[go: up one dir, main page]

RU2654832C1 - Способ определения содержания незамерзшей воды в мерзлых грунтах - Google Patents

Способ определения содержания незамерзшей воды в мерзлых грунтах Download PDF

Info

Publication number
RU2654832C1
RU2654832C1 RU2017121829A RU2017121829A RU2654832C1 RU 2654832 C1 RU2654832 C1 RU 2654832C1 RU 2017121829 A RU2017121829 A RU 2017121829A RU 2017121829 A RU2017121829 A RU 2017121829A RU 2654832 C1 RU2654832 C1 RU 2654832C1
Authority
RU
Russia
Prior art keywords
sample
moisture
temperature
activity
content
Prior art date
Application number
RU2017121829A
Other languages
English (en)
Inventor
Владимир Александрович Истомин
Евгений Михайлович Чувилин
Борис Александрович Буханов
Original Assignee
Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" filed Critical Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий"
Priority to RU2017121829A priority Critical patent/RU2654832C1/ru
Application granted granted Critical
Publication of RU2654832C1 publication Critical patent/RU2654832C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к геологии и к горным наукам, а именно к геокриологии, и позволяет определять содержание незамерзшей воды в различных минеральных и органогенных мерзлых грунтах, а также в мерзлых загрязненных породах, содержащих органические (нефть, нефтепродукты и др.) и солевые компоненты. Способ определения содержания незамерзшей воды в образце грунта в зависимости от температуры заключается в том, что полностью высушивают образец грунта, взвешивают его при положительной температуре, равномерно насыщают образец влагой до величины полной влагоемкости, затем проводят ступенчатое подсушивание образца, взвешивают образец на каждой ступени при той же температуре, определяют по нему весовую влажность образца на каждой ступени. Также на каждой ступени при той же температуре измеряют термодинамическую активность поровой влаги. По измеренным значениям определяют отрицательные по Цельсию значения температуры, при которых имеет место фазовое равновесие льда с поровой влагой для образца с измеренными значениями активности и весовой влажности, и по полученным значениям определяют зависимость содержания незамерзшей воды в образце грунта от температуры, т.е. кривую незамерзшей воды. Технический результат – повышение точности определения содержания незамерзшей воды в мерзлых грунтах. 4 з.п. ф-лы, 2 ил., 6 табл.

Description

Изобретение относится к геологии и к горным наукам, а именно к геокриологии, и позволяет определять содержание незамерзшей воды в различных минеральных и органогенных мерзлых грунтах, а также в горных породах, содержащих органические (нефть, нефтепродукты и др.) и минеральные загрязнители (соли).
Незамерзшая вода в мерзлых породах является существенным фактором, определяющим их физико-химические и механические свойства. Экспериментальные данные о неполном замерзании поровой влаги в мерзлых породах были получены еще в первой половине XX века. К настоящему времени разработан целый ряд экспериментальных методов определения содержания незамерзшей воды в мерзлых породах: калориметрический, ЯМР, диэлектрический, криоскопический, адсорбционный, контактный и др. (Ершов Э.Д., Акимов Ю.П., Чеверев В.Г., Кучуков Э.З. Фазовый состав влаги в мерзлых породах. - М.: МГУ, 1979. 189 с.; Чеверев В.Г. Природа криогенных свойств грунтов. - М.: Научный мир, 2004. 234 с.).
Многие из существующих на сегодняшний день методов определения незамерзшей воды отличаются значительной трудоемкостью. Кроме того, имеются проблемы принципиального (теоретического) характера при сопоставлении получаемых разными методами результатов. Это вызывает необходимость совершенствования современных методик, а также разработки более оперативных способов оценки фазового состояния влаги в мерзлых породах, пригодных для проведения массовых измерений.
Известен способ определения содержания незамерзшей воды в грунтах по изотермам сорбции-десорбции (В.Г. Чеверев, И.Ю. Видяпин, Р.Г. Мотенко, М.В. Кондаков. Определение содержания незамерзшей воды в грунтах по изотермам сорбции-десорбции. Ж. «Криосфера Земли», 2005, т. IX, №4, с. 29-33). Предварительно образцы грунта для сорбции высушивали, а образцы грунта для десорбции увлажняли до полной влагоемкости. Образцы размещали в объеме, в котором поддерживалось определенное давление паров воды. Масса влагонасыщенных образцов снижалась, масса сухих возрастала. Достижение постоянной массы образцов контролировали периодическим взвешиванием. Влажность образцов определяли в конце опыта методом сушки. Полученные изотермы сорбции-десорбции использовали для последующего пересчета на содержание незамерзшей воды.
Известный способ работает при положительной температуре, но является очень медленным, т.к. достижение равновесия (т.е. равновесного содержания влаги в образце при заданной влажности в объеме, где размещали образцы) является длительным процессом и занимает до двух недель.
Наиболее близким к предложенному является способ определения содержания незамерзшей воды в мерзлых грунтах по измеренным значениям химического потенциала поровой воды, раскрытый в работе (Истомин В.А., Чувилин Е.М., Махонина Н.А., Буханов Б.А. Определение температурной зависимости содержания незамерзшей воды в грунтах по потенциалу влаги // Криосфера Земли, 2009, №2, с. 35-43) [1], в которой дано подробное изложение термодинамики поровой влаги в пористых средах. В качестве стандартного состояния выбрана объемная фаза воды (переохлажденной воды при отрицательных по Цельсию температурах). Готовили несколько образцов различной влажности путем смешивания со снегом, взвешивали каждый образец три раза: в сухом виде, после насыщения влагой и после окончания эксперимента, измеряли химический потенциал поровой воды (относительно стандартного состояния) в зависимости от влажности образца при отрицательных по Цельсию температурах и по измеренным значениям рассчитывали кривую незамерзшей воды.
Недостатком способа является необходимость приготовления ряда образцов различной влажности, при этом не обеспечивается распределение влаги по объему образцов, соответствующее ее равновесному распределению в грунте с незамерзшей водой в естественном состоянии, что негативно влияет на точность измерения химического потенциала поровой влаги.
Техническая проблема, на решение которой направлено настоящее изобретение, является создание оперативного и точного способа определения содержания незамерзшей воды в мерзлых грунтах.
Указанная проблема решается способом определения содержания незамерзшей воды в образце грунта в зависимости от температуры, заключающимся в том, что полностью высушивают образец грунта, взвешивают его при температуре tизм>0, насыщают образец влагой, повторно его взвешивают, измеряют параметр поровой влаги и определяют по измеренным значениям зависимости содержания незамерзшей воды в образце грунта в зависимости от величины отрицательной по Цельсию температуры, при этом согласно изобретению насыщение образца влагой осуществляют до величины полной влагоемкости, затем проводят ступенчатое подсушивание образца, повторное взвешивание образца осуществляют на каждой ступени при той же температуре tизм, определяют по нему весовую влажность Wi образца на каждой i-той ступени, в качестве измеряемого параметра поровой влаги используют термодинамическую активность поровой влаги a i=a(Wi), измерение которой осуществляют на каждой ступени подсушивания образца при температуре tизм, по измеренным значениям определяют отрицательные по Цельсию значения температуры teq<°C, при которых имеет место фазовое равновесие льда с поровой влагой для образца со значениями активности a i=a(Wi) и весовой влажности Wi, и по полученным значениям a i определяют зависимость содержания незамерзшей воды в образце грунта от отрицательной температуры teq, т.е. кривую незамерзшей воды.
Определение температуры teq фазового равновесия льда и поровой влаги в образце с активностью воды a=а(W) можно осуществлять по соотношению
teq(°C)=103,25⋅ln а+5,57⋅(1-a)2
или по построенным заранее калибровочным кривым, связывающим активность поровой воды в образце с температурой фазового равновесия ее со льдом.
Кроме того, можно проводить измерения активности воды в образце заданной влажности Wi при нескольких положительных по Цельсию температурах и получать температурную зависимость активности a i с ее последующей экстраполяцией на область отрицательных по Цельсию температур.
При этом экстраполяцию температурной зависимости активности воды от температуры (при каждой исследуемой влажности образца) можно осуществлять, например, по зависимости
Figure 00000001
Экстраполяцию можно проводить при наличии как минимум значений активности воды в образце заданной влажности при двух температурах T (в Кельвинах); α, β, - эмпирические коэффициенты, определяемые по полученным данным из значения для каждой зависимости
Кроме того, взвешивание образца на каждой ступени целесообразно проводить до и после измерения термодинамической активности поровой влаги a i и в случае различия значений весовой влажности образца Wi до и после измерения более чем 0,2% весовую влажность Wi определяют как среднее значение весовой влажности до и после измерения термодинамической активности поровой влаги.
Технический результат, достигаемый предложенным способом, заключается в упрощении способа за счет использования всего одного образца вместо нескольких, а также в повышении точности измерений, поскольку в процессе испарения влаги из образца грунта при его подсушивании воспроизводится состояние грунта с тем же количеством незамерзшей водой, находящейся в равновесном состоянии со льдом в естественных условиях.
В предложенном способе ранее известная методика [1] упрощена для широкой области отрицательных температур (до -15°C, а для ряда грунтовых сред до -20°C) и представляет собой экспресс-метод определения температурной зависимости количества незамерзшей воды W по измеренным значениям термодинамической активности поровой влаги а при положительной по Цельсию температуре.
По аналогии с водными растворами активность поровой влаги a=a(t, W) грунтовой системы (заданной влажности W при температуре t) определяется по соотношению:
Figure 00000002
где - pwpor - парциальное давление водяных паров над исследуемым образцом влажности W;
- pw - давление паров над объемной фазой жидкой воды.
Из определения (1) следует, что a - безразмерная величина. Она зависит от влажности образца и, строго говоря, от температуры, т.е. a=a(t, W). Для гидрофильных систем (грунтов) a<1, а при увеличении влажности образца a→1.
Как показывает проведенный термодинамический анализ имеющихся экспериментальных данных, для расчета содержания незамерзшей воды в диапазоне температур от 0°C до минус 15°C для многих грунтовых систем практически можно в хорошем приближении пренебречь температурной зависимостью активности поровой влаги, т.е. сделать допущение, что a является только функцией W.
Из экспериментальных данных по активности поровой влаги в грунтовом образце с заданной влажностью W (измеряется в массовых процентах по отношению к сухому образцу) необходимо выполнить расчет температуры teq (<0°C), при которой поровая влага будет находиться в равновесии с объемной фазой льда (как и в случае определения содержания незамерзшей воды от температуры контактным методом). При этой температуре влажность образца W становится равной содержанию незамерзшей воды Wнз, т.е. W=Wнз. Для такого пересчета необходимо иметь соотношение для разности свободных энергий Гиббса (разности химических потенциалов) между жидкой (переохлажденной водой) и объемной фазой льда, которое было представлена ранее [1].
В диапазоне 0,6≤a≤1,0 с использованием термодинамических соотношений из работы [1], была получена удобная в практическом отношении расчетная формула равновесной температуры teq (по Цельсию) для измеренной активности воды a=a(W) в образце:
Figure 00000003
Формула (2) выражает связь между влажностью образца (через активность a поровой влаги) и равновесной температурой, т.е. температурой, при которой поровая вода в образце заданной влажности W находится в термодинамическом фазовом равновесии с объемной фазой льда. Иначе говоря, таким способом получается кривая незамерзшей воды, поскольку установлена связь между содержанием незамерзшей воды (W) и отрицательной температурой образца (при которой имеет место равновесие поровой влаги со льдом).
Экспериментальное определение активности поровой влаги в образце осуществлялось следующим образом.
На сегодняшний день имеются различные инструментальные средства для измерения термодинамической активности поровой влаги. Одним из удобных приборов является WP 4Т, разработанный компанией Decagon Devices (США) (Campbell G.S., Smith D.M., Teare B.L. Application of a Dew Point Method to obtain the soil water characteristic // Springer Proceedings in Physics. 2007. №112, p. 71-77). Измерительная система данного прибора основана на определении давления паров воды над влажным грунтом по методу «точки росы». Этот прибор определяет термодинамическую активность воды a в пористых средах. С учетом всех видов погрешности точность определения активности поровой влаги при 0,7≤a≤0,9 оценивается на уровне ~0,025, а при 0,9<a<1,0 - не более 0,01.
Для экспериментального определения активности влаги готовили образцы грунта диаметром 3,8 см и высотой 0,5-1,0 см, которые насыщали влагой и подсушивали ступенчато. На каждой ступени проводили измерение активности поровой влаги предпочтительно при комнатной температуре.
При проведении замеров активности влаги в грунтовых образцах на каждой ступени для автоматизации процесса получения, накопления и обработки данных прибор WP 4Т подключали к компьютеру через стандартную программу Hyper Terminal.
Для обеспечения высокой производительности серию измерений начинали на грунтовом образце с максимальной влагонасыщенностью, затем после каждого измерения влагосодержащий образец ступенчато подсушивали (на 1-2%) в эксикаторе с хлоридом кальция. Таким образом, проводили не менее 6-7 измерений активности воды в образце с различным его влагосодержанием. Контроль влажности в процессе подсушивания осуществляли путем взвешивания образца на электронных весах с дискретностью 0,001 г, также контроль влажности осуществляли до и после серии измерения активности поровой влаги. Функционал прибора WP-4T позволяет проводить измерения активности поровой влаги не только при комнатной температуре (~25°C,), но и в диапазоне температур от +15 до +40°C. Поэтому для данного диапазона температур можно получить зависимость активности поровой влаги от температуры. В итоге получали зависимость активности поровой влаги от весовой влажности a=a(W).
Как показали тестовые измерения, в большинстве случаев эта температурная зависимость активности поровой влаги (при фиксированной влажности образца) является слабой. Ее стоит принимать во внимание только для некоторых глинистых образцов с малым влагосодержанием, где в поровом пространстве содержится преимущественно связанная (адсорбционная) вода или заметное количество «межслоевой воды». Также ее следует учитывать для искусственных пористых сред с микропорами (и нанопорами). Во многих других случаях для диапазона рассматриваемых температур этой зависимостью (активности поровой влаги от температуры) можно пренебречь.
При необходимости учета температурной зависимости активности воды ее измерения в образце заданной влажности проводят при двух или более положительных по Цельсию температурах с последующей экстраполяцией температурной зависимости активности на область отрицательных по Цельсию температур.
Для измерения термодинамической активности поровой влаги в образцах могут использоваться и другие приборы, например тензиометр, пьезометр, психрометр с термопарами, гигрометр или датчик порового давления. Эти приборы либо непосредственно измеряют относительную влажность, т.е. активность поровой воды (см. определение активности), либо она пересчитывается из измеряемой величины известными в литературе методами.
В качестве объекта исследования использовались глинистые грунты различного состава - полиминеральная глина и каолинитовая глина. Их гранулометрический состав определяли ареометрическим методом, а минеральный - методом рентгеновской дифрактометрии. Результаты определения гранулометрического и минерального состава представлены в таблице 1.
Figure 00000004
Из представленных данных (табл. 1) следует, что в минеральном составе полиминеральной глины преобладают зерна кварца (45%), в меньшем количестве содержатся микроклин (9%), иллит (8%), каолин (5%), гидрослюда (2%), а также тонкодисперсная (ренгеноаморфная) субстанция (28%). Пылевато-глинистая фракция полиминеральной глины составляет 69% из которых глинистая фракция составляет 34%. В составе каолинитовой глины преобладает минерал каолин (92%), содержание пылевато-глинистой фракции составляет 92%, из которых глинистые частицы (<0,005 мм) составляют 65%. Содержание водорастворимых солей в образцах полиминеральной и каолинитовой глины незначительно: 0,19% и 0,04% соответственно. Удельная активная поверхность дисперсных грунтов, полученные сорбционным методом по азоту, составила 26 м2/г для полиминеральной глины и 12 м2/г для каолинитовой глины.
Содержание незамерзшей воды в исследуемых грунтах в зависимости от температуры экспериментально определяли также контактным методом, который является эталонным. Этот известный метод основан на определении равновесного влагосодержания грунта, которое достигается при непосредственном контакте сухой грунтовой пластины с двумя пластинами льда в течение одной-двух недель (Фазовый состав пород влаги в мерзлых породах / Под ред. Э.Д. Ершова. М.: МГУ, 1979, 192 с.; Новые методы исследования состава, строения и свойств мерзлых пород / Под ред. С.Е. Гречищева, Э.Д. Ершова. - М.: Недра, 1983, 140 с.; Лабораторные методы исследования мерзлых пород / Под ред. Э.Д. Ершова. - М.: МГУ, 1985, 350 с.). Результаты определения содержания незамерзшей воды контактным методом представлены в таблице 2.
Figure 00000005
По предложенному способу содержание незамерзшей воды по экспериментальным значениям активности поровой влаги определяли следующим образом.
На первом шаге экспериментально определяли зависимость активности поровой влаги a от влагосодержания W (% мас.) дисперсной среды при комнатной температуре, как уже описано выше. При этом начальное значение влажности грунтового образца задают значением, близким (несколько ниже) к величине полной влагоемкости. После замера активности поровой влаги на приборе образец ступенчато подсушивали, при этом проводили не менее 6-7 ступеней подсушивания. Определение влажности и активности поровой влаги образца осуществляли при каждом подсушивании. В нашем случае использовался прибор WP 4Т. Взвешивание образца и определение весовой влажности образца W проводили на каждой ступени до и после измерения активности поровой влаги. В случае различия значений весовой влажности образца до и после измерения более чем 0,2% весовую влажность определяли как среднее значение весовой влажности до и после измерения активности поровой влаги.
На втором шаге с использованием экспериментальных данных активности поровой влаги при различной влажности грунтового образца по формуле (3) определяли равновесную температуру teq, (в °C), соответствующую равновесию между поровой влагой в образце влажности W и объемной фазой льда. Таким образом, получали взаимосвязь отрицательной температуры (teq) и равновесного содержания жидкой фазы в мерзлых дисперсных средах, т.е. температурную зависимость содержания незамерзшей воды (Wuf).
Используя предложенный выше подход, были выполнены расчеты содержания незамерзшей воды для двух глинистых грунтовых сред и проведено сравнение с экспериментальными данными по контактному методу.
При помощи прибора WP-4T с использованием предложенного способа была получена экспериментальная зависимость активности поровой влаги а от весового влагосодержания (W, % мас.) образца. Результаты представлены в Таблице 3.
Figure 00000006
В экспериментах использовались весы дискретностью 0,001 г, что позволяет проводить измерения влагосодержания дисперсных сред с точностью ~0,1%.
В результате проведенных расчетов по формуле (3) была получена зависимость между содержанием жидкой фазы (W, %) и отрицательной температурой (teq, °C), при которой данное количество жидкой фазы будет находиться в фазовом равновесии с объемной твердой фазой льда, представленная в таблице 4.
Figure 00000007
Таким образом, через значения активности влаги устанавливали связь равновесного содержания жидкой фазы в дисперсных льдосодержащих средах W от отрицательной температуры (teq, °C), т.е. кривую незамерзшей воды.
Таким образом, для исследуемых глинистых грунтов построены графические зависимости содержания незамерзшей воды (W) от температуры (teq, °C), приведенные на чертежах.
На фиг. 1 приведена графическая зависимость незамерзшей воды (W) от температуры (teq, °C) для полиминеральной глины: 1 - значения, полученные предложенным способом, 2 - значения, полученные контактным методом [3].
На фиг. 2 приведена графическая зависимость незамерзшей воды (W) от температуры (teq, °C) для каолинитовой глины: 1 - значения, полученные предложенным способом, 3 - значения, полученные контактным методом [3].
Линии - аппроксимация содержания незамерзшей воды по результатам предложенного способа.
Сопоставление расчетных и экспериментальных данных содержания незамерзшей воды в полиминеральной и каолинитовой глинах показывают хорошую согласованность между предложенным способом и контактным методом. В рассматриваемом примере согласованность имеет место в широком диапазоне отрицательных температур, вплоть до температуры -27°C. Максимальное расхождение между данными, полученными предложенным способом и контактным методом, - не более 0,5%, что сопоставимо с точностью контактного метода.
Следует отметить, что для получения температурной зависимости содержания незамерзшей воды в мерзлых породах до -15°C в рамках предложенного экспресс-метода достаточно 7-8 ч. Таким образом, предлагаемый способ определения содержания незамерзшей воды в мерзлых грунтах в сравнении с существующими экспериментальными методами характеризуется оперативностью и сопоставимой точностью.
Также проводились экспериментальные исследования активности поровой воды в искусственных пористых средах, где обнаруживается достаточно четкая температурная зависимость активности воды от температуры при заданной влажности образца. Например, проведены аналогичные предыдущим эксперименты на образцах с калиброванным диаметров цилиндрических пор (glass beads - бусинки), в частности с диаметром цилиндрических пор, равным 300 A (glass beads 300). Результаты измерений автивности при двух температурах (288 К и 308 К) представлены ниже в таблице 5.
Figure 00000008
Экстраполяцию на отрицательные по Цельсию температуры значений активности a=a(T) поровой воды можно проводить известными методами, например с использованием различных функциональных зависимостей: двухпараметрических (если экспериментально получены значения активности при двух температурах) и многопараметрических (если экспериментально получены значения активности при трех и более температурах).
Поскольку в таблице 5 приведены данные по активности поровой воды при двух температурах, то в данном случае следует использовать двухпараметрические зависимости, например формулу
Figure 00000009
где α и β эмпирические коэффициенты.
Для их определения составляем систему двух уравнений
Figure 00000010
Figure 00000011
Решая эту систему, находим β по формуле:
Figure 00000012
Зная β, по любому из этих двух уравнений находим α.
После этого по формуле (2) проводим расчет равновесной со льдом температуры, т.е. получаем кривую незамерзшей воды.
В рассматриваемом случае T1=288 К, T2=308 К.
Результаты расчетов по экспериментальным данным (таблица 5) представлены в таблице 6.
Figure 00000013
Поясним результаты, приведенные в таблице 6. Из таблицы видно, что при температуре минус 26,8°C содержание незамерзшей воды W в образце составляет 4,2%, при температуре минус 13,4°C содержание незамерзшей воды будет 7,5%, а при температуре минус 9,3°C ее содержание будет 12,8%.
Сравнение активностей воды при отрицательной по Цельсию температуре (таблица 6) с активностью воды, измеренной при положительных по Цельсию температурах (таблица 5) показывает в данном случае их существенную температурную зависимость. Таким образом, для образцов с микро- и нанопорами уже необходим учет температурной зависимости активности воды в образце (причем, при каждой влажности образца имеет место своя температурная зависимость).

Claims (7)

1. Способ определения содержания незамерзшей воды в образце грунта в зависимости от температуры, заключающийся в том, что полностью высушивают образец грунта, взвешивают его при температуре tизм>0°C, насыщают образец влагой, повторно его взвешивают, измеряют параметр поровой влаги и определяют по измеренным значениям содержание незамерзшей воды в образце грунта в зависимости от величины отрицательной по Цельсию температуры, отличающийся тем, что насыщение образца влагой осуществляют до величины полной влагоемкости, затем проводят ступенчатое подсушивание образца, повторное взвешивание образца осуществляют на каждой ступени при той же температуре tизм, определяют по нему весовую влажность Wj образца на каждой ступени, в качестве измеряемого параметра поровой влаги используют термодинамическую активность поровой влаги а i, измерение которой осуществляют на каждой ступени подсушивания образца при температуре tизм, по измеренным значениям определяют отрицательные по Цельсию значения температуры teq<°C, при которых имеет место фазовое равновесие льда с поровой влагой для образца со значениями активности a i=а(Wi) и весовой влажности Wi, по полученным значениям a i осуществляют определение зависимости содержание незамерзшей воды в образце грунта от отрицательной температуры teq
2. Способ по п. 1, отличающийся тем, что определение температуры teq фазового равновесия льда и поровой влаги с активностью а осуществляют по соотношению teq(°C)=103,25⋅lnа+5,57⋅(1-а)2.
3. Способ по п. 1, отличающийся тем, что проводят измерения активности воды в образце заданной влажности Wi повторно при нескольких положительных по Цельсию температурах, получают температурную зависимость активности а i с ее последующей экстраполяцией на область отрицательных по Цельсию температур.
4. Способ по п. 3, отличающийся тем, что экстраполяцию температурной зависимости активности поровой влаги на область отрицательных по Цельсию температур при каждом значении влажности Wi образца осуществляют по зависимости
Figure 00000014
при наличии измерений как минимум при двух температурах, где
α, β, - эмпирические коэффициенты, определяемые по полученным данным из значения для каждой зависимости,
Т - температура по Кельвину.
5. Способ по п. 1, отличающийся тем, что взвешивание образца на каждой ступени проводят до и после измерения термодинамической активности поровой влаги a i и в случае различия значений весовой влажности образца Wi до и после измерения более чем 0,2% весовую влажность Wi определяют как среднее значение весовой влажности до и после измерения термодинамической активности поровой влаги а i.
RU2017121829A 2017-06-21 2017-06-21 Способ определения содержания незамерзшей воды в мерзлых грунтах RU2654832C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121829A RU2654832C1 (ru) 2017-06-21 2017-06-21 Способ определения содержания незамерзшей воды в мерзлых грунтах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121829A RU2654832C1 (ru) 2017-06-21 2017-06-21 Способ определения содержания незамерзшей воды в мерзлых грунтах

Publications (1)

Publication Number Publication Date
RU2654832C1 true RU2654832C1 (ru) 2018-05-22

Family

ID=62202536

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121829A RU2654832C1 (ru) 2017-06-21 2017-06-21 Способ определения содержания незамерзшей воды в мерзлых грунтах

Country Status (1)

Country Link
RU (1) RU2654832C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682853A (zh) * 2019-01-09 2019-04-26 南京大学 一种基于fbg的冻土含冰量分布式原位测量方法及装置
CN110823780A (zh) * 2019-11-19 2020-02-21 中南大学 一种饱和冻结岩石未冻水含量的计算方法
CN112685884A (zh) * 2020-12-24 2021-04-20 西南石油大学 一种确定土中不同温度液态含水量的方法
CN114993875A (zh) * 2022-06-01 2022-09-02 浙江大学 一种围护结构多孔材料平衡含水量测试装置及方法
CN117990889A (zh) * 2024-04-03 2024-05-07 西南石油大学 一种确定非饱和土未冻水含量的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU968163A1 (ru) * 1980-11-24 1982-10-23 Государственный Научно-Исследовательский И Проектный Институт Нефтяной И Газовой Промышленности Им.В.И.Муравленко "Гипротюменнефтегаз" Способ определени количества незамерзшей воды в мерзлых грунтах
SU998929A1 (ru) * 1981-04-14 1983-02-23 Государственный научно-исследовательский и проектный институт нефтяной и газовой промышленности им.В.И.Муравленко Способ определени количества незамерзшей воды в мерзлых грунтах
RU2034110C1 (ru) * 1992-04-22 1995-04-30 Печорский государственный научно-исследовательский и проектный институт нефтяной промышленности "ПечорНИПИнефть" Способ определения количества незамерзшей воды в мерзлых грунтах
CN102135513B (zh) * 2011-01-04 2013-08-07 刘波 冻土未冻水含量的测试方法
RU2592915C1 (ru) * 2015-06-20 2016-07-27 Федеральное государственное бюджетное Учреждение науки - Институт мерзлотоведения им.П.И.Мельникова Сибирского отделения Российской академии наук Способ определения количества незамерзшей воды в мерзлых грунтах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU968163A1 (ru) * 1980-11-24 1982-10-23 Государственный Научно-Исследовательский И Проектный Институт Нефтяной И Газовой Промышленности Им.В.И.Муравленко "Гипротюменнефтегаз" Способ определени количества незамерзшей воды в мерзлых грунтах
SU998929A1 (ru) * 1981-04-14 1983-02-23 Государственный научно-исследовательский и проектный институт нефтяной и газовой промышленности им.В.И.Муравленко Способ определени количества незамерзшей воды в мерзлых грунтах
RU2034110C1 (ru) * 1992-04-22 1995-04-30 Печорский государственный научно-исследовательский и проектный институт нефтяной промышленности "ПечорНИПИнефть" Способ определения количества незамерзшей воды в мерзлых грунтах
CN102135513B (zh) * 2011-01-04 2013-08-07 刘波 冻土未冻水含量的测试方法
RU2592915C1 (ru) * 2015-06-20 2016-07-27 Федеральное государственное бюджетное Учреждение науки - Институт мерзлотоведения им.П.И.Мельникова Сибирского отделения Российской академии наук Способ определения количества незамерзшей воды в мерзлых грунтах

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Истомин В.А., Чувилин Е.М., Махонина Н.А., Буханов Б.А. "Определение температурной зависимости содержания незамерзшей воды в грунтах по потенциалу влаги". Криосфера Земли, 2009, номер 2, с. 35-43. *
Истомин В.А., Чувилин Е.М., Махонина Н.А., Буханов Б.А. "Определение температурной зависимости содержания незамерзшей воды в грунтах по потенциалу влаги". Криосфера Земли, 2009, номер 2, с. 35-43. Старостин Е.Г., Габышев А.Н. "Исследование содержания незамерзшей воды в цеолите по термограмме замораживания". - НАУКА И ОБРАЗОВАНИЕ, 2014, номер 1, с. 58-62. *
Старостин Е.Г., Габышев А.Н. "Исследование содержания незамерзшей воды в цеолите по термограмме замораживания". - НАУКА И ОБРАЗОВАНИЕ, 2014, номер 1, с. 58-62. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682853A (zh) * 2019-01-09 2019-04-26 南京大学 一种基于fbg的冻土含冰量分布式原位测量方法及装置
CN109682853B (zh) * 2019-01-09 2024-02-13 南京大学 一种基于fbg的冻土含冰量分布式原位测量方法及装置
CN110823780A (zh) * 2019-11-19 2020-02-21 中南大学 一种饱和冻结岩石未冻水含量的计算方法
CN110823780B (zh) * 2019-11-19 2021-05-18 中南大学 一种饱和冻结岩石未冻水含量的计算方法
CN112685884A (zh) * 2020-12-24 2021-04-20 西南石油大学 一种确定土中不同温度液态含水量的方法
CN114993875A (zh) * 2022-06-01 2022-09-02 浙江大学 一种围护结构多孔材料平衡含水量测试装置及方法
CN114993875B (zh) * 2022-06-01 2023-06-16 浙江大学 一种围护结构多孔材料平衡含水量测试装置及方法
CN117990889A (zh) * 2024-04-03 2024-05-07 西南石油大学 一种确定非饱和土未冻水含量的方法
CN117990889B (zh) * 2024-04-03 2024-06-14 西南石油大学 一种确定非饱和土未冻水含量的方法

Similar Documents

Publication Publication Date Title
RU2654832C1 (ru) Способ определения содержания незамерзшей воды в мерзлых грунтах
Akin et al. Specific surface area of clay using water vapor and EGME sorption methods
Istomin et al. Pore water content in equilibrium with ice or gas hydrate in sediments
Leong et al. Factors affecting the filter paper method for total and matric suction measurements
Gu et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer
Likos et al. Performance of a dynamic dew point method for moisture isotherms of clays
Wang et al. Estimation of ice content in mortar based on electrical measurements under freeze-thaw cycle
Akin et al. Single-point and multi-point water-sorption methods for specific surface areas of clay
Ben Abdelhamid et al. Water sorption isotherms and thermodynamic characteristics of hardened cement paste and mortar
Zhang et al. Oven dying kinetics and status of cement-based porous materials for in-lab microstructure investigation
RU2478196C1 (ru) Способ определения содержания воздуха в мерзлом грунте
Istomin et al. Fast estimation of unfrozen water content in frozen soils
Briggs Water relationships in colloids. I. Vapor pressure measurements on elastic gels
Campbell et al. Constructing fast, accurate soil water characteristic curves by combining the Wind/Schindler and vapor pressure techniques
Saha et al. Estimation of unsaturated hydraulic conductivity function: implication of low to high suction measurements
Leong et al. Calibration of a thermal conductivity sensor for field measurement of matric suction
Bicalho et al. Evaluation of the suction calibration curves for Whatman 42 filter paper
RU2569915C1 (ru) Способ определения плотности грунта при компрессионных испытаниях
RU2450262C1 (ru) Способ определения влагосодержания газов и устройство для его осуществления
Tao et al. The test and fitting analysis of Hunan clay soil–water characteristic curve in full suction range
Campbell et al. Generating accurate soil water characteristic curves over the full range of soil suction by combining the Wind-Schindler and dewpoint hygrometer techniques
Istomin et al. A method for determination of water content in real and model porous media in equilibrium with bulk ice or gas hydrate
Merayyan et al. Determination of the soil-water characteristic curve using the evaporation technique
Záleská et al. Retention curves of different types of sandstone
Randy Rainwater et al. Measurement of total soil suction using filter paper: investigation of common filter papers, alternative media, and corresponding confidence

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190622

NF4A Reinstatement of patent

Effective date: 20200827