[go: up one dir, main page]

RU2642067C2 - Топливо для двигателей с воспламенением от сжатия на основе диметилового эфира монооксиметилена - Google Patents

Топливо для двигателей с воспламенением от сжатия на основе диметилового эфира монооксиметилена Download PDF

Info

Publication number
RU2642067C2
RU2642067C2 RU2014102564A RU2014102564A RU2642067C2 RU 2642067 C2 RU2642067 C2 RU 2642067C2 RU 2014102564 A RU2014102564 A RU 2014102564A RU 2014102564 A RU2014102564 A RU 2014102564A RU 2642067 C2 RU2642067 C2 RU 2642067C2
Authority
RU
Russia
Prior art keywords
fuel
dimethyl ether
polyethylene glycol
compression ignition
ignition engines
Prior art date
Application number
RU2014102564A
Other languages
English (en)
Other versions
RU2014102564A (ru
Inventor
Эберхард ЯКОБ
Original Assignee
Ман Трак Энд Бас Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ман Трак Энд Бас Аг filed Critical Ман Трак Энд Бас Аг
Publication of RU2014102564A publication Critical patent/RU2014102564A/ru
Application granted granted Critical
Publication of RU2642067C2 publication Critical patent/RU2642067C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/12Use of additives to fuels or fires for particular purposes for improving the cetane number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1811Organic compounds containing oxygen peroxides; ozonides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2300/00Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
    • C10L2300/20Mixture of two components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2300/00Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
    • C10L2300/40Mixture of four or more components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Изобретение раскрывает топливо для двигателей с воспламенением от сжатия, содержащее диметиловый эфир монооксиметилена, характеризующееся тем, что содержит по меньшей мере 80 мас.% диметилового эфира монооксиметилена и до 20 мас.% по меньшей мере одного оксигената н-полиоксаалканового типа, который выбран из группы, состоящей из диалкиловых эфиров полиоксиметилена формулы RO(-CH2O-)nR, где n = 4-10 и R - алкильная группа, диалкиловых эфиров полиэтиленгликоля и/или формалей моноалкильных эфиров полиэтиленгликоля, и цетановое число топлива составляет ≥48,6. Технический результат заключается в снижении вредных выбросов СО2 и NOх, а также снижении выбросов сажи при сжигании указанного топлива. 10 з.п. ф-лы, 11 пр., 1 ил.

Description

Изобретение относится к топливу для двигателей с воспламенением от сжатия, т.е. дизельному топливу.
Смеси диметилового эфира монооксиметилена (диметоксиметан) и дизельного топлива известны в качестве топлива для дизельных двигателей из SAE TECHNICAL PAPER SERIES, 1999-01-1508, с.1-13. Добавление дизельного топлива используется в описании для увеличения цетанового числа диметилового эфира монооксиметилена от 29 до значений выше 40. Однако добавление дизельного топлива приводит к нежелательным выбросам сажи. С другой стороны, дизельный двигатель не может работать на чистом диметиловом эфире монооксиметилена, поскольку у последнего слишком низкое цетановое число, 29. Это приводит к тому, что холодный запуск невозможен и происходят перебои в работе двигателя с неполной нагрузкой.
Использование диметилового эфира диоксиметилена и смесей диметилового эфира триоксиметилена/тетраоксиметилена в качестве добавки к дизельному топливу известно из автомобильного технического журнала MTZ, 72-й том, с.198-202 (2011). Использование этих эфиров приводит к значительному снижению выбросов сажи, но по-прежнему необходим сажевый фильтр для соответствия существующим требованиям законодательства. В дополнение к этому фактом является то, что эти смеси диметиловых эфиров полиоксиметилена могут быть изготовлены только с большими затратами.
Основной целью изобретения является преодоление вышеуказанных недостатков. В частности, основной целью изобретения является удовлетворение существующих юридических требований к снижению выбросов CO2 и выброса примесей в воздух с использованием остаточной биомассы и диоксида углерода в качестве исходного материала для получения топлива для двигателей с воспламенением от сжатия, достигая сгорания топлива с настолько низкими выбросами сажи, насколько возможно в двигателе, для обеспечения таким образом основы для очень низких выбросов выхлопных газов (локальные нулевые выбросы в соответствии с примером электромобилей), обеспечивая замену метанола нетоксичными материалами, достигая высокой совместимости утилизации выхлопных газов для снижения содержания NOx внутри двигателя и снижая издержки, объем и вес системы постобработки выхлопных газов, например, исключая сажевые фильтры.
В соответствии с изобретением эта цель достигается с помощью топлива для двигателей с воспламенением от сжатия, т.е. дизельного топлива по п.1, которое содержит диметиловый эфир монооксиметилена (диметоксиметан) и характеризуется тем, что его цетановое число (CN) составляет ≥48,6, предпочтительно ≥51.
Термин "содержит" также включает термин "состоит из".
Таким образом, топливо в соответствии с изобретением для двигателей с воспламенением от сжатия содержит диметиловый эфир монооксиметилена в качестве основного топлива. Диметиловый эфир монооксиметилена (диметоксиметан) имеет структурную формулу СН3ОСН2ОСН3.
Использование диметилового эфира монооксиметилена, во-первых, имеет то преимущество, что, в отличие от всех высших диметиловых эфиров полиоксиметилена, таких как, например, смесь диметиловых эфиров триоксиметилена/тетраоксиметилена, его уже производят в промышленном масштабе.
В предпочтительном осуществлении топливо в соответствии с изобретением для двигателей с воспламенением от сжатия содержит по меньшей мере около 80 мас.% предпочтительно по меньшей мере около 90 мас.% и особенно предпочтительно по меньшей мере около 95 мас.% диметилового эфира монооксиметилена.
Как было отмечено, решающее значение для достижения вышеуказанных целей имеет то, чтобы цетановое число топлива для двигателей с воспламенением от сжатия в соответствии с изобретением составляло ≥48,6, предпочтительно ≥51
В предпочтительном осуществлении топливо в соответствии с изобретением для двигателей с воспламенением от сжатия не содержит обычных дизельных топлив на основе углеводородов. Это обеспечивает еще более преимущественное сгорание топлива без сажи.
В предпочтительном осуществлении цетановое число ≥48,6, предпочтительно ≥51 в топливе в соответствии с изобретением для двигателей с воспламенением от сжатия достигается тем, что последнее содержит по меньшей мере один оксигенат н-полиоксаалканового типа, который выбран из группы, состоящей из диалкиловых эфиров полиоксиметилена формулы RO(-CH2O-)nR, где n=4-10 и R=алкильная группа, диалкиловых эфиров полиэтиленгликоля и/или формалей моноалкиловых эфиров полиэтиленгликоля.
В предпочтительном осуществлении топливо в соответствии с изобретением для двигателей с воспламенением от сжатия содержит до около 20 мас.%, предпочтительно до около 5 мас.%, особенно предпочтительно до около 3 мас.% по меньшей мере одного вышеуказанного оксигената н-полиоксаалканового типа.
Цетановое число возрастает практически линейно с концентрацией по меньшей мере одного оксигената н-полиоксаалканового типа. Увеличение цетанового числа также коррелирует с молекулярной массой MG используемого оксигената н-полиоксаалканового типа. Другими словами, чем выше молекулярная масса, тем меньше нужно использовать оксигената н-полиоксаалканового типа. Однако оксигенаты н-полиоксаалканового типа с молекулярной массой MG>1000 дальтон менее пригодны и они растворяются сравнительно плохо в диметиловом эфире монооксиметилена, особенно на холоде.
Алкильная группа по меньшей мере одного оксигената н-полиоксаалканового типа включает концевые алкильные группы, например метальную или этильную группу. Предпочтительно это метальные группы. Поэтому диалкиловый эфир полиоксиметилена формулы RO(-CH2O-)nR, где n=4-10 и R=алкильная группа, предпочтительно представляет собой диметиловый эфир полиоксиметилена формулы СН3О(-CH2O-)nCH3, где n=4-10. Предпочтительно n=5-9 и особенно предпочтительно 6-7.
Диалкиловые эфиры полиэтиленгликоля предпочтительно являются диметиловыми эфирами полиэтиленгликоля.
Формали моноалкиловых эфиров полиэтиленгликоля предпочтительно являются формалями монометилового эфира полиэтиленгликоля.
Молекулярная масса MG диметиловых эфиров полиоксиметилена предпочтительно составляет 100-400 дальтон, предпочтительно 166-346 дальтон.
Диметиловые эфиры полиоксиметилена предпочтительно используют в количестве до около 20 мас.%, особенно предпочтительно до около 5 мас.% и более предпочтительно до около 3 мас.%
Особенно предпочтительным диметиловым эфиром полиоксиметилена является диметиловый эфир тетраоксиметилена, поскольку он приводит к явному увеличению вязкости.
В особенно предпочтительном осуществлении молекулярная масса MG диметиловых эфиров полиэтиленгликоля составляет 400-1000 дальтон, предпочтительно 500-1000 дальтон.
Диметиловые эфиры полиэтиленгликоля предпочтительно используют в количестве до около 20 мас.%, и особенно предпочтительно до около 5 мас.%
Подходящими диметиловыми эфирами полиэтиленгликоля являются, например, полигликоль DME 500, полигликоль DME 750 и полигликоль DME 1000, все поставляемые компанией Clariant. Полиэтиленгликоль DME 500 предпочтительно используют в количестве до около 20 мас.%, особенно предпочтительно до около 10 мас.% и более предпочтительно до около 5 мас.% Полигликоль DME 750 предпочтительно используют в количестве до около 10 мас.% и особенно предпочтительно до около 5 мас.% Полигликоль DME 1000 предпочтительно используют в количестве до около 6 мас.% и особенно предпочтительно до около 3 мас.%
Диалкиловые эфиры полиэтиленгликоля, в частности диметиловые эфиры полиэтиленгликоля, уже производятся в промышленных масштабах, что облегчает внедрение топлива в соответствии с изобретением для двигателей с воспламенением от сжатия.
Молекулярная масса формалей монометилового эфира полиэтиленгликоля предпочтительно составляет 400-1100 дальтон.
Формали монометилового эфира полиэтиленгликоля предпочтительно используют в количестве до около 20 мас.%, предпочтительно до около 10 мас.% и более предпочтительно до около 5 мас.% Формали монометилового эфира полиэтиленгликоля с молекулярной массой менее 400 дальтонов, например, 2,5,7,10-тетраоксаундекан с молекулярной массой 192 дальтон, менее эффективен. Формали монометилового эфира полиэтиленгликоля с более высокой молекулярной массой, т.е. формали монометилового эфира полиэтиленгликоля с молекулярной массой 400-1100 дальтон являются особенно пригодными. Например, могут быть использованы формали монометилового эфира тетраэтиленгликоля с MG 428 дальтон. Они могут быть получены, например, из двух молей монометилового эфира тетраэтиленгликоля и одного моля формальдегида. Также может быть использован, например, полученный монометиловый эфир полиэтиленгликоля с молекулярной массой MG 950-1070 дальтон. Он может быть получен, например, из двух молей монометилового эфира полиэтиленгликоля с молекулярной массой MG 470-530 дальтон, например полигликоль М, поставляемый Clariant, и одного моля формальдегида.
Формали моноалкилового эфира полиэтиленгликоля, в частности формали монометилового эфира полиэтиленгликоля, могут быть получены известными способами из моноалкиловых эфиров полиэтиленгликоля, изготавливаемых в промышленных масштабах, путем взаимодействия с формальдегидом, например, в виде параформальдегида.
Использование формалей моноалкилового эфира полиэтиленгликоля, в частности формалей монометилового эфира полиэтиленгликоля, приводит к результатам, аналогичным использованию диалкиловых эфиров полиоксиметилена, в частности диметилового эфира полиоксиметилена.
Использование по меньшей мере одного оксигената н-полиоксаалканового типа не только приводит к тому, что цетановое число топлива в соответствии с изобретением для двигателей с воспламенением от сжатия повышается до ≥48,6, предпочтительно ≥51, но также к тому, что физические свойства топлива в соответствии с изобретением для двигателей с воспламенением от сжатия, например вязкость, поверхностное натяжение, давление паров и сжимаемость (модуль упругости), приближаются к свойствам дизельного топлива.
Кинематическая вязкость диметилового эфира монооксиметилена составляет 0,40 мм2/с при 20°С и, следовательно, ниже требований стандарта EN 590 (стандарт для дизельного топлива DIN EN 590, издание май 2010) 2 мм2/с в 5 раз. Разница может привести к проблемам при использовании стандартных систем дизельного впрыска. Таким образом, утечки в разрыве поршневых колец могут увеличиться. Использование по меньшей мере одного оксигената н-полиоксаалканового типа также обеспечивает повышение вязкости топлива в соответствии с изобретением для двигателей с воспламенением от сжатия. Тем самым можно положительно влиять на характеристики впрыска. Например, средний диаметр капли и глубина проникновения струи топлива увеличивается за счет увеличения вязкости.
Смазывающая способность диметилового эфира монооксиметилена, за счет его полярных свойств, уже находится в диапазоне дизельного топлива. Однако использование по меньшей мере одного оксигената н-полиоксаалканового типа приводит к дальнейшему улучшению, то есть к увеличению смазывающей способности (снижение HFRR (тест смазывающих свойств дизельного топлива с помощью высокочастотной возвратно-поступательной установки)).
Поверхностное натяжение диметилового эфира монооксиметилена составляет 21,2 мН/м при 25°C. Использование по меньшей мере одного оксигената н-полиоксаалканового типа в топливе в соответствии с изобретением для двигателей с воспламенением от сжатия увеличивает это значение до 26 мН/м (по сравнению с ним поверхностное натяжение дизельного топлива составляет 27-28 мН/м). Поверхностное натяжение оказывает решающее влияние на распределение размера капель, образующихся в процессе распыления, и, следовательно, также на глубину проникновения струи топлива. При проектировании системы впрыска топлива глубину проникновения струи можно регулировать, например, использованием подходящего количества по меньшей мере одного оксигената н-полиоксаалканового типа.
Давление паров диметилового эфира монооксиметилена составляет 45 кПа при температуре 20°C. Использованием по меньшей мере одного оксигената н-полиоксаалканового типа можно снизить давление пара на величину до 10%.
Баланс энергии этапа получения диметилового эфира монооксиметилена (ОМЕ1) по сравнению, например, с диметиловым эфиром тетраоксиметилена (ОМЕ4) из метанола и формальдегида также обеспечивает значительные преимущества:
2CH3OH+CH2O→C3H8O2(ОМЕ1) (уравнение 1),
2CH3OH+4CH2O→C6H14O5(ОМЕ4) (уравнение 2.)
Получение CH2O состоит в частичном экзотермическом окислении метанола:
2CH3OH+O2→2CH2O+H2O (уравнение 3) ΔH=-318 кДж/моль.
Комбинируя уравнения 1 и 2 с уравнением 3, получаем:
6CH3OH+O2→2C3H8O2(ОМЕ1)+2H2O (уравнение 4),
6CH3OH+2O2→C6H14O5(ОМЕ4)+5H2O (уравнение 5).
Видно, что потребление кислорода и, следовательно, потери энергии при получении ОМЕ4 из метанола в соответствии с уравнением 5 в два раза выше, чем при получении ОМЕ1 в соответствии с уравнением 4.
В предпочтительном осуществлении топливо в соответствии с изобретением для двигателей с воспламенением от сжатия включает ди-трет-бутилпероксид (DTBP). Ди-трет-бутилпероксид также приводит к желательному увеличению цетанового числа.
Ди-трет-бутилпероксид предпочтительно добавляют в количестве 0,01-0,3 мас.% и более предпочтительно в количестве 0,1-0,2 мас.% Слишком низкое количество не приводит к искомому увеличению цетанового числа, в то время как слишком высокого количества следует избегать по экономическим соображениям.
Использование ди-трет-бутилпероксида, кроме того, имеет преимущество в том, что, в отличие от присадок, повышающих цетановое число на основе нитрата, таких как, например, 2-этилгексилнитрат, он горит без образования топливного NOx.
Ди-трет-бутилпероксид очень подходит в качестве присадки, повышающей цетановое число топлива для двигателей с воспламенением от сжатия, с диметиловым эфиром монооксиметилена в качестве основного топлива. Таким образом, добавление 0,1 мас.% ди-трет-бутилпероксида в сочетании с диметиловым эфиром монооксиметилена в качестве основного топлива приводит к увеличению цетанового числа на 8 единиц, а в случае дизельного топлива среднее повышение составляет только 2-4 единицы (SAE 952368, 1995).
В особенно предпочтительном осуществлении топливо в соответствии с изобретением для двигателей с воспламенением от сжатия содержит диметиловый эфир монооксиметилена по меньшей мере один оксигенат н-полиоксаалканового типа и ди-трет-бутилпероксид, последний предпочтительно в количестве 0,01-0,3 мас.% Благодаря добавлению ди-трет-бутилпероксида можно, при необходимости, уменьшить количество по меньшей мере одного оксигената н-полиоксаалканового типа относительно увеличения цетанового числа.
В особенно предпочтительном осуществлении топливо в соответствии с изобретением для двигателей с воспламенением от сжатия содержит по меньшей мере 80 мас.% диметилового эфира монооксиметилена, 1-20 мас.% предпочтительно 5-20 мас.% более предпочтительно 5-19,7 мас.% по меньшей мере одного оксигената н-полиоксаалканового типа, выбранного из группы, состоящей из диметилового эфира полиоксиметилена, диметилового эфира полиэтиленгликоля и/или формалей монометилового эфира полиэтиленгликоля, и 0,01-0,3 мас.% ди-трет-бутилпероксида.
В предпочтительном осуществлении до около 20 мас.%, предпочтительно до 11,5 мас.% и особенно предпочтительно до около 10 мас.% диметилового эфира монооксиметилена может быть заменено диметиловым эфиром. Это приводит к увеличению давления паров до 60 кПа (летнее топливо) или 90 кПа (производство "grease vapour bell") и к снижению затрат. Диметиловый эфир используется в настоящем изобретении в качестве замены диметилового эфира монооксиметилена в топливе. Давление паров диметилового эфира при 20°C составляет 504 кПа и он хорошо растворяется в диметиловом эфире монооксиметилена. Используя диметиловый эфир, можно привести в соответствие давление паров топлива изобретения для двигателей с воспламенением от сжатия с европейским стандартом EN 228 (стандарт для моторного топлива DIN EN 2282207 издание) и цетановое число и фильтруемость со стандартном EN 590. Вязкость топлива в соответствии с изобретением для двигателей с воспламенением от сжатия приближается насколько возможно к требованиям стандарта EN 590.
Количества присутствующих компонентов, включающих диметиловый эфир монооксиметилена, оксигенаты н-полиоксаалканового типа, необязательно диметиловый эфир и ди-трет-бутилпероксид, предпочтительно составляют 100% по отношению к их мас.%
Топливо в соответствии с изобретением для двигателей с воспламенением от сжатия имеет повышенную вязкость по сравнению с диметиловым эфиром монооксиметилена, фильтруемость на холоду (CFPP) сохраняется, плотность увеличивается и цетановое число доходит до значения ≥48,6, предпочтительно ≥51.
Как уже упоминалось выше, топливо согласно изобретению для двигателей с воспламенением от сжатия в предпочтительном осуществлении не содержит углеводородов, т.е. не содержит компонентов дизельного топлива на основе углеводородов.
Кроме того, топливо согласно изобретению для двигателей с воспламенением от сжатия имеет следующие преимущества.
Топливо в соответствии с изобретением для двигателей с воспламенением от сжатия обеспечивает косвенное использование метанола в качестве топлива для двигателей. Разрешение на распределение метанола в качестве топлива на общественных автозаправочных станциях в Европейском Союзе и США, по всей видимости, исключено в будущем из-за его выраженных токсических свойств. С другой стороны, метанол может быть превращен в промышленных масштабах в диметиловый эфир монооксиметилена. Таким образом, топливо для двигателей с воспламенением от сжатия в соответствии с изобретением обеспечивает косвенное использование метанола в качестве топлива для двигателей с воспламенением от сжатия, поскольку метанол подходит только для работы двигателей с искровым зажиганием.
Таким образом, топливо для двигателей с воспламенением от сжатия в соответствии с изобретением обеспечивает косвенное использование метанола и диметилового эфира в качестве жидкого топлива для дизельных двигателей. Диметиловый эфир является отличным дизельным топливом, которое сгорает без сажи, подобно диметиловому эфиру монооксиметилена. Основным недостатком диметилового эфира является низкая температура кипения -25°С. Поэтому с ним необходимо работать в виде сжиженного газа и, следовательно, недостаток в том, что не может быть использована инфраструктура для жидкого топлива.
В отличие от метанола, диметиловый эфир монооксиметилена является значительно менее токсичным. Он также используется в косметике и фармацевтике и имеет класс опасности для воды 1.
Исходное вещество метанол может быть получено непосредственным гидрированием диоксида углерода. Таким образом, существует возможность возвращения в цикл диоксида углерода электростанций, производства цемента и стали и, следовательно, реализует в теории снижение выбросов диоксида углерода до 50%.
Сгорание топлива для двигателей с воспламенением от сжатия в соответствии с настоящим изобретением в двигателях с воспламенением от сжатия, работающих на обедненной смеси аналогично сгоранию газообразного диметилового эфира, также происходит без сажи и твердых частиц при высоких скоростях ГРМ. Таким образом, могут быть достигнуты очень низкий уровень выбросов NOx и выбросов частиц, измеренных внутри двигателя. Постобработка выхлопного газа не требует сажевого фильтра, но только катализатор окисления, который предотвращает выброс несгоревшего и частично сгоревшего топлива в соответствии с изобретением для двигателей с воспламенением от сжатия. Преимуществами являются уменьшение расхода топлива за счет низкого противодавления выхлопного газа в выхлопной системе и значительное снижение затрат, необходимого пространства и веса системы постобработки выхлопных газов.
Топливо для двигателей с воспламенением от сжатия в соответствии с изобретением может быть изготовлено без дополнительной по существу полной очистки от соединений серы. Таким образом, стало возможным использование экономичных катализаторов без высококачественных металлов для постокисления несгоревших кислородсодержащих соединений и монооксида углерода.
Топливо для двигателей с воспламенением от сжатия в соответствии с изобретением может быть использовано в двигателях, которые смазываются с использованием химически связанных моторных масел на основе полиалкиленгликоля. Таким образом, обычное введение относительно небольших количеств топлива в моторное масло и относительно небольшие количества моторного масла в топливе остается без негативных последствий с учетом химического взаимодействия двух материалов.
Изобретение будет дополнительно проиллюстрировано ниже с помощью примеров. Однако примеры никоим образом не являются ограничивающими настоящее изобретение.
Осуществление 1
Диметиловый эфир монооксиметилена смешивают с 20, 10, 7,5 или 5 мас.% полиэтиленгликоля DME 500 (Clariant). Цетановое число смеси возрастает с 40 (диметиловый эфир монооксиметилена) до 75, 55, 51 или 46,5. Вязкость смесей увеличивается от 0,45 до 0,72, 0,53, 0,50 или 0,45 мм2/с. CFPP падает с <-80°C до -17°C, -25°C, <-30°C или <-30°С.
Осуществление 2
5 или 3 мас.% полиэтиленгликоля 1000 DME (Clariant) растворяют в диметиловом эфире монооксиметилена. CN смеси составляет 53 или 50 и вязкость 0,49 или 0,44 мм2/с. CFPP увеличивается до -3°С или -10°C.
Осуществление 3
5% масс, полиэтиленгликоля 1000 DME (Clariant) растворяют в диметиловом эфире монооксиметилена. При добавлении 0,05% масс, или 0,1 мас.%DTBP к смеси CN возрастает до 54,4 или 55,2.
Осуществление 4
3% масс, полиэтиленгликоля 1000 DME (Clariant) растворяют в диметиловом эфире монооксиметилена. При добавлении 0,05 мас.% DTBP к смеси CN возрастает до 52.
Осуществление 5
Диметиловый эфир монооксиметилена смешивают с 10 мас.% полиэтиленгликоля DME 500 и 10 мас.% диметилового эфира тетраоксиметилена. CN увеличивается до 65 лет. Кинематическая вязкость увеличивается до 0,59 мм2/с. Заметно увеличение смазывающей способности (снижение величины износа HFRR до 240 мкм). CFPP составляет -28°С.
Осуществление 6
Диметиловый эфир монооксиметилена смешивают с 10 мас.% полиэтиленгликоля DME 500 и 5% масс, диметилового эфира тетраоксиметилена. CN увеличивается до 55.
Осуществление 7
5 мас.% ОМЕ6-10 (ОМЕ6-10=диметиловый эфир полиоксиметилена) растворяют в диметиловом эфире монооксиметилена (средняя MG 290). CN возрастает до 55 и вязкость до 0,7 мм2/с.
Осуществление 8
Топлива, описанные в примерах 1-7, для двигателей с воспламенением от сжатия могут абсорбировать до 11,5 мас.% диметилового эфира под давлением газообразного диметилового эфира. Количество растворенного диметилового эфира монооксиметилена зависит от соответствующих сезонных требований к давлению пара. Свойства комбинированного топлива сравнимы с таковыми примеров 1-7.
Сравнительный пример 1
Чистый диметиловый эфир монооксиметилена (Ineos, Mainz 99,7%) имеет CN 40, вязкость 0,45 мм2/с (20°C), поверхностное натяжение 21,2 мН/м, давление паров при 20°С 42,6 кПа и CFPP менее -60°C.
Сравнительный пример 2
5 мас.% монометилового эфира полиэтиленгликоля 350 (Clariant) растворяют в диметиловом эфире монооксиметилена и добавляют 0,1 мас.% DTPB. Цетановое число увеличивается до 51. Раствор замораживали при -18°C. Хлопья образуются при оттаивании, которые полностью растворяются только при 9,2°C.
Сравнительный пример 3
3 мас.% монометилового эфира полиэтиленгликоля 1000 (Clariant) растворяют в диметиловом эфире монооксиметилена и добавляют 0,1 мас.% DTPB. Цетановое число увеличивается до 52. Раствор замораживали при -18°C. Хлопья образуются при оттаивании, которые полностью растворяются только при 4°С.
Измерение цетанового числа проводят с помощью измерительного устройства "AFIDA" компании ASG Analytik Service Gesellschaft, Trentiner Ring 30, 86356 NeusäB.
Принцип действия AFIDA (Усовершенствованный анализатор задержки впрыска топлива) выглядит следующим образом:
Насос высокого давления заполняет резервуар высокого давления (рампа) по линии высокого давления испытуемым топливом. Далее пьезоэлектрический клапан (Bosch piezo injector) впрыскивает определенное количество топлива в предварительно нагретую камеру сгорания, заполненную сжатым воздухом.
Тонкораспыленное топливо воспламеняется и образующиеся газообразные продукты сгорания приводят к повышению давления в камере сгорания. Изменение давления во времени регистрируют с высоким разрешением и рассчитывают время задержки воспламенения и цетановое число. AFIDA может быть соединен с приборами для определения состава выхлопных газов.
Состав воздуха для горения может быть целенаправленно изменен с помощью смесителя газа (регулировки значения лямбда). Прибор откалиброван по цетановому числу в CFR или в BASF моторным методом с первичными эталонами.
Схема испытаний показана на фиг.1.
Работа проходит при следующих условиях испытания:
- температура в камере сгорания 650°C,
- давление в камере сгорания 10 бар,
- давление впрыска 1000 бар,
- впрыскиваемое количество 50 мг,
- термостатический контроль топлива 25°С.
Образец подают в полностью автоматическом режиме с помощью автоматического пробоотборника (вместимость: 36 образцов, каждый из 40 мл). Впрыск топлива проводят с помощью насоса высокого давления и стандартного инжектора Bosch piezo. Это соответствует известному уровню техники и в настоящее время установлено, например, в Audi А6. После проведения измерения всю топливную систему автоматически промывают, чтобы исключить смешивание образцов. Фактически сгорание происходит в цилиндре высокого давления с объемом сгорания около 0,6 л.
- Кинематическая вязкость приводится в мм2/с при 20°C и определена по DIN ISO 3104.
- CFFP (температура забивания фильтра), т.е. температура, при которой топливо больше не проходит через тест-фильтр при определенных условиях, определяют по DIN EN 116.
Определение диаметра углубления износа (в мкм) в качестве меры смазывающей способности (HFRR (Высокочастотная возвратно-поступательная установка)) проводят при 25°C в соответствии с DIN EN ISO 12156-1. Чем больше диаметр, тем меньше смазывающая способность топлива. Предельное значение составляет ≤460 мкм по DIN EN 590.

Claims (11)

1. Топливо для двигателей с воспламенением от сжатия, содержащее диметиловый эфир монооксиметилена, характеризующееся тем, что содержит по меньшей мере 80 мас.% диметилового эфира монооксиметилена и до 20 мас.% по меньшей мере одного оксигената н-полиоксаалканового типа, который выбран из группы, состоящей из диалкиловых эфиров полиоксиметилена формулы RO(-CH2O-)nR, где n = 4 - 10 и R - алкильная группа, диалкиловых эфиров полиэтиленгликоля и/или формалей моноалкильных эфиров полиэтиленгликоля, и цетановое число топлива составляет ≥48,6.
2. Топливо по п. 1, характеризующееся тем, что цетановое число топлива составляет ≥51.
3. Топливо по п. 1 или 2, характеризующееся тем, что диалкиловые эфиры полиоксиметилена являются диметиловыми эфирами полиоксиметилена, диалкиловые эфиры полиэтиленгликоля являются диметиловыми эфирами полиэтиленгликоля и формали моноалкиловых эфиров полиэтиленгликоля являются формалями монометилового эфира полиэтиленгликоля.
4. Топливо по п. 3, характеризующееся тем, что молекулярная масса MG диметилового эфира полиоксиметилена составляет 100-400 дальтон.
5. Топливо по п. 3, характеризующееся тем, что молекулярная масса MG диметилового эфира полиэтиленгликоля составляет 400-1000 дальтон.
6. Топливо по п. 3, характеризующееся тем, что молекулярная масса MG формаля монометилового эфира полиэтиленгликоля составляет 400-1000 дальтон.
7. Топливо по п. 1, характеризующееся тем, что топливо дополнительно содержит ди-трет-бутилпероксид.
8. Топливо по п. 7, характеризующееся тем, что топливо содержит до 0,3 мас.% ди-трет-бутилпероксида.
9. Топливо по п. 8, характеризующееся тем, что топливо содержит по меньшей мере 80 мас.% диметилового эфира монооксиметилена, 1-20 мас.% по меньшей мере одного оксигената н-полиоксаалканового типа, выбранного из группы, состоящей из диметилового эфира полиоксиметилена, диметилового эфира полиэтиленгликоля и/или формалей монометиловых эфиров полиэтиленгликоля и 0,01-0,3 мас.% ди-трет-бутилпероксида, причем количество присутствующих компонентов составляет 100% по отношению к их мас.%.
10. Топливо по п. 1, характеризующееся тем, что до 20 мас.% диметилового эфира монооксиметилена заменено диметиловым эфиром, причем количество присутствующих компонентов составляет 100% по отношению к их мас.%.
11. Топливо по п. 1, характеризующееся тем, что оно не содержит углеводородов.
RU2014102564A 2013-01-28 2014-01-27 Топливо для двигателей с воспламенением от сжатия на основе диметилового эфира монооксиметилена RU2642067C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013001490.5A DE102013001490A1 (de) 2013-01-28 2013-01-28 Kraftstoff für Selbstzündungsmotoren basierend auf Monooxymethylendimethylether
DE102013001490.5 2013-01-28

Publications (2)

Publication Number Publication Date
RU2014102564A RU2014102564A (ru) 2015-08-10
RU2642067C2 true RU2642067C2 (ru) 2018-01-24

Family

ID=49999823

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014102564A RU2642067C2 (ru) 2013-01-28 2014-01-27 Топливо для двигателей с воспламенением от сжатия на основе диметилового эфира монооксиметилена

Country Status (6)

Country Link
US (1) US9447355B2 (ru)
EP (1) EP2759588B1 (ru)
CN (1) CN103992825B (ru)
BR (1) BR102014002085B1 (ru)
DE (1) DE102013001490A1 (ru)
RU (1) RU2642067C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678594C2 (ru) * 2014-02-17 2019-01-30 Ман Трак Энд Бас Аг Топливо для двигателей с самовоспламенением на основе диалкиловых простых эфиров полиоксиметилена

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194846B (zh) * 2014-07-09 2016-03-09 中国人民解放军后勤工程学院 一种新型高原含氧柴油
US11365364B2 (en) * 2020-10-07 2022-06-21 Saudi Arabian Oil Company Drop-in fuel for reducing emissions in compression-ignited engines
CN114015484A (zh) * 2021-10-29 2022-02-08 成都前成科技有限公司 一种含有dmm1-3组分的汽油掺烧料及其清洁汽油

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU97103509A (ru) * 1994-08-12 1999-05-20 Амоко Корпорейшн Композиция дизельного топлива
US20020020107A1 (en) * 1999-07-02 2002-02-21 Bailey Brent K. Low molecular weight compression ignition fuel
RU2217479C2 (ru) * 1998-11-23 2003-11-27 Пьюэр Энерджи Корпорейшн Состав дизельного топлива
WO2007000428A1 (de) * 2005-06-29 2007-01-04 Basf Aktiengesellschaft Biodieselkraftstoffgemisch enthaltend polyoxymethylendialkylether

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796423A (en) * 1952-12-01 1957-06-18 Exxon Research Engineering Co Formals of lubricating grade
US3385816A (en) * 1965-10-23 1968-05-28 Olin Mathieson Polyether leveling agents for polyurethane coatings
GB2227752A (en) * 1989-02-06 1990-08-08 Shell Int Research Fuel compositions containing perketals
US5314511A (en) * 1992-12-23 1994-05-24 Arco Chemical Technology, L.P. Diesel fuel
US6270541B1 (en) * 1994-08-12 2001-08-07 Bp Corporation North America Inc. Diesel fuel composition
AT1018U1 (de) * 1995-08-23 1996-09-25 Avl Verbrennungskraft Messtech Verfahren zur aufbereitung von selbstzündendem kraftstoff
US5858030A (en) * 1997-09-23 1999-01-12 Air Products And Chemicals, Inc. Diesel fuel composition comprising dialkoxy alkanes for increased cetane number
ITMI991614A1 (it) 1999-07-22 2001-01-22 Snam Progetti Miscela liquida costituita da gasoli diesel e da composti ossigenati
US7241031B2 (en) 2004-04-14 2007-07-10 Sloanled, Inc. Channel letter lighting system using high output white light emitting diodes
JP2008517960A (ja) * 2004-10-25 2008-05-29 ビーエーエスエフ ソシエタス・ヨーロピア ポリオキシメチレンジメチルエーテルの製造方法
CR7573A (es) * 2004-11-11 2005-06-08 Araya Brenes Mario Composicion de un combustible y/o biocombustible a base de alcohol para sustituir gasolina, diesel o aceites combustibles en motores convencionales de combustion interna y metodo para su empleo
US20060156619A1 (en) * 2004-12-24 2006-07-20 Crawshaw Elizabeth H Altering properties of fuel compositions
CN101434874A (zh) * 2007-11-16 2009-05-20 上海欧罗福企业(集团)有限公司 一种清洁液体燃料
DE102008032254B4 (de) 2008-07-09 2010-10-21 Man Nutzfahrzeuge Ag Rußarme Dieselkraftstoffe, enthaltend einen Kraftstoffzusatz, deren Verwendung sowie die Verwendung des Kraftstoffzusatzes zur Herstellung von rußarmen Dieselkraftstoffen
CN102268304B (zh) * 2011-07-12 2014-09-10 河南煤业化工集团研究院有限责任公司 一种清洁二甲氧基甲烷柴油及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU97103509A (ru) * 1994-08-12 1999-05-20 Амоко Корпорейшн Композиция дизельного топлива
RU2217479C2 (ru) * 1998-11-23 2003-11-27 Пьюэр Энерджи Корпорейшн Состав дизельного топлива
US20020020107A1 (en) * 1999-07-02 2002-02-21 Bailey Brent K. Low molecular weight compression ignition fuel
WO2007000428A1 (de) * 2005-06-29 2007-01-04 Basf Aktiengesellschaft Biodieselkraftstoffgemisch enthaltend polyoxymethylendialkylether
US20080216390A1 (en) * 2005-06-29 2008-09-11 Basf Aktiengesellschaft Biodiesel Fuel Mixture Containing Polyoxymethylene Dialkyl Ether

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678594C2 (ru) * 2014-02-17 2019-01-30 Ман Трак Энд Бас Аг Топливо для двигателей с самовоспламенением на основе диалкиловых простых эфиров полиоксиметилена

Also Published As

Publication number Publication date
CN103992825B (zh) 2017-04-12
BR102014002085B1 (pt) 2020-04-22
CN103992825A (zh) 2014-08-20
EP2759588B1 (de) 2020-01-01
RU2014102564A (ru) 2015-08-10
US20140223807A1 (en) 2014-08-14
US9447355B2 (en) 2016-09-20
EP2759588A1 (de) 2014-07-30
BR102014002085A2 (pt) 2014-09-16
DE102013001490A1 (de) 2014-08-14

Similar Documents

Publication Publication Date Title
RU2642067C2 (ru) Топливо для двигателей с воспламенением от сжатия на основе диметилового эфира монооксиметилена
US20100242347A1 (en) Diesel fuel based on ethanol
CA2866956C (en) Use of a viscosity improver
US20120046506A1 (en) Diesel fuel composition
RU2678594C2 (ru) Топливо для двигателей с самовоспламенением на основе диалкиловых простых эфиров полиоксиметилена
Wu et al. Physicochemical characterization of levulinate esters with different alkyl chain lengths blended with fuel
CN103509611A (zh) 一种生物柴油及其制备方法
CN110785476B (zh) 十六烷值增进的燃料添加剂、其制备方法及用途
JP2005343917A (ja) 予混合圧縮自己着火式エンジン用燃料油組成物
CA2647890A1 (en) Biofuel
JP2007269865A (ja) 多段噴射機構を有するディーゼルエンジン用燃料油、燃焼方法、ディーゼルエンジン
JP2005343919A (ja) 予混合圧縮自己着火式エンジン用燃料油組成物
JP2006037075A (ja) 予混合圧縮自己着火式エンジン用燃料油組成物
US20040237385A1 (en) Lubricity improver for diesel oil
US11124720B2 (en) Fuel additives
US20050268536A1 (en) Diesel motor fuel additive composition
KR100699086B1 (ko) 연료첨가제
RU2813456C1 (ru) Кислородсодержащее композиционное дизельное топливо
WO2024191318A1 (ru) Кислородсодержащее композиционное дизельное топливо
US20070144061A1 (en) Alkoxylated unsaturated carboxylic acid additives for low-sulfur fuels
JP2005343918A (ja) 予混合圧縮自己着火式エンジン用燃料油組成物
US20040118034A1 (en) Fuel composition containing heavy fraction
SU1595882A1 (ru) Топливна композици
JP2022159849A (ja) 内燃機用燃料油組成物
Rang et al. Advances in petrol additives research