RU2653841C2 - Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза - Google Patents
Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза Download PDFInfo
- Publication number
- RU2653841C2 RU2653841C2 RU2014107841A RU2014107841A RU2653841C2 RU 2653841 C2 RU2653841 C2 RU 2653841C2 RU 2014107841 A RU2014107841 A RU 2014107841A RU 2014107841 A RU2014107841 A RU 2014107841A RU 2653841 C2 RU2653841 C2 RU 2653841C2
- Authority
- RU
- Russia
- Prior art keywords
- stream
- water
- ammonium sulfate
- ammonia
- product
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/52—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/16—Hydrogen sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/022—Preparation of aqueous ammonia solutions, i.e. ammonia water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/026—Preparation of ammonia from inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/12—Separation of ammonia from gases and vapours
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/24—Sulfates of ammonium
- C01C1/245—Preparation from compounds containing nitrogen and sulfur
- C01C1/246—Preparation from compounds containing nitrogen and sulfur from sulfur-containing ammonium compounds
- C01C1/247—Preparation from compounds containing nitrogen and sulfur from sulfur-containing ammonium compounds by oxidation with free oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/74—Treatment of water, waste water, or sewage by oxidation with air
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05C—NITROGENOUS FERTILISERS
- C05C3/00—Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/06—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
- C10K1/004—Sulfur containing contaminants, e.g. hydrogen sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/70—Non-metallic catalysts, additives or dopants
- B01D2255/705—Ligands for metal-organic catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/207—Acid gases, e.g. H2S, COS, SO2, HCN
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0966—Hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Industrial Gases (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Fertilizers (AREA)
- Processing Of Solid Wastes (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Изобретение относится к способам извлечения сульфата аммония при переработке биомассы. Способ извлечения сульфата аммония при переработке биомассы на углеводородное топливо включает: переработку биомассы в реакторе гидропиролиза в углеводородное топливо, уголь и поток технологического пара; охлаждение потока технологического пара до температуры конденсации, дающее водный поток, содержащий аммиак и сульфид аммония, поток жидких углеводородов, и поток охлажденного парообразного продукта, включающего неконденсирующиеся технологические пары, содержащие Н2, СН4, CO и CO2, аммиак и сероводород; направление водного потока в каталитический реактор; впрыск воздуха в каталитический реактор с получением водного потока продукта, содержащего аммиак и сульфат аммония, при этом осуществляют удаление сероводорода из потока охлажденного парообразного продукта и подачу сероводорода в каталитический реактор вместе с водным потоком для взаимодействия с аммиаком, присутствующим в водном потоке, с получением сульфида аммония и затем сульфата аммония. Заявлен вариант способа. Технический результат – повышение экономичности способа. 2 н. и 14 з.п. ф-лы, 4 табл., 6 ил.
Description
Область, к которой относится изобретение
Данное изобретение относится к способу удаления сероводорода (H2S) из паров продукта, выходящего из реактора гидропиролиза, посредством взаимодействия с аммиаком (NH3) с образованием сульфида аммония. Кроме того, способ обеспечивает превращение сероводорода в сульфат аммония.
Описание уровня техники
Способ по настоящему изобретению относится к удалению H2S из отработанных паров, выходящих из реактора гидропиролиза. Реакторы гидропиролиза известны из уровня техники.
В промышленном масштабе H2S обычно удаляют из парообразных потоков посредством способа Клауса, в установке Клауса. В способе Клауса H2S окисляется с образованием диоксида серы (SO2) и затем диоксид серы взаимодействует с дополнительным количеством H2S с образованием воды (H2O) и элементарной серы. Общая реакция представляет собой:
2H2S+O2→S2+2H2O
Данный способ хорошо известен и широко использовался в очистке и реформинге нефтяных продуктов. Однако данный способ является сложным и часто включает множество реакционных стадий. Кроме того, способ может быть наиболее эффективно применен к потокам, содержащим 25% или более H2S на молекулярной основе. Когда на установке Клауса перерабатывают потоки, содержащие аммиак, а также H2S, аммиак окисляется вместе с H2S. Это не является желательным, поскольку аммиак является потенциально ценным реакционным продуктом процесса гидропиролиза.
Значительная часть потока парообразного продукта из реактора гидропиролиза включает пары воды и углеводороды с температурами кипения ниже 70 градусов по Фаренгейту (21,1°C) при атмосферном давлении. Парообразный продукт из реактора гидропиролиза необходимо охладить до температур окружающей среды для того, чтобы извлечь жидкие углеводороды в виде отдельного потока продукта. Когда поток парообразного продукта охлаждают, водяной пар в потоке парообразного продукта конденсируется с образованием жидкой воды, и значительная часть H2S и NH3 в потоке парообразного продукта переходит в раствор в жидкой воде. Тогда, полученный в итоге водный раствор содержит соединения аммиака и сульфидов.
Способы, посредством которых можно осуществить каталитическое взаимодействие водорастворимых сульфидных соединений с кислородом с получением стабильных сульфатных соединений, описываются в патентах США, выданных Маринанжели (Marinangeli) с соавторами № 5207927 и Джиллеспи (Gillespie) № 5470486. Подход, описанный Маринанжели с соавторами, включает пропускание водного потока, содержащего как соединение сульфида, так и кислород, над соответствующим катализатором окисления при условиях, в которых поддерживают значение pH раствора при 9-12 и отношение кислорода к сере больше чем примерно 5. Подход, описанный Джиллеспи, требует поддерживать значение pH больше чем 12 и отношение кислорода к сере больше чем примерно 4. Оба подхода предпочитают фталоцианины металлов, причем Джиллеспи предпочитает использовать углеродные носители. Таким путем получают поток продукта, который по существу не содержит соединения сульфидов, поскольку все соединения сульфидов были конвертированы в соединения сульфатов.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В реакторе гидропиролиза способа по настоящему изобретению исходная биомасса конвертируется в поток, содержащий следующее:
1. Деоксигенированные конденсирующиеся углеводороды (со свойствами, соответствующими свойствам бензина, дизельного топлива и керосина),
2. Пары неконденсирующихся углеводородов (таких как метан, этан, пропан и бутан),
3. Другие неконденсирующиеся пары (CO2, CO и водород),
4. Воду и соединения, которые растворимы в жидкой воде, такие как аммиак (NH3), и сероводород (H2S).
NH3 присутствует в потоке продукта гидропиролиза вследствие присутствия азота в исходной биомассе. H2S присутствует в потоке гидропиролиза вследствие присутствия серы в исходной биомассе. Азот и сера в исходном сырье взаимодействуют с водородом в реакторе гидропиролиза с образованием NH3 и H2S, соответственно.
Одной из целей настоящего изобретения является разработка способа, посредством которого можно удалить сероводород из потока парообразного продукта, получаемого гидропиролизом биомассы. Эксперименты гидропиролиза, в ходе которых биомасса была деоксигенирована и конвертирована в продукты, включающие углеводороды, показали, что поток пара, выходящий из реактора гидропиролиза, содержит пары воды, NH3 и H2S, в пропорциях, которые делают данный продукт уникально подходящим для способа, в котором H2S объединяют с NH3 в водном растворе, и затем окисляют с образованием сульфата аммония. Данные эксперименты являются оригинальными, и концентрации соединений азота и серы в парообразном потоке являются неожиданными и удивительными. Данные эксперименты подробно описываются в примерах, представленных ниже.
Для того чтобы осуществить гидропиролиз в реакторе гидропиролиза по настоящему изобретению, некоторую часть потока продукта гидропиролиза из реактора можно направить в паровой риформер, и там осуществить взаимодействие с паром с получением водорода. Как правило, будет желательным направить некоторое или все количество паров неконденсирующихся углеводородов, таких как метан, этан, пропан, бутан и т.д., в риформер. Полученный таким образом водород затем можно снова ввести в реактор гидропиролиза с тем, чтобы можно было продолжать осуществление гидропиролиза. Необходимость в источнике водорода, внешнем по отношению к способу гидропиролиза, связанному с настоящим изобретением, можно таким образом уменьшить или исключить. Следует отметить, что H2S будет присутствовать в потоке парообразного продукта из способа гидропиролиза во всех случаях, когда сера присутствует в исходном сырье, и присутствие H2S создает несколько проблем.
H2S в потоке парообразного продукта является высокотоксичным для человека. Кроме того, H2S может отравлять катализаторы, участвующие в паровом риформинге парообразного продукта из реактора гидропиролиза. Более того, H2S может взаимодействовать с NH3 с образованием сульфида аммония ((NH4)2S), и затем окисляться с образованием сульфата аммония ((NH4)2SO4), продукта со значительной коммерческой ценностью в качестве удобрения.
Настоящее изобретение описывает способ, который обеспечивает возможность захватывать H2S и NH3, содержащиеся в парообразном продукте из гидропиролиза биомассы, в водный поток. Эксперименты гидропиролиза биомассы продемонстрировали, что способ гидропиролиза, связанный с настоящим изобретением, дает поток продукта, который содержит водяной пар, H2S и NH3 в особых количествах, что обеспечивает возможность получить необходимые условия для удаления H2S посредством конверсии в (NH4)2SO4. По существу весь H2S, поглощенный в водном потоке, взаимодействует с NH3 с образованием (NH4)2S. Кроме того, обеспечивается избыток непрореагировавшего NH3 и растворяется в водном потоке для того, чтобы увеличить pH водного потока приблизительно до 12 или больше или меньше, как требуется для последующего превращения (NH4)2S в (NH4)2SO4. Данный поток затем может взаимодействовать с кислородом в термической, некаталитической зоне конверсии, чтобы значительно конвертировать растворенный (NH4)2S в (NH4)2SO4 и тиосульфат. Данный поток может далее контактировать с кислородом и катализатором окисления в соответствии с методом, описанным Джиллеспи, патент США № 5470486, или, альтернативно, входящий водный поток может взаимодействовать с кислородом, в присутствии соответствующего катализатора, в соответствии с методом, описанным в патенте США № 5207927 (Маринанжели с соавт.). Используя любую технологию, внутри диапазонов pH, мольного отношения кислорода к сере, давления, температуры и часовой объемной скорости жидкости, описывается в данных патентах, получают водный поток, содержащий NH3 и (NH4)2SO4, и данные соединения затем можно извлечь и продать в качестве удобрения. В настоящее время применяются различные методы получения сульфата аммония из водного потока, содержащего сульфит аммоний и растворенный аммиак, и примеры, процитированные выше, служат в качестве иллюстрации того, что существуют устоявшиеся технологии для осуществления данной конверсии.
Данные, полученные из аммиака соединения, которые можно извлечь и продать в качестве удобрения, можно смешать с углем, образовавшимся в данном способе, и гранулировать, получая продукт для удобрения и улучшения почвы. Аналогичным образом, данные полученные из аммиака соединения, которые можно извлечь и продать в качестве удобрения, можно также смешать с углем и другими необходимыми питательными веществами для почвы и минералами, и гранулировать, получая продукт для мелиорации, удобрения и улучшения почвы. Специалист в данной области также поймет, что данные полученные из аммиака соединения, которые включают уголь и другие необходимые питательные вещества для почвы и минералы, можно приготовить в виде рецептур пролонгированного действия, чтобы избежать повторного применения в сельскохозяйственных посадках.
Также получается поток парообразного продукта, из которого удалили по существу весь H2S. Данный поток пара можно обработать различными способами, включая использование в качестве топлива для нагрева пара или направление его в паровой риформер.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Данные и другие цели и отличительные признаки данного изобретения будут более понятными из следующего ниже подробного описания, во взаимосвязи с чертежами, на которых:
Фиг. 1 раскрывает технологическую схему согласно одному предпочтительному варианту осуществления данного изобретения, в котором H2S поглощают первичным водным потоком, содержащим NH3, и окисляют в реакторе с образованием (NH4)2SO4.
Фиг. 2 раскрывает технологическую схему согласно одному предпочтительному варианту осуществления данного изобретения, в котором H2S, который все еще остается в потоке охлажденного парообразного продукта, поглощается в слое сорбента.
Фиг. 3 раскрывает технологическую схему согласно одному предпочтительному варианту осуществления данного изобретения, в котором H2S, остающийся в потоке охлажденного парообразного продукта, поглощают и направляют в реактор окисления вместе с первичным водным потоком, содействуя более полной общей конверсии H2S в (NH4)2SO4.
Фиг. 4 раскрывает технологическую схему согласно одному предпочтительному варианту осуществления данного изобретения, в котором поток обработанного водного продукта, содержащий воду, NH3 и (NH4)2SO4, обрабатывают в колонне для отпарки кислых вод.
Фиг. 5 раскрывает технологическую схему согласно одному предпочтительному варианту осуществления данного изобретения, в котором колонна для отпарки кислых вод удаляет NH3 и H2S из первичного водного потока перед введением водного потока в реактор окисления.
Фиг. 6 раскрывает технологическую схему согласно одному предпочтительному варианту осуществления данного изобретения, который включает как устройство удаления H2S, связанное с потоком парообразного охлажденного продукта, так и колонну для отпарки кислых вод выше по потоку от реактора окисления.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ В НАСТОЯЩЕЕ ВРЕМЯ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Фиг. 1-6 раскрывают различные предпочтительные варианты осуществления заявленного изобретения. Фиг. 1 показывает технологическую схему, иллюстрирующую наиболее простой вариант осуществления способа по настоящему изобретению, в котором H2S поглощается в первичном водном потоке, содержащем NH3, и окисляется в реакторе с образованием (NH4)2SO4. Потоки продуктов в данном варианте осуществления включают поток охлажденного пара, включающий в себя, в основном, технологические пары, и содержащий некоторое количество H2S, и жидкий поток, включающий в себя, в основном, конденсированные углеводороды, второй парообразный поток, включающий в себя, в основном, азот и кислород, и обработанный водный поток, включающий в себя, в основном, воду, NH3 и (NH4)2SO4.
Фиг. 1 раскрывает первый и наиболее элементарный вариант осуществления способа по настоящему изобретению. Биомассу 111 и водород 112 вводят в реактор гидропиролиза 110, который дает твердый, углеродсодержащий продукт 113 (называемый углем) и поток парообразного продукта 114. Твердый продукт 113 включает в себя, в основном, углеродсодержащий остаток, остающийся после гидропиролиза подаваемой биомассы 111. Поток парообразного продукта 114 выходит из реактора гидропиролиза 110 (который может включать одиночный реактор или множество реакторов, соединенных последовательно) при температуре, которая является характерной для таких процессов гидропиролиза, как минимум, достаточно высокой, чтобы все составные части поддерживались в газообразном состоянии. Однако, как является характерным для таких процессов гидропиролитической конверсии, температура также может быть значительно выше, чем данный минимум. Поток парообразного продукта 114, в основном, включает:
1. Деоксигенированные конденсирующиеся углеводороды (со свойствами, соответствующими свойствам бензина, дизельного топлива и керосина),
2. Пары неконденсирующихся углеводородов (таких как метан, этан, пропан и бутан),
3. Другие неконденсирующиеся пары (CO2, CO и H2),
4. Воду и соединения, которые растворимы в жидкой воде, такие как аммиак (NH3), и сероводород (H2S).
Парообразный поток пропускают через конденсатор 120, или другое устройство, или другой ряд устройств, в котором температуру парообразного потока понижают до точки, в которой по существу все конденсирующиеся углеводороды можно удалить в виде жидкого потока. В данной точке появляются три фазы: охлажденная парообразная фаза, углеводородная фаза и водная фаза. Поток охлажденного продукта, содержащий все три фазы, направляют в сепаратор 130, в котором упомянутые выше три фазы можно разделить на три отдельных потока.
В данный момент, предпочтительно, удаляют поток продукта, представляющего собой конденсирующиеся углеводороды, 132. H2S, который исходно присутствовал в потоке горячего парообразного продукта 114, теперь разделяют, причем некоторая часть выходит из сепаратора в поток охлажденного пара 131, и некоторая часть – в первичный водный поток 133. Следы H2S также могут присутствовать в потоке жидких углеводородов 132, но растворимость полярной молекулы H2S в потоке жидких углеводородов является минимальной.
Поток охлажденного парообразного продукта 131, выходящий из сепаратора, включает, в основном, H2, неконденсирующиеся углеводороды, CO2, CO и H2S.
Первичный водный поток 133, выходящий из сепаратора, включает, в основном, воду, NH3 и сульфид аммония ((NH4)2S). (NH4)2S в данном потоке образуется, когда H2S из парообразного потока попадает в водный поток и взаимодействует с NH3, который также находится в растворе в водном потоке. Цель данного изобретения состоит в контролировании способа по изобретению таким образом, чтобы значение pH первичного водного потока 133 составляло приблизительно 12, означая, что концентрация NH3 (в виде NH4OH) в потоке является достаточно большой, чтобы дать сильно основный раствор. Это, частично, помогает стабилизировать H2S и увеличить его растворимость в водном потоке. Это также является предпочтительным условием для работы реактора окисления 140, в котором (NH4)2S окисляется с образованием (NH4)2SO4.
Первичный водный поток 133 из сепаратора 130 затем вводят в реактор окисления 140, также называемый в настоящем описании каталитическим реактором. Поток воздуха 141 также вводят в реактор окисления в количестве, достаточном для подачи приблизительно 5 молей кислорода на каждый моль серы. После взаимодействия при соответствующей температуре и давлении, в присутствии соответствующего катализатора, и в течение достаточного времени пребывания, (NH4)2S в первичном водном потоке 133 окисляется по существу полностью.
В соответствии с данным первым вариантом осуществления способа по настоящему изобретению, из реактора окисления предпочтительно получают поток обработанного водного продукта 142, включающий NH3, жидкую воду и (NH4)2SO4. Кроме того, из реактора окисления получают поток реакторного газообразного продукта 143, в основном включающий азот и неиспользованный кислород, и содержащий следы NH3 и водяной пар. Следует отметить, что в данном первом варианте осуществления значительная концентрация H2S все еще присутствует в потоке охлажденного парообразного продукта 131, выходящего из устройства сепаратора 130.
Фиг. 2 представляет собой технологическую схему, иллюстрирующую вариант осуществления способа по настоящему изобретению, в котором H2S, который все еще остается в потоке охлажденного парообразного продукта, поглощается в слое сорбента. В данном случае удаление H2S, остающегося в потоке охлажденного парообразного продукта, является по существу полным.
Фиг. 2 иллюстрирует второй вариант осуществления способа по настоящему изобретению. В данном втором варианте осуществления было добавлено устройство удаления H2S 250 ниже по потоку от сепаратора 230. Первичный поток охлажденного парообразного продукта 231 пропускают через устройство удаления H2S 250 (которое может включать слой сорбента, жидкостную промывку или другое аналогичное устройство). H2S в первичном потоке охлажденного парообразного продукта 231 удаляют по существу полностью из первичного потока охлажденного парообразного продукта 231 и получают вторичный поток охлажденного парообразного продукта 251, включающий в основном H2, CO, CO2 и пары неконденсирующихся углеводородов. В данном варианте осуществления H2S не извлекают и от него избавляются, например, когда устройство удаления H2S 250 регенерируют, причем H2S-содержащие отходы соответственно выбрасывают.
Фиг. 3 иллюстрирует третий вариант осуществления способа по настоящему изобретению. В данном третьем варианте осуществления было добавлено устройство удаления H2S 350 ниже по потоку от сепаратора 330, как во втором варианте осуществления, описанном выше. Первичный поток охлажденного парообразного продукта 331 проходит через устройство удаления H2S 350 (которое может включать слой сорбента многократного использования, аминовый скруббер или аналогичный аппарат). H2S из первичного потока охлажденного парообразного продукта 331 по существу полностью удаляют и получают вторичный поток охлажденного парообразного продукта 351, включающий в основном H2, CO, CO2 и пары неконденсирующихся углеводородов. Однако в данном третьем варианте осуществления, H2S извлекают из устройства удаления H2S 350 в виде потока 352, включающего в основном газообразный H2S, и направляют в реактор окисления 340 вместе с первичным водным потоком 333. В реакторе окисления газообразный поток H2S 352 приводят в контакт с первичным водным потоком 333 и соответствующим катализатором, и получают (NH4)2S, который затем окисляют с получением (NH4)2SO4. Таким путем, получают вторичный парообразный поток охлажденного продукта 351, содержащий только следовые количества H2S, и включающий в себя, в основном, H2, неконденсирующиеся углеводороды, CO2 и CO. Кроме того, увеличивается общая конверсия H2S, и она выше, чем в первом варианте осуществления способа по настоящему изобретению, описанном выше.
Фиг. 4 иллюстрирует четвертый вариант осуществления способа по настоящему изобретению. Аммиак (NH3) представляет собой потенциально ценный продукт, и отделяется от первичного обработанного водного потока 442, выходящего из реактора окисления 440, в колонну для отпарки кислых вод 460 в данном четвертом варианте осуществления способа по настоящему изобретению. Данный подход дает возможность извлечь газообразный поток 461, включающий, в основном, NH3, в то время как воду и (NH4)2SO4 получают отдельно из колонны для отпарки кислых вод в виде вторичного обработанного водного потока 462. (NH4)2SO4 обладает высокой растворимостью в воде, и водный раствор (NH4)2SO4 обладает потенциальной ценностью в качестве сельскохозяйственного удобрения. Если желательно, данный раствор можно концентрировать дополнительным нагреванием вторичного обработанного водного потока 462, посредством чего можно отделить некоторое количество или все количество воды в потоке.
Фиг. 5 иллюстрирует пятый вариант осуществления способа по настоящему изобретению. Данный вариант осуществления демонстрирует колонну для отпарки кислых вод 560 выше по потоку от реактора окисления 540, которая принимает первичный водный поток 533 из сепаратора. Вода, NH3, H2S и (NH4)2S, образующийся в результате взаимодействия NH3 и H2S, удаляются в колонне для отпарки кислых вод 560, и выходят из колонны для отпарки кислых вод в виде газообразного потока 562. Посредством этого получают поток очищенной жидкой воды 561. Данный поток очищенной жидкой воды 561 впоследствии имеется в распоряжении в виде потока продукта. Если желательно, часть данного потока очищенной жидкой воды 561 можно снова привести в контакт с газообразным потоком 562, включающим NH3 и H2S, из колонны для отпарки кислых вод. В данном случае, NH3 и H2S опять поступают в раствор в данной части потока жидкой воды 561, образуя (NH4)2S, и данный раствор затем вводят в реактор окисления 540 для превращения в (NH4)2SO4. Однако поток очищенной жидкой воды предпочтительно не приводят в контакт с газообразным потоком 562 и, предпочтительно, поток 562 охлаждают, при необходимости, чтобы вода в данном потоке сконденсировалась, и NH3 и H2S в данном потоке возвращают в раствор, формирующий (NH4)2S, и данный раствор затем вводят в реактор окисления 540 для конверсии в (NH4)2SO4. Данный подход предоставляет поток очищенной воды 561, и создает концентрированный обработанный поток 542, включающий воду, NH3 и (NH4)2SO4, на выходе из реактора окисления 540.
Фиг. 6 иллюстрирует шестой вариант осуществления способа по настоящему изобретению. Данный вариант осуществления демонстрирует колонну для отпарки кислых вод 660 выше по потоку от реактора окисления 640, которая принимает первичный водный поток 633 из сепаратора 630. Он также демонстрирует устройство удаления H2S 650 ниже по потоку от сепаратора 630, как в третьем варианте осуществления, описанном выше. Первичный поток охлажденного парообразного продукта 631 проходит через устройство удаления H2S 650 (которое может включать слой сорбента, аминовый скруббер или аналогичный аппарат). H2S из первичного потока охлажденного парообразного продукта 631 по существу полностью удаляют и получают вторичный поток охлажденного парообразного продукта 651, включающий в основном H2, CO, CO2 и пары неконденсирующихся углеводородов. Как и в третьем варианте осуществления, H2S извлекают в виде потока 652, включающего в основном газообразный H2S, и направляют в реактор окисления 640.
Как указано выше в описании пятого варианта осуществления, растворенные NH3, H2S и любое количество (NH4)2S, образовавшееся при взаимодействии NH3 и H2S, выделяют из первичного водного потока 633 в колонне для отпарки кислых вод 660. Вода, NH3, H2S и любое количество (NH4)2S, образовавшееся при взаимодействии NH3 и H2S, удаляют в колонне для отпарки кислых вод 660, и они выходят из колонны для отпарки кислых вод в виде газообразного потока 662. Посредством этого получают поток очищенной воды 661. Данный поток очищенной воды 661 впоследствии имеется в распоряжении в виде потока продукта. Если желательно, часть данного потока очищенной жидкой воды 661 можно снова привести в контакт с газообразным потоком 662, включающим NH3 и H2S, из колонны для отпарки кислых вод. В данном случае, NH3 и H2S опять поступают в раствор в данной части потока жидкой воды 661, образуя (NH4)2S, и данный раствор затем вводят в реактор окисления 640 для превращения в (NH4)2SO4. Однако поток очищенной жидкой воды предпочтительно не приводят в контакт с газообразным потоком 662 и, предпочтительно, поток 662 охлаждают, при необходимости, чтобы вода в данном потоке сконденсировалась, и NH3 и H2S в данном потоке возвращают в раствор, формирующий (NH4)2S, и данный раствор затем вводят в реактор окисления 640 для конверсии в (NH4)2SO4. Данный подход предоставляет поток очищенной воды 661, и создает концентрированный обработанный поток 642, включающий воду, NH3 и (NH4)2SO4, на выходе из реактора окисления 640. Поток 652 извлеченного H2S из устройства удаления H2S также вводят в реактор окисления.
Данный шестой вариант осуществления способа по настоящему изобретению предоставляет поток очищенной воды 661, и создает концентрированный обработанный поток 642, включающий воду, NH3 и (NH4)2SO4, на выходе из реактора окисления 640. Он также обеспечивает вторичный поток охлажденного парообразного продукта 651, который может содержать незначительные концентрации H2S, и содействует высокой общей конверсии H2S в продукт, представляющий собой (NH4)2SO4.
Уголь, образовавшийся в результате гидропиролиза биомассы (наземной и водной биомассы, отходов из процессов использования данных материалов), а также пластмассы, полученной из биомассы или нефти, как было обнаружено, представляют собой по существу инертный углеродсодержащий материал, не содержащий примесей углеводородов, которые являются токсичными для человека или растений. Одна цель данного изобретения состоит в объединении угля, полученного из гидропиролиза биомассы или пластмассы, с сульфатом аммония, извлеченном из данного способа для получения продукта, представляющего собой удобрение для сельского хозяйства, в виде порошка, гранулированного или брикетированного материала, который может как улучшить качество почвы для использования в качестве сельскохозяйственного субстрата, так и обеспечить компонент удобрения для питания лигноцеллюлозной биомассы.
ПРИМЕРЫ
Образец древесины со свойствами, типичными для древесины большинства видов, подвергали гидропиролизу. Элементный состав древесины представлен в таблице A ниже. Состав представлен как относительно общей основы (которая включает влагу и золу в исходном сырье), так и относительно не содержащей влагу и золу основы (MAF). Как можно заметить из таблицы A, в древесине присутствуют небольшие, но заметные количества азота и серы.
Выход продуктов гидропиролиза, полученный в парообразном потоке, выходящем из экспериментального реактора гидропиролиза, дан в таблице B. Не все количества азота и серы, первоначально присутствующие в древесине, в конечном счете, обнаружились в парообразном потоке из реактора гидропиролиза. Некоторое количество серы и некоторое количество азота является химически связанным в потоке твердого продукта (включающего уголь и золу) из реактора гидропиролиза. Однако эксперимент демонстрирует, что выход NH3 в первичном потоке парообразного продукта составляет 0,18% от массы исходного сырья, относительно MAF основы. Выход H2S составил 0,05% от массы исходного сырья, относительно MAF основы. Следует отметить, что общие массы в таблице B дают в сумме до 104,83%. Это обусловлено фактом, что заданное количество влаги и не содержащая золу древесина взаимодействуют с водородом в процессе гидропиролиза, и образующиеся в результате продукты имеют более высокую общую массу по сравнению с древесиной, которая взаимодействует.
В качестве примера, можно предположить, что один килограмм древесины, не содержащий влагу и золу, подвергают гидропиролизу. В данном случае, парообразный поток содержит 1,8 грамм NH3 и 0,5 грамм H2S. Вследствие различных молярных масс NH3 и H2S, это приравнивается к 0,106 молям NH3 и 0,014 молям H2S. Молярное отношение NH3 к H2S, поэтому, равно 7,4 к 1. Для того чтобы получить (NH4)2S в водном растворе, требуются два моля NH3 на каждый моль H2S. Относительные количества NH3 и H2S в парообразном потоке, выходящем из реактора гидропиролиза, являются более чем достаточными для взаимодействия всего H2S в потоке с NH3 и получения водного раствора (NH4)2S.
Далее, взаимодействие с водородом в способе гидропиролиза превращает значительную долю кислорода в сухой, не содержащей золу древесине в водяной пар в парообразном потоке, выходящем из процесса гидропиролиза. Даже если исходное сырье является полностью сухим, тем не менее происходит образование значительного количества воды в течение гидропиролиза древесного исходного сырья, и количество образовавшейся воды является достаточным, чтобы по существу полностью растворить все количество NH3 и H2S, присутствующее в потоке парообразного продукта гидропиролиза.
В то время как все или почти все количество NH3, выходящее из реактора гидропиролиза, в конечном итоге, переходит в раствор в первичном водном потоке, растворимость H2S в водных растворах зависит от разнообразных факторов, таких как температура, давление и pH раствора. NH3 в растворе первичного водного потока будет делать данный раствор щелочным, и это будет значительно увеличивать растворимость H2S в щелочном водном растворе. H2S и NH3 самопроизвольно взаимодействуют в водном растворе с образованием (NH4)2S, хотя данный сульфид может присутствовать в диссоциированной форме. Однако не все количество H2S в потоке парообразного продукта, по-видимому, поступает в первичный водный поток, когда охлаждают технологический пар. На практике охлажденный парообразный поток все еще содержит значительную концентрацию H2S. Различные варианты осуществления способа по настоящему изобретению, описанные выше, обеспечивают средство, посредством которого данные остающиеся концентрации H2S можно удалить из охлажденного парообразного потока и, в конечном счете, осуществить их взаимодействие с NH3 и кислородом с образованием (NH4)2SO4.
В действительности, исходная биомасса, подаваемая в реактор гидропиролиза, также будет содержать некоторое количество влаги, поэтому действительное количество водяного пара в нагретом парообразном потоке из реактора гидропиролиза будет содержать значительно больше воды, чем было бы в случае, если исходное сырье было абсолютно сухим. Данное явление способствует удалению H2S из охлажденного парообразного потока, поскольку концентрации NH3 и H2S в первичном водном потоке будут еще ниже, чем они были бы, если исходное сырье было полностью сухим, означая, что больше H2S можно десорбировать из охлажденного парообразного потока в конденсаторе и сепараторе вариантов осуществления способа по настоящему изобретению, описанных выше. Растворимость (NH4)2S в воде очень высокая, и растворы (NH4)2S, содержащие вплоть до 52% по массе (NH4)2S, имеются в продаже.
Таблица A Состав древесного исходного сырья |
||
Древесина: | Исходный состав | Исходный состав, относительно MAF основы |
% C (MF) | 47,6 | 50,2 |
% H (MF) | 5,7 | 6,0 |
% O (MF) | 41,2 | 43,5 |
% N (MF) | 0,2 | 0,2 |
% S (MF) | 0,1 | 0,1 |
% золы (MF) | 1,1 | |
% влаги | 4,3 |
Таблица B Выходы горячих парообразных продуктов гидропиролиза древесины, относительно не содержащей влагу и золу основы (MAF) |
|
Выход горячего парообразного продукта гидропиролиза древесины (относительно MAF основы) | Мас.% |
Бензин | 16 |
Дизельное топливо | 10 |
Уголь | 13 |
Вода | 36 |
CO | 8,4 |
CO2 | 8,4 |
C1-C3 | 12,8 |
H2S | 0,05 |
NH3 | 0,18 |
Не вся биомасса является эквивалентной, и также было протестировано второе исходное сырье, которое значительно отличается от древесины с точки зрения механических свойств, цикла роста и состава. Данное исходное сырье представляло собой кукурузную солому. Кукурузная солома включает в себя остатки стеблей и шелухи кукурузы, оставшиеся после сбора питательных частей растения. Исследованный образец являлся типичным представителем большинства типов кукурузной соломы, образующейся при сборе урожая кукурузы. Состав образца кукурузной соломы представлен как относительно полной основы (которая включает влагу и золу в исходном сырье), так и относительно не содержащей влагу и золу основы (MAF) в таблице C. Как можно заметить из таблицы C, в кукурузной соломе присутствуют небольшие, но заметные количества азота и серы, как было в случае древесного исходного сырья. Как можно видеть из таблицы, образец кукурузной соломы содержит намного больше золы и влаги по сравнению с образцом из древесины.
Как и в случае древесного исходного сырья, соотношение между сероводородом и аммиаком в горячем парообразном продукте, выходящем из процесса гидропиролиза кукурузной соломы, является очень важным. Состав парообразного продукта гидропиролиза кукурузной соломы, как было обнаружено, является очень похожим на состав продукта, полученного из древесины, исходя из MAF основы. Соответствующие значения показаны в таблице D. Одно значительное различие между таблицами B и D относится к концентрации NH3 и H2S в парообразном продукте. Молярное отношение NH3 к H2S в парообразном продукте в случае кукурузной соломы составляет 15,2. И в этом случае, присутствует более чем достаточное количество NH3 для взаимодействия с H2S в потоке парообразного продукта и образования сульфида аммония. Как было в случае с древесиной, образуется более чем достаточное количество воды в течение гидропиролиза кукурузной соломы, чтобы полностью растворить сульфид аммония и перемещать его в растворе в течение данного способа по настоящему изобретению. Следует отметить, что общие массы в таблице D дают в сумме до 106%. Это обусловлено фактом, что заданное количество влаги и не содержащая золу кукурузная солома взаимодействуют с водородом в процессе гидропиролиза, и образующиеся в результате продукты имеют более высокую общую массу по сравнению с исходным сырьем, которое взаимодействовало.
Таблица C Состав типичного образца кукурузной соломы |
||
Кукурузная солома: | Исходный состав | Исходный состав, относительно MAF основы |
% C (MAF) | 38,0 | 50,7 |
% H (MAF) | 4,8 | 6,4 |
% O (MAF) | 31,2 | 41,6 |
% N (MAF) | 0,9 | 1,2 |
% S (MAF) | 0,1 | 0,2 |
% золы (MAF) | 8,3 | |
% Влажности | 20,0 |
Таблица D Состав выходящего пара, гидропиролиз типичной кукурузной соломы, относительно MAF основы |
|
Выход горячего парообразного продукта гидропиролиза кукурузной соломы (относительно MAF основы) | Мас.% |
Бензин | 15 |
Дизельное топливо | 9 |
Уголь | 15 |
Вода | 36 |
CO | 8,4 |
CO2 | 8,4 |
C1-C3 | 13,8 |
H2S | 0,12 |
NH3 | 0,92 |
В то время как предшествующая спецификация данного изобретения была описана относительно конкретных предпочтительных вариантов его осуществления, и многие детали были сформулированы с целью иллюстрации, специалисты в данной области поймут, что данное изобретение допускает дополнительные варианты осуществления, и что конкретные детали, описанные здесь, можно существенно варьировать без отклонения от основных принципов изобретения.
Claims (39)
1. Способ извлечения сульфата аммония при переработке биомассы на углеводородное топливо, включающий:
переработку биомассы в реакторе гидропиролиза, дающую углеводородное топливо, уголь и поток технологического пара;
охлаждение потока технологического пара до температуры конденсации, дающее водный поток, содержащий аммиак и сульфид аммония, поток жидких углеводородов, и поток охлажденного парообразного продукта, включающего неконденсирующиеся технологические пары, содержащие Н2, СН4, CO и CO2, аммиак и сероводород;
направление водного потока в каталитический реактор;
впрыск воздуха в каталитический реактор с получением водного потока продукта, содержащего аммиак и сульфат аммония, при этом осуществляют удаление сероводорода из потока охлажденного парообразного продукта и подачу сероводорода в каталитический реактор вместе с водным потоком для взаимодействия с аммиаком, присутствующим в водном потоке, с получением сульфида аммония и затем сульфата аммония.
2. Способ по п.1, дополнительно включающий:
поддержание водного потока при pH приблизительно 9-12 и отношении 5 атомов кислорода на каждый атом серы, поданной в каталитический реактор в водном потоке.
3. Способ по п. 1, где возвращение на переработку потока охлажденного парообразного продукта приводит к высокой общей конверсии сероводорода в сульфат аммония.
4. Способ по п. 1, дополнительно включающий:
обработку водного потока продукта, выходящего из каталитического реактора, с помощью колонны для отпарки кислых вод, дающей газообразный поток, включающий, в основном, аммиак, и водный поток, содержащий, в основном, воду и сульфат аммония.
5. Способ по п. 1, дополнительно включающий:
удаление сероводорода из потока охлажденного парообразного продукта, дающее поток охлажденного вторичного парообразного продукта, из которого по существу полностью удален сероводород или содержащий следовые количества сероводорода.
6. Способ по п. 1, дополнительно включающий: объединение угля, полученного из гидропиролиза биомассы, с извлеченным из водного потока продукта сульфатом аммония для создания питательной среды для лигноцеллюлозной биомассы, которая также является почвоулучшителем.
7. Способ по п. 6, дополнительно включающий:
гранулирование смеси угля и извлеченного сульфата аммония для создания уплотненной питательной среды для лигноцеллюлозной биомассы, которая также является почвоулучшителем.
8. Способ по п. 7, дополнительно включающий: гранулирование смеси угля, извлеченного сульфата аммония и сельскохозяйственных удобрений для создания уплотненной питательной среды для питания лигноцеллюлозной биомассы, которая также является почвоулучшителем.
9. Способ извлечения сульфата аммония из конвертированной в продукты биомассы, включающий:
переработку биомассы в реакторе гидропиролиза, дающую уголь и нагретый поток технологическою пара, содержащего водород, пары воды, конденсирующиеся углеводородные пары, неконденсирующиеся углеводородные пары, монооксид углерода и диоксид углерода;
охлаждение потока технологического пара до температуры конденсации до потока охлажденного и конденсированного продукта;
разделение потока охлажденного и конденсированного продукта на газообразный и жидкий компоненты;
получение потока жидких углеводородов;
получение водного потока, включающего воду, аммиак и сульфид аммония;
получение потока охлажденного парообразного продукта, включающего неконденсирующиеся технологические пары, содержащие Н2, СН4, СО и СО2, аммиак и сероводород,
при этом способ дополнительно включает обработку водного потока в колонне для отпарки кислых вод, дающую поток очищенной жидкой воды и газообразный поток, содержащий в основном аммиак и сероводород, последний охлаждают до конденсации воды и получения раствора сульфида аммония,
направление потока, содержащего сульфид аммония, в каталитический реактор, впрыск воздуха в каталитический реактор для окисления сульфида аммония над катализатором до сульфата аммония,
получение водного потока продукта, включающего воду, аммиак и сульфат аммония;
выпаривание избытка воды из водного потока продукта, содержащего сульфат аммония, дающее поток и концентрат сульфата аммония;
охлаждение концентрата сульфата аммония для осаждения в виде осадка сульфата аммония в форме кристаллизованного сульфата аммония; и
фильтрование кристаллизованного сульфата аммония.
10. Способ по п. 9, дополнительно включающий объединение части потока очищенной жидкой воды с потоком, содержащим аммиак и сероводород, с образованием раствора сульфида аммония для последующей обработки и конверсии в каталитическом реакторе.
11. Способ по п. 10, дополнительно включающий стадию удаления аммиака из водного потока продукта, содержащего воду, аммиак и сульфат аммония, для получения отдельного очищенного потока газообразного аммиака.
12. Способ по п. 9, дополнительно включающий:
введение водного потока, содержащего сульфат аммония, в паровой котел для превращения сульфата аммония в кристаллический сульфат аммония и пар.
13. Способ по п. 9, дополнительно включающий стадию:
подачи пара из стадии испарения через защитный слой для удаления следов H2S из пара.
14. Способ по п. 12, дополнительно включающий стадию:
подачи пара, поступающего от защитного слоя, в паровой риформер.
подачи пара, поступающего от защитного слоя, в паровой риформер.
15. Способ по п. 14, дополнительно включающий стадию:
подачи пара, создаваемого паровым котлом, через защитный слой для удаления следов H2S из пара.
16. Способ по п. 10, в котором катализатор представляет собой
моносульфированный фталоцианин кобальта.
моносульфированный фталоцианин кобальта.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/196,645 US8859831B2 (en) | 2011-08-02 | 2011-08-02 | Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors |
US13/196,645 | 2011-08-02 | ||
PCT/US2012/048345 WO2013019558A1 (en) | 2011-08-02 | 2012-07-26 | Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018114265A Division RU2018114265A (ru) | 2011-08-02 | 2012-07-26 | Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014107841A RU2014107841A (ru) | 2015-09-10 |
RU2653841C2 true RU2653841C2 (ru) | 2018-05-15 |
Family
ID=46690698
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014107841A RU2653841C2 (ru) | 2011-08-02 | 2012-07-26 | Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза |
RU2018114265A RU2018114265A (ru) | 2011-08-02 | 2012-07-26 | Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018114265A RU2018114265A (ru) | 2011-08-02 | 2012-07-26 | Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза |
Country Status (17)
Country | Link |
---|---|
US (2) | US8859831B2 (ru) |
EP (2) | EP2739571B1 (ru) |
JP (2) | JP6077540B2 (ru) |
KR (2) | KR101955177B1 (ru) |
CN (2) | CN103842299B (ru) |
AR (1) | AR087438A1 (ru) |
AU (2) | AU2012290464B2 (ru) |
BR (2) | BR122015017656B1 (ru) |
CA (1) | CA2843419C (ru) |
CL (1) | CL2014000261A1 (ru) |
MX (2) | MX362663B (ru) |
MY (2) | MY178021A (ru) |
RU (2) | RU2653841C2 (ru) |
SA (1) | SA112330748B1 (ru) |
UA (2) | UA113740C2 (ru) |
WO (1) | WO2013019558A1 (ru) |
ZA (2) | ZA201400959B (ru) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8859831B2 (en) * | 2011-08-02 | 2014-10-14 | Gas Technology Institute | Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors |
US9416321B2 (en) * | 2012-05-18 | 2016-08-16 | Uop Llc | Separation process with modified enhanced hot separator system |
US20140037507A1 (en) * | 2012-07-31 | 2014-02-06 | Hsiao-Lun WANG | Organic compound pyrolysis flashover energy-saving regeneration treatment system |
NL2013230B1 (en) * | 2014-07-21 | 2016-08-16 | Airpack Holding B V | Method for upgrading biogas and production of ammonium sulphate. |
US10392566B2 (en) | 2015-04-27 | 2019-08-27 | Gas Technology Institute | Co-processing for control of hydropyrolysis processes and products thereof |
BR112018010526B1 (pt) * | 2015-11-23 | 2021-10-05 | Shell Internationale Research Maatschappij B.V. | Processo para produzir produtos de hidrocarboneto líquidos a partir de pelo menos uma dentre uma matéria-prima que contém biomassa e uma matéria-prima derivada de biomassa |
CN108291152B (zh) * | 2015-11-23 | 2021-01-08 | 国际壳牌研究有限公司 | 生物质向液态烃物质的转化 |
US10264578B2 (en) * | 2017-01-31 | 2019-04-16 | Qualcomm Incorporated | Listen before transmit (LBT) communication channel for vehicle-to-vehicle communications |
US10246330B2 (en) | 2017-04-13 | 2019-04-02 | Marsulex Environmental Technologies Corporation | Systems and processes for removing hydrogen sulfide from gas streams |
US11383995B2 (en) * | 2018-03-28 | 2022-07-12 | Heartland Water Technology, Inc. | Apparatus and method for treating hydrogen sulfide and ammonia in wastewater streams |
CN109502556B (zh) * | 2018-11-28 | 2022-01-14 | 昆明理工大学 | 一种载硫磺后催化剂回收单质硫并再生的方法及系统 |
CN112442383B (zh) * | 2020-11-13 | 2022-03-04 | 新奥科技发展有限公司 | 一种煤的预处理方法 |
US11967745B2 (en) * | 2022-04-27 | 2024-04-23 | Saudi Arabian Oil Company | Co-production of hydrogen, carbon, and electricity with carbon dioxide capture |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336125A (en) * | 1979-07-20 | 1982-06-22 | Institute Of Gas Technology | Production of synthetic hydrocarbon fuels from peat |
US4415431A (en) * | 1982-07-14 | 1983-11-15 | Cities Service Company | Integrated oxygasification and hydropyrolysis process for producing liquid and gaseous hydrocarbons |
US5207927A (en) * | 1992-03-18 | 1993-05-04 | Uop | Treatment of an aqueous stream containing water-soluble inorganic sulfide compounds |
RU2166355C2 (ru) * | 1997-07-19 | 2001-05-10 | Лурги Лентьес Бишофф ГмбХ | Установка для удаления so2 из дымовых газов и получения раствора сульфата аммония |
RU2261891C1 (ru) * | 2004-05-31 | 2005-10-10 | Институт химии и химической технологии СО РАН (ИХХТ СО РАН) | Способ получения жидких углеводородных смесей из твердого углеродсодержащего сырья |
US20090082604A1 (en) * | 2007-08-27 | 2009-03-26 | Purdue Research Foundation | Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source |
RU2008147899A (ru) * | 2006-05-05 | 2010-06-10 | БИОеКОН Интернэшнл Холдинг Н.В. (NL) | Способ конверсии биомассы в жидкое топливо и специальные химикаты |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1475475A (en) | 1974-10-22 | 1977-06-01 | Ortloff Corp | Process for removing condensable fractions from hydrocarbon- containing gases |
US4690807A (en) * | 1985-08-15 | 1987-09-01 | General Electric Environmental Services, Inc. | Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate |
US4765873A (en) * | 1985-12-06 | 1988-08-23 | The Dow Chemical Company | Continuous process for the removal of hydrogen sulfide from a gaseous stream |
CN1018928B (zh) * | 1986-05-20 | 1992-11-04 | 煤气技术研究所 | 硫化床中含碳固体粒子气化时除去硫化合物的方法 |
US4749555A (en) | 1986-10-02 | 1988-06-07 | Shell Oil Company | Process for the selective removal of hydrogen sulphide and carbonyl sulfide from light hydrocarbon gases containing carbon dioxide |
US5427762A (en) * | 1987-05-27 | 1995-06-27 | Hydrocarb Corporation | Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol |
US4854249A (en) | 1987-08-03 | 1989-08-08 | Institute Of Gas Technology | Two stage combustion |
US4913802A (en) | 1989-05-08 | 1990-04-03 | Uop | Process for sweetening a sour hydrocarbon fraction |
US4908122A (en) | 1989-05-08 | 1990-03-13 | Uop | Process for sweetening a sour hydrocarbon fraction |
US5470486A (en) | 1994-06-20 | 1995-11-28 | Uop | Conversion of water-soluble inorganic sulfide compounds in an aqueous stream |
US5536385A (en) | 1995-03-03 | 1996-07-16 | Envirocorp Services & Technology, Inc. | Production and purification of contaminated effluent streams containing ammonium sulfate and ammonia |
CA2226023A1 (en) * | 1997-01-08 | 1998-07-08 | Colt Engineering Corporation | Process for scrubbing ammonia and hydrogen sulfide from a fluid acid stream |
US6017501A (en) * | 1997-12-26 | 2000-01-25 | Marathon Oil Company | Disposal of hydrogen sulfide gas by conversion to sulfate ions in an aqueous solution |
NL1011490C2 (nl) | 1999-03-08 | 2000-09-12 | Paques Bio Syst Bv | Werkwijze voor het ontzwavelen van gassen. |
US6797154B2 (en) | 2001-12-17 | 2004-09-28 | Chevron U.S.A. Inc. | Hydrocracking process for the production of high quality distillates from heavy gas oils |
US20080031809A1 (en) * | 2006-07-18 | 2008-02-07 | Norbeck Joseph M | Controlling the synthesis gas composition of a steam methane reformer |
US7258848B1 (en) | 2006-07-31 | 2007-08-21 | E. I. Du Pont De Nemours And Company | Process for scrubbing ammonia from acid gases comprising ammonia and hydrogen sulfide |
US7960520B2 (en) | 2007-06-15 | 2011-06-14 | Uop Llc | Conversion of lignocellulosic biomass to chemicals and fuels |
US8217210B2 (en) * | 2007-08-27 | 2012-07-10 | Purdue Research Foundation | Integrated gasification—pyrolysis process |
JP2009093779A (ja) | 2007-09-19 | 2009-04-30 | Sony Corp | コンテンツ再生装置及びコンテンツ再生方法 |
US8353980B2 (en) * | 2008-12-05 | 2013-01-15 | Marsulex Environmental Technologies Corporation | Flue gas scrubbing apparatus and process |
US20100251600A1 (en) * | 2009-04-07 | 2010-10-07 | Gas Technology Institute | Hydropyrolysis of biomass for producing high quality liquid fuels |
US8492600B2 (en) * | 2009-04-07 | 2013-07-23 | Gas Technology Institute | Hydropyrolysis of biomass for producing high quality fuels |
US8915981B2 (en) * | 2009-04-07 | 2014-12-23 | Gas Technology Institute | Method for producing methane from biomass |
US8063258B2 (en) * | 2009-05-22 | 2011-11-22 | Kior Inc. | Catalytic hydropyrolysis of organophillic biomass |
NZ599954A (en) | 2009-10-27 | 2013-02-22 | Methods for producing hydrocarbon products from bio-oils and/or coal -oils | |
US8383871B1 (en) * | 2010-09-03 | 2013-02-26 | Brian G. Sellars | Method of hydrogasification of biomass to methane with low depositable tars |
US8859831B2 (en) * | 2011-08-02 | 2014-10-14 | Gas Technology Institute | Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors |
-
2011
- 2011-08-02 US US13/196,645 patent/US8859831B2/en active Active
-
2012
- 2012-07-26 WO PCT/US2012/048345 patent/WO2013019558A1/en active Application Filing
- 2012-07-26 CN CN201280048542.5A patent/CN103842299B/zh active Active
- 2012-07-26 MY MYPI2014700228A patent/MY178021A/en unknown
- 2012-07-26 KR KR1020147005634A patent/KR101955177B1/ko active Active
- 2012-07-26 UA UAA201402083A patent/UA113740C2/uk unknown
- 2012-07-26 MX MX2014001200A patent/MX362663B/es active IP Right Grant
- 2012-07-26 MY MYPI2020002472A patent/MY195613A/en unknown
- 2012-07-26 UA UAA201610071A patent/UA121749C2/uk unknown
- 2012-07-26 RU RU2014107841A patent/RU2653841C2/ru not_active IP Right Cessation
- 2012-07-26 BR BR122015017656-5A patent/BR122015017656B1/pt active IP Right Grant
- 2012-07-26 JP JP2014523979A patent/JP6077540B2/ja active Active
- 2012-07-26 EP EP12748300.6A patent/EP2739571B1/en active Active
- 2012-07-26 RU RU2018114265A patent/RU2018114265A/ru not_active Application Discontinuation
- 2012-07-26 EP EP22150181.0A patent/EP4005981A1/en active Pending
- 2012-07-26 KR KR1020197005683A patent/KR102092527B1/ko active Active
- 2012-07-26 CA CA2843419A patent/CA2843419C/en active Active
- 2012-07-26 BR BR112014002376-0A patent/BR112014002376B1/pt active IP Right Grant
- 2012-07-26 CN CN201510554096.0A patent/CN105107346B/zh active Active
- 2012-07-26 AU AU2012290464A patent/AU2012290464B2/en active Active
- 2012-08-01 SA SA112330748A patent/SA112330748B1/ar unknown
- 2012-08-02 AR ARP120102830A patent/AR087438A1/es active IP Right Grant
-
2014
- 2014-01-29 MX MX2019001085A patent/MX2019001085A/es active IP Right Grant
- 2014-01-31 CL CL2014000261A patent/CL2014000261A1/es unknown
- 2014-02-07 ZA ZA2014/00959A patent/ZA201400959B/en unknown
- 2014-10-13 US US14/512,841 patent/US9593282B2/en active Active
-
2015
- 2015-02-25 ZA ZA2015/01289A patent/ZA201501289B/en unknown
-
2017
- 2017-01-12 JP JP2017003335A patent/JP6441389B2/ja active Active
- 2017-02-16 AU AU2017201034A patent/AU2017201034B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336125A (en) * | 1979-07-20 | 1982-06-22 | Institute Of Gas Technology | Production of synthetic hydrocarbon fuels from peat |
US4415431A (en) * | 1982-07-14 | 1983-11-15 | Cities Service Company | Integrated oxygasification and hydropyrolysis process for producing liquid and gaseous hydrocarbons |
US5207927A (en) * | 1992-03-18 | 1993-05-04 | Uop | Treatment of an aqueous stream containing water-soluble inorganic sulfide compounds |
RU2166355C2 (ru) * | 1997-07-19 | 2001-05-10 | Лурги Лентьес Бишофф ГмбХ | Установка для удаления so2 из дымовых газов и получения раствора сульфата аммония |
RU2261891C1 (ru) * | 2004-05-31 | 2005-10-10 | Институт химии и химической технологии СО РАН (ИХХТ СО РАН) | Способ получения жидких углеводородных смесей из твердого углеродсодержащего сырья |
RU2008147899A (ru) * | 2006-05-05 | 2010-06-10 | БИОеКОН Интернэшнл Холдинг Н.В. (NL) | Способ конверсии биомассы в жидкое топливо и специальные химикаты |
US20090082604A1 (en) * | 2007-08-27 | 2009-03-26 | Purdue Research Foundation | Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2653841C2 (ru) | Удаление сероводорода в виде сульфата аммония из паров продукта гидропиролиза | |
CA2659286C (en) | Process for scrubbing ammonia from acid gases comprising ammonia and hydrogen sulfide | |
JP2014529635A5 (ru) | ||
CA2164656C (en) | Method of producing slow-release nitrogenous organic fertilizer from biomass | |
CN103288286A (zh) | 一种催化氧化处理脱硫废液的方法 | |
EP3177383A1 (en) | Method for upgrading biogas and production of ammonium sulphate | |
CS217969B2 (en) | Method of cleaning the operation condensate from the wo | |
HU224478B1 (hu) | Eljárás és üzem karbamid nagy konverziófokkal és alacsony energiafelhasznállással történő előállítására | |
US11472924B2 (en) | Methods and systems to decarbonize natural gas using sulfur to produce hydrogen and polymers | |
NZ716910B2 (en) | Hydropyrolysis process | |
NZ620809B2 (en) | Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors | |
EP0199815A1 (en) | Process for removal of hydrogen sulfide from gases | |
US20240158312A1 (en) | System and method for producing ammonia, urea, and uan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200727 |