии канала (CSI-RS). В примере блок оценки временной характеристики может быть выполнен с возможностью выбора временной характеристики самого раннего принятого RS для композитной временной характеристики принятого RS. Композитная временная характеристика принятого RS может быть представлена, как , где представляет собой временную характеристику физического нисходящего совместно используемого канала (PDSCH), представляет собой каждую из рассчитанных временных характеристик опорного сигнала (CSI-RS) информации о состоянии канала (для набора измерений CoMP, min() представляет собой минимальную функцию, и i представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP. В другом примере блок оценки временных характеристик может быть выполнен с возможностью выбирать RS временные характеристики RS приемника, по существу, между минимальной принятой характеристикой RS и максимальной принятой временной характеристикой RS, используя композитные временные характеристики принятого RS. В другом примере блок оценки временной характеристики может быть выполнен с возможностью определения композитной временной характеристики принятого RS из комбинации принятой мощности опорного сигнала (RSRP) для взаимодействующих узлов и временной характеристики принятого RS, генерируемой из специфичных для узла RS взаимодействующих узлов. Композитные временные характеристики принятого RS представлены в следующем уравнении, где представляет собой временную характеристику физического нисходящего совместно используемого канала (PDSCH), представляет собой каждую из рассчитанных временных характеристик опорного сигнала информации состояния канала (CSI-RS) для набора измерений CoMP, представляет собой принятую мощность опорного сигнала (RSRP) антенного порта CSI-RS, i представляет собой положительное целое число, представляющее узлы в наборе измерений CoMP, и f () представляет собой монотонную функцию своего аргумента. The downlink transmission module 722 may be configured to receive a plurality of node-specific reference signals (RS) in a wireless device from a plurality of interacting nodes in a coMP system coordination set. The coordination set may include at least two interacting nodes. The downlink transmission module may be further configured to receive a selection from a selected interacting node. The selected interacting node can be selected either using a controller in the main network or an interacting node from a plurality of interacting nodes. A node-specific RS from a selected interacting node can be used by a wireless device to generate a RS timing characteristic, and an RS timing characteristic can be used to synchronize a timing characteristic or to adjust the timing of a wireless device receiver for received data, or a received physical downstream shared channel (PDSCH). The time response estimator 724 may be configured to evaluate a composite time response of a received RS from a plurality of received RS time responses generated from a plurality of node specific RSs. The temporal characteristics of the received RSs may represent temporal characteristics of at least two interacting nodes. The site-specific RS includes a channel status information reference signal (CSI-RS). In an example, the time response estimator may be configured to select a time response of the earliest received RS for the composite time response of the received RS. The composite time response of the received RS can be represented as where is a temporal response of a physical downlink shared channel (PDSCH), represents each of the calculated timing characteristics of the reference signal (CSI-RS) of channel state information (for the CoMP measurement set, min () is the minimum function, and i is a positive integer representing the nodes in the CoMP measurement set. In another example the time response estimator may be configured to select RS time characteristics of the RS receiver, essentially between the minimum received RS characteristic and the maximum received RS time characteristic, using composite temporal characteristics of the received RS. In another example, the temporal response estimation unit may be configured to determine the composite temporal characteristics of the received RS from the combination of the received reference signal power (RSRP) for the interacting nodes and the temporal response of the received RS generated from the RS-specific interacting nodes The composite temporal characteristics of the received RS are presented in the following equation where is a temporal response of a physical downlink shared channel (PDSCH), represents each of the calculated time characteristics of the reference signal state information channel (CSI-RS) for a set of CoMP measurements, is the received reference signal power (RSRP) of the CSI-RS antenna port, i is a positive integer representing the nodes in the CoMP measurement set, and f () is the monotonic function of its argument.
Модуль 726 регулирования временной характеристики может быть выполнен с возможностью регулирования временной характеристики приемника на основе принятого RS. Отрегулированная временная характеристика приемника может представлять собой время, когда приемник беспроводного устройства обрабатывает быстрое преобразование Фурье (FFT) для принятого сигнала. Такое время может представлять собой границу окна FFT. Модуль 728 передачи по восходящему каналу передачи может быть выполнен с возможностью передачи во взаимодействующий узел, информации обратной связи временной характеристики, включающей в себя композитную временную характеристику принятого RS или временную характеристику принятого RS, генерируемую из специфичного узла RS из взаимодействующего узла. Беспроводное устройство может включать в себя оборудование пользователя (UE) и мобильную станцию (MS). Беспроводное устройство может быть выполнено с возможностью подключения, по меньшей мере, к одной из беспроводной локальной вычислительной сети (WLAN), беспроводной персональной вычислительной сети (WPAN) и беспроводной глобальной вычислительной сети (WWAN). Беспроводное устройство может включать в себя антенну, сенсорный экран дисплея, громкоговоритель, микрофон, графический процессор, процессор приложений, внутреннее запоминающее устройство или порт энергонезависимого запоминающего устройства. The time response adjusting module 726 may be configured to adjust the time response of the receiver based on the received RS. The adjusted receiver timing may be the time that the receiver of the wireless device processes the fast Fourier transform (FFT) for the received signal. This time may be the border of the FFT window. The uplink transmission module 728 may be configured to transmit to the interacting node, time-response feedback information including a composite time response of the received RS or a time response of the received RS generated from the specific RS node from the interacting node. A wireless device may include user equipment (UE) and a mobile station (MS). The wireless device may be configured to connect to at least one of a wireless local area network (WLAN), a wireless personal area network (WPAN), and a wireless wide area network (WWAN). A wireless device may include an antenna, a touch screen display, a speaker, a microphone, a graphics processor, an application processor, an internal storage device, or a non-volatile storage device port.
Каждый взаимодействующий узел 710A-B может включать в себя устройство 708A-B синхронизации временной характеристики, предназначенный для синхронизации временной характеристики передачи по нисходящему каналу (DL) передачи первого взаимодействующего узла относительно передачи по нисходящему каналу второго взаимодействующего узла в скоординированной многоточечной (CoMP) системе. Устройство синхронизации временной характеристики может включать в себя передающий модуль 712A-B по нисходящему каналу передачи, приемный модуль 714A-B по восходящему каналу передачи, и модуль 716A-B изменения временной характеристики. В примере устройство синхронизации временных характеристик может включать в себя модуль выбора (не показан). В другом примере модуль выбора может быть включен в контроллере в основной сети. Взаимодействующие узлы могут находиться в наборе 740 координации системы CoMP и могут выполнять обмен данными друг с другом через соединение 750 обратной передачи. Соединение обратной передачи может включать в себя передачу сигналов X2 или передачу сигналов соединения обратной передачи, используя проводное соединение, беспроводное соединение или оптоволоконное соединение. Обмен данными между взаимодействующими узлами может включать в себя информацию набора измерений CoMP.Each interacting node 710A-B may include a time response synchronization device 708A-B for synchronizing a time characteristic of a downlink transmission (DL) of a transmission of a first interacting node with respect to downlink transmission of a second interacting node in a coordinated multipoint (CoMP) system. The time response synchronization device may include a downlink transmission module 712A-B, an upstream transmission module 714A-B, and a time
Приемный модуль 714A-B восходящего канала передачи может быть выполнен с возможностью приема временной характеристики из беспроводного устройства обратной связи. Обратная связь с временной характеристикой может включать в себя, по меньшей мере, одну временную характеристику принятого опорного сигнала (RS) из RS, специфичного для узла, по меньшей мере, одного взаимодействующего узла. Обратная связь с временной характеристикой может включать в себя композитную временную характеристику принятого опорного сигнала (RS), или временную характеристику принятого RS первого взаимодействующего узла. Оценка композитной временной характеристики принятого RS может быть получена из множества временных характеристик принятых RS, представляющих временные характеристики, по меньшей мере, двух взаимодействующих узлов, и временные характеристики принятых RS могут быть сгенерированы из множества специфичных для узла RS. Временная характеристика принятого RS первого взаимодействующего узла может быть сгенерирована из специфичных для узла RS из первого взаимодействующего узла. Модуль 716A-B модификации временной характеристики может быть выполнен с возможностью модификации временных характеристик передачи по нисходящему каналу передачи в первом взаимодействующем узле, в соответствии с отрегулированной временной характеристикой, используя обратную связь с временной характеристикой. Специфичный для узла опорный сигнал включает в себя опорный сигнал с информацией о состоянии канала (CSI-RS). Модуль модификации временной характеристики может быть дополнительно выполнен с возможностью сдвига временной характеристики быстрого обратного преобразования Фурье (IFFT), сигнала нисходящего канала передачи, используемого для передачи по нисходящему каналу передачи, применяя композитную временную характеристику принятых RS или временную характеристику принятого RS взаимодействующего узла. Модуль 712A-B передачи по нисходящему каналу передачи может быть выполнен с возможностью передачи специфичного для узла RS в беспроводное устройство. Модуль выбора может быть выполнен с возможностью выбора выбранного взаимодействующего узла из множества взаимодействующих узлов. Специфичный для узла RS из выбранного взаимодействующего узла может использоваться беспроводным устройством для генерирования синхронизации временной характеристики RS, и временная характеристика синхронизации RS может использоваться для синхронизации временной характеристики для принятых данных, или принятого физического нисходящего канала совместно используемого канала (PDSCH). Модуль передачи по нисходящему каналу передачи может быть дополнительно выполнен с возможностью передачи выбора выбранного взаимодействующего узла в беспроводное устройство. Временная характеристика синхронизации RS может использоваться для регулирования временной характеристики приемника беспроводного устройства для принятых данных или принятого PDSCH. Взаимодействующий узел может включать в себя макроузел, узел малой мощности (LPN), развернутый макроузел B (macro-eNB), micro-eNB, pico-eNB, femto-eNB или домашний eNB (HeNB). An upstream receive channel module 714A-B may be configured to receive a time response from a wireless feedback device. Feedback with the time response may include at least one time response of the received reference signal (RS) from the RS specific to the node of the at least one interacting node. Feedback with the time response may include a composite time response of the received reference signal (RS), or time response of the received RS of the first interacting node. An estimate of the composite temporal response of the received RS can be obtained from a variety of temporal responses of the received RSs representing the temporal responses of at least two interacting nodes, and the temporal responses of the received RSs can be generated from a variety of node specific RSs. The temporal response of the received RS of the first interacting node may be generated from the node-specific RS from the first interacting node. The time
На фиг. 11 представлена примерная иллюстрация беспроводного устройства, такого как оборудование пользователя (UE), мобильная станция (MS), мобильное беспроводное устройство, мобильное устройство передачи данных, планшет, телефонная трубка или другой тип мобильного беспроводного устройства. Беспроводное устройство может включать в себя одну или больше антенн, выполненных с возможностью обмена данными с узлом, таким как макроузел, узел малой мощности (LPN), или передающая станция, такая как базовая станция (BS), развернутый Узел B (eNB), модуль основной полосы пропускания (BBU), удаленное радиоустройство (RRH), удаленное радиооборудование (RRE), станция (RS) релейной передачи, радиооборудование (RE), или другой тип точки доступа беспроводной глобальной вычислительной сети (WWAN). Беспроводное устройство может быть выполнено с возможностью обмена данными, используя, по меньшей мере, один стандарт беспроводной передачи данных, включая в себя 3GPP LTE, WiMAX, высокоскоростной пакетный доступ (HSPA), Bluetooth и WiFi. Беспроводное устройство может выполнять обмен данными, используя отдельные антенны для каждого стандарта беспроводной передачи данных или совместно используемых антенн для множества стандартов беспроводной передачи данных. Беспроводное устройство может выполнять обмен данными в беспроводной локальной вычислительной сети (WLAN), беспроводной персональной вычислительной сети (WPAN) и/или WWAN.In FIG. 11 is an exemplary illustration of a wireless device, such as a user equipment (UE), a mobile station (MS), a mobile wireless device, a mobile data device, a tablet, a handset, or other type of mobile wireless device. A wireless device may include one or more antennas configured to communicate with a node, such as a macro node, a low power node (LPN), or a transmitting station, such as a base station (BS), a deployed Node B (eNB), a module Basic Bandwidth (BBU), Remote Radio Device (RRH), Remote Radio Equipment (RRE), Relay Transmission Station (RS), Radio Equipment (RE), or other type of wireless wide area network access point (WWAN). A wireless device may be configured to exchange data using at least one wireless data transfer standard, including 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and WiFi. A wireless device may exchange data using separate antennas for each wireless data transmission standard or shared antennas for a plurality of wireless data transmission standards. The wireless device can exchange data in a wireless local area network (WLAN), wireless personal area network (WPAN) and / or WWAN.
На фиг. 11 также представлена иллюстрация микрофона и одного или больше громкоговорителей, которые можно использовать для ввода и вывода звука из беспроводного устройства. Экран дисплея может представлять собой жидкокристаллической (LCD) экран или экран дисплея другого типа, такой, как, например, дисплей на органическом светодиоде (OLED). Экран дисплея может быть выполнен, как сенсорный экран. В сенсорном экране может использовать емкостная, резистивная или другого типа технология сенсорного экрана. Процессор приложения и графический процессор могут быть соединены с внутренним запоминающим устройством для обеспечения возможности обработки и отображения. Порт энергонезависимого запоминающего устройства также можно использовать для предоставления пользователю вариантов выбора ввода/вывода данных. Порт энергонезависимого запоминающего устройства может также использоваться для расширения возможностей, связанных с запоминающим устройством беспроводного устройства. Клавиатура может быть встроена в беспроводное устройство или может быть подключена беспроводно к беспроводному устройству для обеспечения дополнительной возможности ввода пользователя. Виртуальная клавиатура также может быть предусмотрена, используя сенсорный экран. In FIG. 11 also illustrates a microphone and one or more speakers that can be used to input and output sound from a wireless device. The display screen may be a liquid crystal (LCD) screen or another type of display screen, such as, for example, an organic light emitting diode (OLED) display. The display screen can be made like a touch screen. The touch screen can use capacitive, resistive, or some other type of touch screen technology. An application processor and a graphics processor may be coupled to the internal storage device to enable processing and display. The non-volatile storage port can also be used to provide the user with options for input / output data. The non-volatile storage port can also be used to expand the capabilities associated with the storage device of the wireless device. The keyboard may be integrated into the wireless device or may be connected wirelessly to the wireless device to provide additional user input. A virtual keyboard can also be provided using the touch screen.
Различные технологии или определенные аспекты, или их участки могут принимать форму программного кода (то есть, инструкций), сохраненного на материальных носителях информации, таких как гибкие диски, CD-ROM, твердые жесткие диски, энергонезависимый считываемый компьютером носитель информации или любой другой считываемый компьютером носитель информации, в котором, когда программный код загружают в устройство и исполняют в устройстве, таком как компьютер, устройство становится устройством для выполнения на практике различных технологий. В случае расширения программного кода на программируемые компьютеры, вычислительное устройство может включать в себя процессор, считываемый процессором носитель информации (включая в себя энергозависимое и энергонезависимое запоминающее устройство и/или элементы сохранения), по меньшей мере, одно устройство ввода и, по меньшей мере, одно устройство вывода. Энергозависимое и энергонезависимое запоминающее устройство и/или элементы сохранения могут представлять собой RAM, EPROM, привод флэш, оптический привод, привод магнитного жесткого диска или другой носитель информации для сохранения электронных данных. Базовая станция и беспроводное устройство также могут включать в себя модуль приемопередатчика, модуль счетчика, модуль обработки и/или модуль тактовой частоты, или модуль таймера. Одна или больше программ, которая может быть воплощена, или которая может использовать различные технологии, описанные здесь, может использовать интерфейс программирования приложения (API), элемент управления многократного использования и т.п. Такие программы могут быть воплощены в языке программирования высокого уровня, ориентированного на выполнение процедуры0 или в объектно-ориентированном языке программирования для обмена данными с вычислительной системой. Однако, программа (программы) может быть воплощена в виде подборки машинных языков, если требуется. В любом случае, язык может представлять собой компилируемый или интерпретируемый язык и может быть скомбинирован с аппаратными воплощениями.Various technologies, or certain aspects, or portions thereof, may take the form of program code (that is, instructions) stored on tangible storage media such as floppy disks, CD-ROMs, hard drives, non-volatile computer-readable media, or any other computer-readable a storage medium in which, when a program code is downloaded to a device and executed in a device such as a computer, the device becomes a device for practicing various technologies. In the case of expanding the program code to programmable computers, the computing device may include a processor readable by the processor, a storage medium (including volatile and non-volatile memory and / or storage elements), at least one input device and at least one output device. Volatile and non-volatile storage device and / or storage elements may be RAM, EPROM, flash drive, optical drive, magnetic hard disk drive or other storage medium for storing electronic data. The base station and the wireless device may also include a transceiver module, a counter module, a processing module and / or a clock module, or a timer module. One or more programs that can be implemented, or which can use the various technologies described here, can use an application programming interface (API), a reusable control, and the like. Such programs can be embodied in a high-level programming language oriented to the execution of
Следует понимать, что множество из функциональных модулей, описанных в данном описании, были помечены, как модули, для более конкретного выделения их независимости при воплощении. Например, модуль может быть воплощен, как аппаратная схема, содержащая специализированные микросхемы с очень высокой степенью интеграции или вентильные матрицы, стандартные полупроводники, такие как логические микросхемы, транзисторы или другие дискретные компоненты. Модуль может также быть воплощен в программируемых аппаратных устройствах, таких как программируемые пользователем вентильные матрицы, программируемые логические схемы, программируемые логические устройства и т.п. It should be understood that many of the functional modules described in this description have been labeled as modules to more specifically highlight their independence during implementation. For example, a module can be implemented as a hardware circuit containing specialized chips with a very high degree of integration or gate arrays, standard semiconductors, such as logic circuits, transistors, or other discrete components. The module may also be implemented in programmable hardware devices such as user-programmable gate arrays, programmable logic circuits, programmable logic devices, and the like.
Модули также могут быть воплощены в программных средствах для исполнения процессорами различных типов. Идентифицированный модуль исполняемого кода может, например, содержать один или больше физических или логических блоков компьютерных инструкций, которые могут, например, быть организованы как объект, процедура или функция. Однако исполняемые элементы идентифицированного модуля не обязательно физически должны быть размещены вместе, но могут содержать отдельные инструкции, сохраняемые в разных местах положений, которые при их логическом соединении вместе, составляют модуль и достигают установленного назначения этого модуля.Modules can also be implemented in software for execution by processors of various types. The identified executable code module may, for example, contain one or more physical or logical blocks of computer instructions, which may, for example, be organized as an object, procedure, or function. However, the executable elements of the identified module do not have to be physically placed together, but may contain separate instructions stored in different locations that, when logically connected together, make up the module and achieve the intended purpose of this module.
Действительно, модуль исполняемого кода может представлять собой одну инструкцию или множество инструкций, и может быть даже распределен по нескольким разным сегментам кода, среди разных программ, и по нескольким запоминающим устройствам. Аналогично, операционные данные могут быть идентифицированы и представлены здесь в пределах модулей, и могут быть воплощены в любой соответствующей форме и организованы с любым соответствующим типом структуры данных. Операционные данные могут быть собраны, как отдельный набор данных, или могут быть распределены по разным местам, включая в себя различные устройства - накопители, и могут существовать, по меньшей мере, частично, просто, как электронные сигналы в системе или в сети. Модули могут быть пассивными или активными, включая в себя агенты, работающие для выполнения требуемых функций.Indeed, an executable code module can be a single instruction or multiple instructions, and can even be distributed across several different code segments, among different programs, and across multiple memory devices. Similarly, operational data can be identified and presented here within the modules, and can be embodied in any appropriate form and organized with any appropriate type of data structure. Operational data can be collected as a separate set of data, or can be distributed at different places, including various storage devices, and can exist, at least partially, simply as electronic signals in a system or network. Modules can be passive or active, including agents that work to perform the required functions.
Ссылка в данном описании на "пример" означает, что конкретное свойство, структура или характеристика, описанная в связи с примером, включена, по меньшей мере, в один вариант осуществления настоящего изобретения. Таким образом, появление фраз "в примере", в различных местах, в данном описании, не обязательно относится к одному и тому же варианту осуществления.Reference in this description to “example” means that a particular property, structure, or characteristic described in connection with the example is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in the example” in various places in this specification does not necessarily refer to the same embodiment.
Используемое здесь множество элементов, структурных элементов, составляющих элементов и/или материалов может быть представлено в виде общего списка для удобства. Однако, этот список не следует рассматривать, как если бы каждый член этого списка был индивидуально идентифицирован, как отдельный и уникальный элемент. Таким образом, ни один отдельный член этого списка не следует рассматривать, как де факто эквивалентный любому другому элементу того же списка, исключительно на основе их представления в общей группе без индикаций противоположного. Кроме того, здесь ссылка на различные варианты осуществления и примеры настоящего изобретения может быть сделана вместе с альтернативами для различных его компонентов. Следует понимать, что такие варианты осуществления, примеры и альтернативы не следует рассматривать, как де факто эквивалентные друг другу, но их следует рассматривать, как отдельные и автономные представления настоящего изобретения. The plurality of elements used here, structural elements, constituent elements and / or materials may be presented as a general list for convenience. However, this list should not be considered as if each member of this list was individually identified as a separate and unique element. Thus, no single member of this list should be considered as de facto equivalent to any other element of the same list, solely on the basis of their representation in the general group without indications of the opposite. In addition, here, reference to various embodiments and examples of the present invention can be made together with alternatives for its various components. It should be understood that such embodiments, examples and alternatives should not be construed as being de facto equivalent to each other, but should be considered as separate and autonomous representations of the present invention.
Кроме того, описанные свойства, структуры или характеристики могут быть скомбинированы любым соответствующим способом в одном или больше вариантах осуществления. В следующем описании представлено множество конкретных деталей, таких как примеры компоновок, расстояний, примеров сети и т.д., для обеспечения полного понимания вариантов осуществления изобретения. Для специалиста в соответствующей области техники будет понятно, однако, что изобретение может быть выполнено на практике без одной или больше конкретных деталей, или с использованием других способов, компонентов, компоновок и т.д. В других случаях известные структуры, материалы или операции не показаны, или не описаны подробно, для того, чтобы сделать более ясными аспекты изобретения.In addition, the described properties, structures, or characteristics may be combined in any suitable manner in one or more embodiments. The following description provides many specific details, such as layout examples, distances, network examples, etc., to provide a thorough understanding of embodiments of the invention. It will be understood by those skilled in the art, however, that the invention can be practiced without one or more specific details, or using other methods, components, arrangements, etc. In other instances, well-known structures, materials or operations are not shown, or are not described in detail, in order to clarify aspects of the invention.
В то время как представленные выше примеры являются иллюстрацией принципов настоящего изобретения в одном или больше конкретных вариантах осуществления, для специалистов в данной области техники будет понятно, что различные модификации в форме вариантов использования и деталей вариантов осуществления могут быть выполнены без привлечения изобретательности и без выхода за пределы принципов и концепций изобретения. В соответствии с этим, предполагается, что изобретение не будет ограничено ни чем, за исключением представленной ниже формулы изобретения. While the examples presented above illustrate the principles of the present invention in one or more specific embodiments, it will be understood by those skilled in the art that various modifications in the form of use cases and details of embodiments can be made without involving ingenuity and without going beyond the limits of the principles and concepts of the invention. Accordingly, it is contemplated that the invention will not be limited by anything other than the following claims.
Claims (39)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161556109P | 2011-11-04 | 2011-11-04 | |
US61/556,109 | 2011-11-04 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015138682A Division RU2612411C2 (en) | 2011-11-04 | 2012-06-05 | Synchronization of time characteristics for downlink (dl) transmission in coordinated multi-point (comp) systems |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2656234C1 true RU2656234C1 (en) | 2018-06-04 |
Family
ID=47561765
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016117322A RU2632902C1 (en) | 2011-11-04 | 2012-03-28 | Selection of confirmation time in wireless communication |
RU2016118360A RU2643660C1 (en) | 2011-11-04 | 2012-03-29 | Indication of parameters of physical sharedtransmission channel in wireless communications networks |
RU2015138682A RU2612411C2 (en) | 2011-11-04 | 2012-06-05 | Synchronization of time characteristics for downlink (dl) transmission in coordinated multi-point (comp) systems |
RU2017105634A RU2656234C1 (en) | 2011-11-04 | 2017-02-21 | Synchronization of temporary characteristics for declined (dl) transmissions in coordinated multi-point (comp) systems |
RU2018102117A RU2669781C1 (en) | 2011-11-04 | 2018-01-19 | Indication of parameters of physical downlink shared channel in wireless communications networks |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016117322A RU2632902C1 (en) | 2011-11-04 | 2012-03-28 | Selection of confirmation time in wireless communication |
RU2016118360A RU2643660C1 (en) | 2011-11-04 | 2012-03-29 | Indication of parameters of physical sharedtransmission channel in wireless communications networks |
RU2015138682A RU2612411C2 (en) | 2011-11-04 | 2012-06-05 | Synchronization of time characteristics for downlink (dl) transmission in coordinated multi-point (comp) systems |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018102117A RU2669781C1 (en) | 2011-11-04 | 2018-01-19 | Indication of parameters of physical downlink shared channel in wireless communications networks |
Country Status (7)
Country | Link |
---|---|
JP (10) | JP2016059062A (en) |
CN (3) | CN105871429B (en) |
CA (1) | CA2932387C (en) |
HK (3) | HK1216465A1 (en) |
HU (2) | HUE035600T2 (en) |
MY (2) | MY175550A (en) |
RU (5) | RU2632902C1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017075828A1 (en) | 2015-11-06 | 2017-05-11 | 华为技术有限公司 | Method and device for device-to-device inter-cell interference cancellation |
CN107295624B (en) * | 2016-03-30 | 2021-11-26 | 日本电气株式会社 | Node synchronization method and node adopting same |
US9882640B1 (en) * | 2016-10-28 | 2018-01-30 | Wipro Limited | Visible light communication personal area network coordinator (VPANC) and associated method for selecting suitable VPANCs |
CN110603777B (en) * | 2017-05-05 | 2022-09-13 | 苹果公司 | Signaling of channel state information reference signal (CSI-RS) mapping configuration for New Radio (NR) systems |
US10425900B2 (en) | 2017-05-15 | 2019-09-24 | Futurewei Technologies, Inc. | System and method for wireless power control |
MX2020002662A (en) * | 2017-09-11 | 2020-07-22 | Ericsson Telefon Ab L M | Unified ul and dl beam indication. |
US11284316B2 (en) * | 2018-02-07 | 2022-03-22 | Qualcomm Incorporated | Mobile device centric clustering in wireless systems |
US11765720B2 (en) * | 2018-02-23 | 2023-09-19 | Interdigital Holdings, Inc. | System and method for bandwidth part operation |
US11617193B2 (en) | 2018-05-11 | 2023-03-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Control signalling for a repeated transmission |
US11956762B2 (en) * | 2018-09-28 | 2024-04-09 | At&T Intellectual Property I, L.P. | Facilitating improved performance in advanced networks with multiple transmission points |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006009713A1 (en) * | 2004-06-18 | 2006-01-26 | Qualcomm Incorporated | Time synchronization using spectral estimation in a communication system |
RU2276464C2 (en) * | 2000-02-29 | 2006-05-10 | Уорлдспейс Корпорейшн | Device and method for receipt and synchronization at mobile platform in direct digital satellite broadcast system |
WO2011075867A1 (en) * | 2009-12-23 | 2011-06-30 | Telefonaktiebolaget L M Ericsson (Publ) | Base station synchronisation |
KR20110083443A (en) * | 2010-01-12 | 2011-07-20 | 김용우 | Spring Balance with Pulley |
US20110183663A1 (en) * | 2008-09-30 | 2011-07-28 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and Apparatuses for Detecting Radio Link Failure in a Telecommunications System |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5261106A (en) * | 1991-12-13 | 1993-11-09 | S-Mos Systems, Inc. | Semaphore bypass |
RU2382497C2 (en) * | 2005-06-30 | 2010-02-20 | Нокиа Корпорейшн | Device, method and computer software for operation of transmission antenna with feedback for systems using several antennae |
US8787344B2 (en) * | 2006-08-30 | 2014-07-22 | Qualcomm Incorporated | Method and apparatus for ACKCH with repetition in orthogonal systems |
US8837380B2 (en) * | 2006-11-01 | 2014-09-16 | Qualcomm Incorporated | Method and apparatus for cell search in an orthogonal wireless communication system |
CN100474101C (en) * | 2007-04-10 | 2009-04-01 | 苏州苏大维格数码光学有限公司 | Projection screen having image plane holographic structure |
EP2169856A4 (en) * | 2007-06-19 | 2014-11-05 | Ntt Docomo Inc | Base station device and communication control method |
EP2213046B1 (en) * | 2007-09-14 | 2018-07-04 | NEC Corporation | Method and system for optimizing network performances |
US8498647B2 (en) * | 2008-08-28 | 2013-07-30 | Qualcomm Incorporated | Distributed downlink coordinated multi-point (CoMP) framework |
WO2010039066A1 (en) * | 2008-09-30 | 2010-04-08 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and arrangements for dynamically adjusting the rate of sub cell searching in coordinated multiple point transmission/reception, comp, cells |
KR101481591B1 (en) * | 2008-12-03 | 2015-01-12 | 엘지전자 주식회사 | A method of transmitting and receiving a downlink reference signal in a wireless communication system having multiple antennas |
US8755807B2 (en) * | 2009-01-12 | 2014-06-17 | Qualcomm Incorporated | Semi-static resource allocation to support coordinated multipoint (CoMP) transmission in a wireless communication network |
CN101777941B (en) * | 2009-01-12 | 2014-10-08 | 华为技术有限公司 | Downlink mode of transmission, network devices and wireless device in the coordinated multiple-point transmission systems |
US20100189038A1 (en) * | 2009-01-23 | 2010-07-29 | Runhua Chen | Circuit and method for mapping data symbols and reference signals for coordinated multi-point systems |
CN101790188B (en) * | 2009-01-24 | 2014-10-08 | 华为技术有限公司 | Time offset adjusting method and user terminal |
JP2010258612A (en) * | 2009-04-22 | 2010-11-11 | Sharp Corp | Radio communication system, base station device, control method, program, and recording medium |
US20110158164A1 (en) * | 2009-05-22 | 2011-06-30 | Qualcomm Incorporated | Systems and methods for joint processing in a wireless communication |
JP2011023942A (en) * | 2009-07-15 | 2011-02-03 | Ntt Docomo Inc | Radio base station apparatus and modulating/coding scheme selecting method |
CN101626269A (en) * | 2009-08-17 | 2010-01-13 | 中兴通讯股份有限公司 | Downlink synchronous emission control method and system |
KR101367570B1 (en) * | 2009-09-27 | 2014-02-26 | 엘지전자 주식회사 | Method and apparatus of transmitting reference signal in wireless communication system |
KR20110040672A (en) * | 2009-10-12 | 2011-04-20 | 주식회사 팬택 | Method and device for transmitting and receiving control information in wireless communication system |
US8948028B2 (en) * | 2009-10-13 | 2015-02-03 | Qualcomm Incorporated | Reporting of timing information to support downlink data transmission |
US9042840B2 (en) * | 2009-11-02 | 2015-05-26 | Qualcomm Incorporated | Cross-carrier/cross-subframe indication in a multi-carrier wireless network |
CN102056206B (en) * | 2009-11-04 | 2015-06-10 | 中兴通讯股份有限公司 | Self-organization operation processing method and device |
US10111111B2 (en) * | 2009-11-19 | 2018-10-23 | Qualcomm Incorporated | Per-cell timing and/or frequency acquisition and their use on channel estimation in wireless networks |
WO2011071291A2 (en) * | 2009-12-07 | 2011-06-16 | 엘지전자 주식회사 | Method for transmitting a sounding reference signal in an uplink comp communication system, and apparatus for same |
US20110176461A1 (en) * | 2009-12-23 | 2011-07-21 | Telefonakatiebolaget Lm Ericsson (Publ) | Determining configuration of subframes in a radio communications system |
CN101800593A (en) * | 2010-01-18 | 2010-08-11 | 北京东方信联科技有限公司 | Device and method for shaping TD-SCDMA radio frame signal |
US8305987B2 (en) * | 2010-02-12 | 2012-11-06 | Research In Motion Limited | Reference signal for a coordinated multi-point network implementation |
KR20130020885A (en) * | 2010-03-23 | 2013-03-04 | 인터디지탈 패튼 홀딩스, 인크 | Efficient signaling for machine type communication |
US8897228B2 (en) * | 2010-04-26 | 2014-11-25 | Sharp Kabushiki Kaisha | Mobile communication system, base station apparatus, mobile station apparatus and communication method |
JP5647676B2 (en) * | 2010-04-28 | 2015-01-07 | 京セラ株式会社 | Wireless communication system, high power base station, wireless terminal, low power base station, and wireless communication method |
CN102238595B (en) * | 2010-04-30 | 2014-02-26 | 华为技术有限公司 | Method and equipment for processing cell outage |
CN101924610B (en) * | 2010-08-02 | 2012-12-26 | 西安电子科技大学 | Method for designing and distributing channel state information reference signal (CSI-RS) in LTE-A (Long Term Evolution-Advanced) system |
CN101908937B (en) * | 2010-08-20 | 2012-12-26 | 西安电子科技大学 | Signal detecting method in downlink distribution type MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) system |
CN102143593B (en) * | 2011-03-25 | 2013-09-11 | 电信科学技术研究院 | Combined adaptive resource allocation method and device for PDCCH (Physical Downlink Control Channel) |
EP3182624B1 (en) * | 2011-09-23 | 2018-08-01 | Lg Electronics Inc. | Method for transmitting control information and apparatus for same |
-
2012
- 2012-03-20 CA CA2932387A patent/CA2932387C/en active Active
- 2012-03-28 HU HUE12846449A patent/HUE035600T2/en unknown
- 2012-03-28 HU HUE12846485A patent/HUE035205T2/en unknown
- 2012-03-28 RU RU2016117322A patent/RU2632902C1/en active
- 2012-03-28 MY MYPI2014701048A patent/MY175550A/en unknown
- 2012-03-28 MY MYPI2014701068A patent/MY168109A/en unknown
- 2012-03-29 RU RU2016118360A patent/RU2643660C1/en active
- 2012-03-29 CN CN201610276115.2A patent/CN105871429B/en active Active
- 2012-06-05 CN CN201710477754.XA patent/CN107257252B/en active Active
- 2012-06-05 CN CN201510751241.4A patent/CN105337644B/en active Active
- 2012-06-05 RU RU2015138682A patent/RU2612411C2/en active
-
2015
- 2015-12-02 JP JP2015235687A patent/JP2016059062A/en active Pending
- 2015-12-25 JP JP2015254691A patent/JP6100878B2/en active Active
-
2016
- 2016-02-15 JP JP2016026362A patent/JP6267732B2/en active Active
- 2016-03-23 JP JP2016058055A patent/JP6279642B2/en active Active
- 2016-04-15 HK HK16104318.9A patent/HK1216465A1/en unknown
- 2016-10-24 HK HK16112166.5A patent/HK1224094A1/en unknown
- 2016-11-17 JP JP2016223861A patent/JP6371361B2/en active Active
- 2016-12-13 JP JP2016240783A patent/JP6326122B2/en active Active
-
2017
- 2017-02-21 RU RU2017105634A patent/RU2656234C1/en active
- 2017-02-23 JP JP2017032731A patent/JP6424398B2/en active Active
- 2017-12-22 JP JP2017246314A patent/JP6501210B2/en active Active
-
2018
- 2018-01-17 JP JP2018005414A patent/JP6726815B2/en active Active
- 2018-01-19 RU RU2018102117A patent/RU2669781C1/en active
- 2018-07-05 HK HK18108679.1A patent/HK1249286A1/en unknown
- 2018-07-12 JP JP2018132002A patent/JP6542439B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2276464C2 (en) * | 2000-02-29 | 2006-05-10 | Уорлдспейс Корпорейшн | Device and method for receipt and synchronization at mobile platform in direct digital satellite broadcast system |
WO2006009713A1 (en) * | 2004-06-18 | 2006-01-26 | Qualcomm Incorporated | Time synchronization using spectral estimation in a communication system |
US20110183663A1 (en) * | 2008-09-30 | 2011-07-28 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and Apparatuses for Detecting Radio Link Failure in a Telecommunications System |
WO2011075867A1 (en) * | 2009-12-23 | 2011-06-30 | Telefonaktiebolaget L M Ericsson (Publ) | Base station synchronisation |
KR20110083443A (en) * | 2010-01-12 | 2011-07-20 | 김용우 | Spring Balance with Pulley |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11336423B2 (en) | Timing synchronization for downlink (DL) transmissions in coordinated multipoint (CoMP) systems | |
RU2656234C1 (en) | Synchronization of temporary characteristics for declined (dl) transmissions in coordinated multi-point (comp) systems | |
JP6938642B2 (en) | Path loss estimation method and device | |
US9693304B2 (en) | Rescheduling of a resource component of low power nodes (LPNs) in a coordination set | |
US8811144B2 (en) | User equipment (UE)-specific assignment of demodulation reference signal (DMRS) sequences to support uplink (UL) coordinated multipoint (CoMP) | |
KR101904944B1 (en) | Method of performing measurement at ue in wireless communication system and apparatus thereof | |
CN112385171B (en) | Sounding reference signal and channel state information reference signal enhancement for coordinated multipoint communications | |
JP2015525031A (en) | Techniques for joint support of multi-point coordination (CoMP) operation and carrier aggregation (CA) | |
CA2865770A1 (en) | Method and apparatus for quasi co-location identification of reference symbol ports for coordinated multi-point communication systems | |
WO2014203298A1 (en) | Radio communication method, radio communication system, radio station, and radio terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20220201 |