RU2637289C2 - Устройство и способ контроля качества при планировании лучевой терапии на основе магнитного резонанса - Google Patents
Устройство и способ контроля качества при планировании лучевой терапии на основе магнитного резонанса Download PDFInfo
- Publication number
- RU2637289C2 RU2637289C2 RU2014143276A RU2014143276A RU2637289C2 RU 2637289 C2 RU2637289 C2 RU 2637289C2 RU 2014143276 A RU2014143276 A RU 2014143276A RU 2014143276 A RU2014143276 A RU 2014143276A RU 2637289 C2 RU2637289 C2 RU 2637289C2
- Authority
- RU
- Russia
- Prior art keywords
- phantom
- image
- rendered
- elements
- imaging
- Prior art date
Links
- 238000003908 quality control method Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000001959 radiotherapy Methods 0.000 title claims description 22
- 238000002591 computed tomography Methods 0.000 claims abstract description 56
- 238000012800 visualization Methods 0.000 claims abstract description 21
- 238000009826 distribution Methods 0.000 claims abstract description 19
- 238000002059 diagnostic imaging Methods 0.000 claims abstract description 14
- 238000002595 magnetic resonance imaging Methods 0.000 claims abstract description 14
- 238000002247 constant time method Methods 0.000 claims abstract description 7
- 238000003384 imaging method Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 12
- -1 polypropylene Polymers 0.000 claims description 11
- 238000013170 computed tomography imaging Methods 0.000 claims description 9
- 229920002972 Acrylic fiber Polymers 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 239000000123 paper Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 2
- 240000007182 Ochroma pyramidale Species 0.000 claims description 2
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000011111 cardboard Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 239000011152 fibreglass Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 239000011120 plywood Substances 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920006324 polyoxymethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 230000011218 segmentation Effects 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims 2
- 229920001155 polypropylene Polymers 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 12
- 230000008901 benefit Effects 0.000 description 9
- 239000002775 capsule Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- 238000002725 brachytherapy Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- 229960000878 docusate sodium Drugs 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- 208000025940 Back injury Diseases 0.000 description 1
- 229920004943 Delrin® Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- DWKPZOZZBLWFJX-UHFFFAOYSA-L calcium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [Ca+2].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC DWKPZOZZBLWFJX-UHFFFAOYSA-L 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940018614 docusate calcium Drugs 0.000 description 1
- 230000002497 edematous effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011347 external beam therapy Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002661 proton therapy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/58—Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
- G01R33/583—Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/0035—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/583—Calibration using calibration phantoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1039—Treatment planning systems using functional images, e.g. PET or MRI
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/30—Sample handling arrangements, e.g. sample cells, spinning mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4808—Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
- G01R33/4812—MR combined with X-ray or computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/58—Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0223—Operational features of calibration, e.g. protocols for calibrating sensors
- A61B2560/0228—Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1075—Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
- A61N2005/1076—Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Pulmonology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Изобретение относится к медицинской технике, а именно к средствам контроля качества устройств магнитно-резонансной визуализации. Устройство включает в себя фантом, имеющий вес менее 18,2 кг. Фантом содержит контрольный столбик, внешнюю несущую конструкцию и известное трехмерное пространственное распределение элементов, визуализируемых методами МР и компьютерной томографии, расположенных в пористой опоре. Внешняя несущая конструкция, как и пористая опора, не воспринимаемы методами МР и КТ, при этом пространственное распределение имеет размеры, позволяющие полностью заполнять объем визуализации устройства магнитно-резонансной визуализации. Способ контроля качества с использованием фантома содержит этапы, на которых вручную поднимают фантом для медицинской визуализации в устройство магнитно-резонансной визуализации, получают МР-изображение фантома и сравнивают местоположения визуализируемых элементов из МР-изображения фантома с местоположениями элементов в ранее получаемом опорном КТ изображении. Использование группы изобретений позволяет обеспечить контроль качества за счет планирования лучевой терапии таким образом, что любые МР-изображения, используемые в процессе планирования ЛТ, находятся в пределах приемлемого допуска. 2 н. и 13 з.п. ф-лы, 6 ил.
Description
Нижеописанное изобретение относится, в общем, к медицинской визуализации и планированию терапии с использованием магнитно-резонансной визуализации. В частности, изобретение находит применение в отношении контроля качества магнитно-резонансной визуализации и медицинских фантомов и описано ниже конкретно в отношении данных областей применения. Однако следует понимать, что изобретение находит применение также в других случаях и не обязательно ограничено вышеупомянутыми областями применения.
Планирование лучевой терапии (ЛТ), брахитерапии и операционного вмешательства предусматривает использование медицинских изображений для определения оптимальной процедуры ликвидации злокачественных опухолей. В ходе ЛТ, высокоэнергетические пучки должны по плану пересекать мишень, например, опухоль, под несколькими углами с таким расчетом, чтобы кумулятивная доза ионизирующего излучения в опухоли была достаточной для поражения опухолевой ткани, но доза, доставляемая под любым одним углом или по любой одной траектории пучка была ниже пороговой, чтобы не поражать неопухолевую ткань вдоль траектории. Системы с высокоэнергетическими пучками, применяемые в ЛТ, являются либо гамма-лучевыми системами (например, гамма-ножом), электроннолучевыми системами (например, LINAC), системами терапии пучками заряженных частиц, системами протонной терапии, системами рентгенотерапии, либо системами наружной дистанционной лучевой терапии. В системах брахитерапии, радиоактивные устройства имплантируют в тело в локализацию опухоли, чтобы производить воздействие локально. В хирургии разрабатывают план резекции опухоли наименее инвазивным путем. Для планирования упомянутых методов терапии требуются пространственно точные изображения. Часто используют компьютерно-томографические (КТ) изображения, так как КТ изображения являются геометрически точными. Однако, КТ предусматривает использование рентгеновского излучения, тогда как магнитный резонанс (MP) не использует рентгеновского излучения. MP часто распознает мягкие ткани лучше, чем КТ. Лучевая терапия также включает в себя оценку лучевых воздействий по изменениям, которые происходят в тканях в локализации мишени. Например, жизнеспособную опухолевую ткань, отечную ткань и некротическую ткань оценивают по-разному. Однако, магнитные поля и градиенты имеют тенденцию к наличию геометрических нелинейностей или искажений, в частности, к периферии области визуализации. До тех пор, пока упомянутые нелинейности или искажения точно отображаются в виде карты на периферии, получаемые изображения являются линейными и точными даже на краях.
Для создания плана эффективной лучевой терапии, искажения магнитных полей измеряют и оценивают, чтобы определить, получено ли какое-либо изменение. Если искажения изменяются, и применяют прежнюю коррекцию искажений, то неточности в изображениях для планирования наиболее выражены к краям. Планы лучевой терапии зависят от геометрической точности MP изображений. Искажение магнитного поля может значительно изменяться небольшими частями из металлов, особенно черных металлов, например, скрепками для бумаг, железными опилками, монетами, винтами, гвоздями и т.п., которые могут попадать в туннель магнита и оставаться необнаруженными.
Настоящая заявка предлагает процесс периодического контроля качества, который обеспечивает уверенное планирование ЛТ таким образом, что любые MP изображения, используемые в процессе планирования ЛТ, находятся в пределах приемлемого допуска. Обычно, для определения геометрической точности MP изображения применяют фантомы. Прежние фантомы часто были фантомами в виде 2-мерных сеток, которые устанавливали и визуализировали в разных плоскостях, например, 3 ортогональных плоскостях. Составление карты искажений с использованием 2-мерного фантома предусматривает многократную визуализацию с физическим перемещением фантома для представления возможных плоскостей визуализации. Процесс многократной визуализации и многократного физического перемещения фантома занимает ценное клиническое время и кадровые ресурсы. Кроме того, 2-мерные фантомы измеряли искажения, охватывающие не весь объем 3-мерной визуализации, а только положения, в которых размещен 2-мерный фантом. 3-мерные фантомы, применявшиеся для калибровки MP сканера, являются очень тяжелыми, а именно, 45-90 кг (100-200-фунтовыми). Тяжелые фантомы тяжело перемещать физически, и для безопасного перемещения фантома в заданное положение часто привлекают несколько человек и/или используют механические подъемные механизмы. По причине веса упомянутые фантомы не могут измерять все поле обзора. Современные промышленные стандарты предусматривают поднимаемые вручную контейнеры и упаковки с максимальным весом, приблизительно, 18 кг (40 фунтов). Меньшие веса намного легче для перемещения человеком и с меньшей вероятностью могут привести к травме спины или другим травмам. В настоящее время не существует обязательных стандартов по контролю качества MP изображений, используемых при планировании ЛТ, однако, стандарты предполагается создать и будут полезны в процессе планирования ЛТ.
Ниже описаны новый усовершенствованный фантом для медицинской визуализации и процесс контроля качества магнитно-резонансной визуализации, применяемой при планировании облучения, которые служат для решения вышеупомянутых и других вопросов.
В соответствии с одним аспектом система для контроля качества устройства магнитно-резонансной (MP) визуализации, применяемого при планировании лучевой терапии на основе магнитного резонанса, содержит фантом, имеющий вес менее 18,2 кг (40 фунтов). Фантом содержит трехмерное пространственное распределение элементов, визуализируемых методами MP и КТ (в дальнейшем, MP- и КТ-визуализируемых) и расположенных в пористой опоре, не воспринимаемой методами MP и КТ, (в дальнейшем, MP- и КТ-инертной) и MP- и КТ-инертную внешнюю несущую конструкцию, которая охватывает и герметично уплотняет пористую опору. Пространственное распределение выполнено с размерами для полного заполнения объема визуализации устройства магнитно-резонансной визуализации.
В соответствии с другим аспектом способ контроля качества, использующий фантом для планирования лучевой терапии содержит этап ручного подъема фантома для медицинской визуализации, который весит менее 18,2 кг, в устройство магнитно-резонансной (MP) визуализации. Фантом для медицинской визуализации содержит трехмерное пространственное распределение MP- и КТ-визуализируемых элементов, расположенных в MP- и КТ-инертной пористой опоре, и MP- и КТ-инертную внешнюю несущую конструкцию, которая охватывает и герметично уплотняет пористую опору. Пространственное распределение выполнено с размерами для полного заполнения объема визуализации устройства магнитно-резонансной визуализации. Изображение MP фантома получают устройством MP визуализации. Местоположения визуализируемых элементов из изображения MP фантома сравнивают с местоположениями визуализируемых элементов в ранее полученном опорном КТ изображении.
В соответствии с другим аспектом фантом для медицинской визуализации, имеющий вес менее 18,2 кг (40 фунтов), содержит трехмерное пространственное распределение MP- и КТ-визуализируемых элементов, расположенных в MP- и КТ-инертной пористой опоре, и MP- и КТ-инертную внешнюю несущую конструкцию, которая охватывает и герметично уплотняет пористую опору. Пространственное распределение выполнено с размерами для полного заполнения объема визуализации устройства магнитно-резонансной визуализации.
Одно преимущество состоит в периодической, например ежедневной, калибровке.
Другое преимущество состоит в облегченном и прочном фантоме, который охватывает объем визуализации в процессе одного сбора данных.
Другое преимущество состоит в низкой стоимости, малом весе и высокой стабильности фантома для медицинской визуализации.
Другое преимущество состоит в удобстве подъема и ежедневного применения фантома одним человеком.
Другое преимущество состоит в том, что фантом для медицинской визуализации не нуждается в высокой степени точности изготовления, но является высокоточным.
Другое преимущество состоит в обнаружении MP геометрических искажений в полном объеме MP визуализации.
Другое преимущество состоит в контроле качества, предусмотренном для лучевой терапии на основе MP.
Дополнительные преимущества будут очевидны средним специалистам в данной области техники после прочтения и изучения нижеследующего подробного описания.
Изобретение может быть реализовано в форме различных компонентов и схем расположения компонентов и различных этапов и конфигураций этапов. Чертежи предназначены только для иллюстрации предпочтительных вариантов осуществления и не подлежат истолкованию в смысле ограничения изобретения.
Фиг. 1 - схематическое изображение варианта осуществления фантома для медицинской визуализации.
Фиг. 2А-В - изображения различных, расположенных с равными интервалами материалов, испытанных в фантоме для измерения пространственных искажений.
Фиг. 3 - схематическое изображение одного варианта осуществления системы контроля качества.
Фиг. 4 - блок-схема варианта осуществления способа калибровки фантома.
Фиг. 5 - блок-схема варианта осуществления способа контроля качества магнитного резонанса на основе фантома.
Фиг. 6 - блок-схема варианта осуществления способа контроля качества лучевой терапии.
На фиг. 1 изображен вариант осуществления фантома 10 для медицинской визуализации. Фантом 10 для медицинской визуализации содержит трехмерное пространственное распределение элементов 12, визуализируемых методами магнитного резонанса и КТ, в пористой опоре 14, не воспринимаемой методами магнитного резонанса и КТ. Трехмерное пространственное распределение может содержать решетки, например, кубические решетки, гексагональные решетки, концентрические сферы, концентрические цилиндры, радиальные сетки, сочетания, размещение визуализируемых элементов в нулевых точках и плоскостях сферических гармонических функций и т.п. Активный материал визуализируемых элементов 12 содержится в контейнерах, например, капсулах в мягкой гелевой оболочке, которые вставлены в лунки в несущем пористом материале 14. В одном варианте осуществления, визуализируемые элементы размещены с, приблизительно, 2,5-см (1-дюймовыми) интервалами в направлениях х и у на листах пористого материала. Листы пористого материала, приблизительно, 2,5-см (1-дюймовой) толщины уложены в пакет. Размер интервалов можно изменять в соответствии с пространственными измерениями, измеряемыми для определения искажений, и степенью качества, которую следует обеспечить. Листы пористого материала смягчают производственные ограничения. В одном варианте осуществления, контейнеры активного материала имеют овальную форму, но могут иметь круглую, цилиндрическую или любую правильную форму, в частности, формы, геометрический центр которых несложно вычислить. Один пример содержит герметичные стеклянные микроампулы такого типа, который используют в спектрометрах высокого разрешения. Другим примером являются капсулы с закрепительными препаратами или витамином Е в мягкой гелевой оболочке. Количество активного материала в каждой капсуле является единообразным, но может изменяться. Фармацевтические стандарты достаточны для дозировки, например, капсулы стандартного размера №5. Допуск интервала приблизительно равен +/-0,0508 см или больше. Допуск может быть большим в сравнении с точностью, так как точность калибруют по опорному изображению фантома, а не по самому фантому. Выбранное пространственное распределение визуализируемых элементов может способствовать уменьшению объема вычислений для определения фактического положения визуализируемых элементов в MP изображении фантома. Кроме того, больший допуск упрощает и снижает стоимость изготовления.
Пористая опора 14 обеспечивает опору для визуализируемых элементов 12, при одновременной дополнительной минимизации веса. Размер фантома 10 и количество пористого материала и вес пористого материала для заполнения фантома определяют вес фантома. Конструкция обеспечивает фантом, который легче, чем, приблизительно, 18 кг (40 фунтов) и заполняет объем MP визуализации. Объем MP визуализации охватывает всю область в туннеле устройства MP визуализации, при этом MP градиентные катушки спроектированы с возможностью формирования линейных градиентов магнитного поля. Малый вес допускает удобство закладки и перемещения одним человеком. В одном варианте осуществления, фантом имеет размеры 40 см × 40 см × 40 см и весит меньше 9 кг. Размер фантома ограничен отверстиями туннелей устройств визуализации, в которых применяют фантом. Форма фантома может быть кубической, прямоугольной, цилиндрической, эллиптически цилиндрической или аппроксимирующей форму анатомии человека. Возможно применение пористого материала, например, полистирола, полиэтилена, поливинилхлорида (ПВХ), пористой(ого) резины или полиимида с закрытыми порами, которые уменьшают общий вес фантома. Другие пористые материалы содержат непластиковый пористый материал, например, аэрогель. Пористый материал можно формовать или разрезать в/на необходимые размеры. Заменители пористого материала могут содержать бумагу, картон, пробковую древесину и т.п. Характеристики пористой опоры включают в себя влагоизоляцию, прочность, жесткость, прочность к истиранию, слабый MP сигнал и проницаемость для радиочастотных волн.
Пористая опора 14 охвачена магнитно-инертной внешней несущей конструкцией 16, например, листами из акрилового пластика, которая является герметично изолированной. Другие материалы для внешней несущей конструкции содержат политетрафторэтилен (например, тефлон), полиоксиметилен (например, дельрин), поликарбонат, нейлон, стекловолоконный композитный материал, фанеру и т.п. Внешняя несущая конструкция 16 предотвращает повреждение пористого материала и сдвиг визуализируемых элементов и повышает долговечность и стабильность фантома. По желанию, внутри фантома можно герметично заделать осушитель. Другие дополнительные признаки включают в себя стойки, прикрепленные к основанию фантома, для регулирования уровня фантома после закладки в устройство визуализации. Другим дополнительным признаком является включение в состав уровней по двум направлениям, например, пузырьковых уровней. Уровни могут относиться к несущей конструкции или контрольному столбику 18. Другим дополнительным признаком являются направляющие, углубленные на внешней стороне фантома. Направляющие можно использовать для выравнивания фантома по внешней лазерной системе привязки, обычно используемой для выравнивания маркировки пациента в процессе ЛТ.
Внутри пористой опоры 14 находится контрольный столбик 18, например трубка круглого или прямоугольного сечения из акрилового пластика, наполненная материалом, видимым для устройства КТ и MP визуализации, например водой. Столбик 18 может быть размещен в положении между любыми двумя стенками внешней опорной конструкции. Столбик 18 обеспечивает пространственный ориентир и уменьшает объем вычислений для локализации визуализируемых элементов 12. Материал в контрольном столбике обеспечивает сильный опорный сигнал для центральной частоты магнитного резонанса и для калибровки радиочастотной мощности. Контрольный столбик обеспечивает также геометрический ориентир в плоскостях изображения. Материал в контрольном столбике может быть таким же, как в визуализируемых элементах, или отличаться от них.
На фиг. 2А-2В показаны различные визуализируемые элементы, используемые в фантоме для измерения пространственных искажений во время исследования. На фиг. 2А представлено MP изображение трех разных материалов, а на фиг. 2В представлено соответствующее КТ изображение тех же материалов. На изображениях представлен полистирольный лоток с секцией капсул с витамином Е в мягкой гелевой оболочке (т.е. секцией Е), капсул с докузатом натрия в мягкой гелевой оболочке (т.е. секцией S) и капсул с докузатом кальция в мягкой гелевой оболочке (т.е. секцией С). На MP изображении, секция Е едва заметна, а самым ярким является изображение секции S, после которого следует секция С. Все секции хорошо видны на КТ изображении, в частности, секция S или докузат натрия. Активный материал визуализируемых элементов содержит недорогие коммерчески доступные материалы, например, рыбий жир. Свойство активного материала включает в себя контраст как в КТ, так и в MP изображении.
На фиг. 3 схематически изображен один вариант осуществления системы 20 контроля качества. Система 20 содержит устройство 22 медицинской рентгеновской компьютерно-томографической (КТ) визуализации, устройство 23 магнитно-резонансной (MP) визуализации и устройство 24 лучевой терапии. Устройства визуализации могут быть комбинированными устройствами или отдельными устройствами. Комбинированные устройства обычно являются, в своей основе, совмещенными, а отдельные устройства нуждаются в этапе совмещения. Сначала, фантом 10 закладывают в туннель устройства 22 КТ визуализации для получения изображения или карты полного объема, заполненного целым фантомом 10. Устройство 22 медицинской КТ визуализации может находиться на месте изготовления или может соединяться на месте лечения с сетью 25, которая передает изображение и другие данные. Устройство КТ визуализации формирует опорное изображение фантома, которое представляет фактические местоположения визуализируемого элемента 12. Опорное КТ изображение фантома или карта геометрических центров элементов 12 на основе упомянутого изображения является уникальным(ой) для калиброванного фантома. Фантом и КТ изображение имеют уникальные идентификаторы, которые идентифицируют их как соответствующую пару. Если КТ изображение фантома создано дистанционно, его сохранить на машиночитаемом носителе данных, который поставляют вместе с фантомом.
Для ежедневной калибровки устройства 23 MP визуализации, фантом 10 закладывают в устройство MP визуализации и точно устанавливают в поле обзора. Устройство MP визуализации формирует изображение для контроля качества. Опорное изображение фантома и/или изображение для контроля качества хранятся в информационном массиве. Информационный массив может находиться в локальной памяти, на диске или в системе 26 управления памятью, например в системе передачи и архивации изображений (PACS), радиологической информационной системе (RIS) и т.п.
Рабочая станция 28 подключена к сети 25, и медицинский работник приводит в действие модуль 30 контроля качества, с использованием по меньшей мере одного устройства 32 ввода. Рабочая станция 28 содержит один или более электронный процессор или устройство 34 электронной обработки данных, устройство 36 отображения, которое отображает опорное изображение фантома, изображение для контроля качества и/или результаты контроля качества, меню, панели и элементы пользовательского управления, и по меньшей мере одно устройство 32 ввода, которое вводит выборы медицинского работника. Рабочая станция 28 может быть настольным компьютером, переносным компьютером, планшетным компьютером, мобильным компьютерным устройством, интеллектуальным телефоном и т.п. Устройство 32 ввода может быть клавиатурой, мышью, микрофоном, сенсорным экраном и т.п. Устройство отображения содержит по меньшей мере что-то одно из жидкокристаллического дисплея (ЖК-дисплея), дисплея на светоизлучающих диодах (СД-дисплея), плазменного дисплея, проекционного дисплея, сенсорного дисплея и т.п.
Модуль 30 контроля качества соответственно осуществляется устройством электронной обработки данных, например, одним или более электронным процессором или устройством 32 электронной обработки данных рабочей станции 28, или посредством сетевого служебного компьютера, имеющего рабочее соединение с рабочей станцией 28 по сети 25 и т.д. Кроме того, визуализация и сравнение предложенного фантома реализованы в подходящем случае в форме постоянного машиночитаемого носителя данных, хранящего команды (например, программное обеспечение), считываемые устройством электронной обработки данных и выполняемые устройством электронной обработки данных для выполнения раскрытых методов контроля качества.
Модуль 30 контроля качества управляет выполнением процесса контроля качества устройства MP визуализации для планирования лучевой терапии. Процесс контроля качества включает в себя визуализацию фантома устройствами КТ и MP визуализации, сравнение изображений фантома и создание отчета по результатам процесса контроля качества. Модуль контроля качества включает в себя сопровождение использования фантома, созданного опорного изображения фантома, идентификатора фантома, созданного изображения для контроля качества фантома, срока действия изображений, способа сравнения изображений и величину искажения изображения для контроля качества на основании опорного изображения. Результаты отображаются для медицинского специалиста на устройстве отображения. Результаты могут содержать рекомендации при благоприятном или неблагоприятном исходе, любые коррективные меры и/или связанные единицы информации.
На фиг. 4 приведена блок-схема варианта осуществления способа создания опорного изображения фантома или шаблона. На этапе 40 приводят в действие устройство КТ визуализации и получают КТ изображение фантома. Опорное изображение фантома является 3-мерным объемным изображением элементов 12. Шаблон формируют из опорного изображения фантома по следующим этапам.
На этапе 423-мерное КТ изображение исследуют для поиска местоположений элементов 12. Опорная стойка 18 и априори известные расчетные интервалы и допуски обеспечивают ориентиры, которые уменьшают объем вычислений для определения фактических положений визуализируемых элементов. Местоположение каждого элемента определяют по контрасту КТ изображения и любой доступной априорной информации. Поиск можно выполнять как грубую сегментацию или оценку элементов с использованием геометрической формы, например, куба.
Шаблон формируют на этапе 44. Центры каждого визуализируемого элемента идентифицируют с использованием центрирующей функции, например, как центр масс, и представляют в пространственных координатах. Центрирующая функция минимизирует погрешность, связанную с непостоянством размера и размещения каждого расположенного с равными интервалами материала. Например, капсула в мягкой гелевой оболочке будет изменяться в пределах некоторых допусков как материала, так и размера. При использовании центра вместо краев, опорное местоположение легче идентифицировать и связать с другими опорными местоположениями.
Шаблон центров элементов 12 и/или опорное КТ изображение фантома сохраняют на этапе 46. Опорное изображение фантома и/или шаблон могут сохраняться в системе 26 управления памятью. Шаблон может содержать идентификатор фантома, полученный либо из опорного изображения и/либо ручным вводом.
На фиг. 5 приведена блок-схема варианта осуществления способа контроля качества фантома для устройства MP визуализации. На этапе 48, фантом точно устанавливают в поле обзора, и устройство MP визуализации приводят в действие для получения MP изображения для контроля качества фантома. Контрольный столбик, например внутренняя трубка, наполненная материалом, может при необходимости обеспечить ориентир для процесса сбора данных. При необходимости на этапе 48 сигнал от центральной трубки используют для выполнения калибровки центральной частоты и/или калибровки РЧ мощности. На этапе 49 получают опорное КТ изображение фантома, и на этапе 50 совмещают опорное КТ изображение фантома и изображение для контроля качества MP.
Опорное КТ изображение фантома сегментируют на этапе 51. КТ изображение сегментируют на единичные ячейки на основании проектной спецификации и маркерам совмещения фантома. Каждая единичная ячейка содержит один визуализируемый элемент. На этапе 52 создают шаблон из сегментированных единичных ячеек.
На этапе 54 выполняют поиск визуализируемых элементов в MP изображении посредством вычисления корреляции местоположения каждого местоположения шаблона с соответствующими единичными ячейками в изображении для контроля качества (QA) MP. В MP изображении сопоставляют трехмерное упорядоченное распределение элементов. Определяют местоположение каждого визуализируемого элемента. Контрольный столбик и другая априорная информация, относящаяся к пространственному распределению, уменьшают объем для определения местоположения визуализируемых элементов. Центр каждого визуализируемого элемента вычисляют и сравнивают с координатой соответствующего шаблона опорного КТ изображения фантома. Например, центр каждого элемента в шаблоне представляют в прямоугольных координатах (x,y,z). Соответствующие координаты элемента, , в MP изображении можно представить в виде , где ν означает любое из пространственных измерений (x,y,z), и ην представляет вызванное искажение и задается выражением , где означает нелинейное магнитное поле, обусловленное каналом градиента υ, выраженным сферическими гармониками в виде:
где (r, θ, φ) являются сферическими координатами. В приведенных выражениях, aν(n,m) и bν(n,m) являются коэффициентами сферических гармоник степени n и порядка m. Аналогично, Р(n,m) является соответствующим многочленом Лежандра степени n и порядка m. является линейной частью канала градиента υ и определяется выражением , , . На этапе 55 вычисляют максимальную корреляцию, которая обеспечивает сдвиг или искажение в 3 измерениях.
С использованием вычисленной разности между каждым центром элемента в MP изображении и центром элемента в шаблоне или опорном КТ изображении фантома создают карту искажений на этапе 56. Карта искажений содержит разности между центрами в опорном КТ изображении фантома или шаблоне и в MP изображении. Карту искажений можно интерполировать для всех точек в поле обзора. На этапе 58 сохраняют карту искажений.
На фиг. 6 представлена блок-схема варианта осуществления способа контроля качества (QA) MP для планирования лучевой терапии. Способ QA содержит как этапы, выполняемые медицинским специалистом, и этапы, выполняемые устройством медицинской визуализации и/или модулем контроля качества, так и этапы, выполняемые медицинским специалистом и направляемые модулем контроля качества. Модуль контроля качества направляет процесс в целом, начиная с этапа 60.
Модуль контроля качества проверяет срок действия опорной КТ карты фантома на этапе 62. Проверка срока действия КТ фантома включает в себя сравнение даты любого сохраненного опорного изображения фантома с текущей датой и предполагаемым интервалом по рекомендуемому стандарту. Например, если предполагается, что опорное КТ изображение фантома должно обновляться всякий раз, когда фантом является новым и/или заменяется, или ежегодно, то получают новое опорное изображение фантома, если данные изображения имеют срок больше одного года, или если изменился идентификатор фантома. Идентификатор фантома может быть физической меткой на фантоме и может также быть меткой, которая выделяется контрастом в изображении. Идентификатор может быть записан и/или закодирован, например, штриховым кодом.
Если следует создать новое опорное изображение фантома, то модуль контроля качества может выдать медицинскому специалисту указание заложить фантом в устройство КТ визуализации на этапе 64. Фантом закладывают в зону визуализации или поле обзора устройства КТ визуализации с таким расчетом, чтобы весь объем КТ изображения был заполнен фантомом. Дополнительные уровни и стойки на фантоме облегчают медицинскому специалисту задачу размещения и ориентации фантома в устройстве визуализации. Модуль контроля качества может при необходимости демонстрировать процесс с помощью короткого видео, отображаемого устройством отображения или просто обеспечивать письменные команды. Опорную КТ карту фантома создают на этапе 66, как описано со ссылкой на
фиг. 4.
Срок действия QA (контроля качества) MP проверяют на этапе 68. Срок действия QA MP содержит иную периодичность в сравнении с опорным КТ изображением фантома, например, посуточную. Модуль контроля качества может при необходимости проверять график, относящийся к MP изображениям для планирования ЛТ, и изменять периодичность. Например, если графиком не предусмотрено никаких MP изображений для планирования ЛТ на текущие сутки, или если изображение для QA MP уже получено с учетом даты изображения для QA MP, то получение изображения для QA MP не обязательно.
Если требуется новое изображение для QA MP, то фантом закладывается медицинским специалистом в устройство MP визуализации на этапе 70. Фантом размещают в туннеле устройства визуализации с таким расчетом, чтобы объем визуализации был заполнен фантомом. Размещение и ориентирование фантома в устройстве визуализации содержит этап 64, идентичный или подобный закладке фантома в устройство КТ визуализации. Если устройства составляют гибридное устройство и имеют общее поле обзора, то закладка идентична. Если устройства являются раздельными, то закладка является сходной.
На этапе 72 проверяют идентификатор фантома. Проверка может содержать визуальную идентификацию медицинским специалистом, ввод кода идентификатора в систему посредством устройства пользовательского ввода, использование метки, содержащейся в изображении контроля качества фантома и т.п.
Контроль качества (QA) фантома выполняют на этапе 74, как описано со ссылкой на фиг. 5. Этап дает карту искажений. Карта искажений содержит вычисленные разности между опорным КТ изображением фантома или шаблона и MP изображением фантома или изображением для QA MP. Карта искажений представляет изменения пространственных координат MP устройства, которые могут иметь место в MP изображении для планирования ЛТ.
Карту искажений проверяют на этапе 76. Для определения, находятся ли искажения в пределах допустимых уровней для контроля качества, применяют пороговые значения. Карта искажений может отображаться устройством отображения в виде графических изображений и/или статистических графиков, и/или числовых обозначений, например, среднего значения, дисперсии, максимальной дисперсии, средней дисперсии и т.п. Величина искажений или степень сдвига могут отображаться с использованием цветовых контрастов. Визуализация искажений поддерживается в любой произвольной плоскости посредством интерполяции, включаемой в карту искажений. Плоскость отображения может быть выделена из 3-мерной матрицы, полученной из интерполированной карты искажений.
Если искажения выходят за пределы допустимых уровней, то система представляет извещение на этапе 78. Извещение может содержать отображение сообщения на устройстве 36 отображения. Извещение может содержать запись статистических данных или другую информацию, относящуюся к измеренным искажениям для будущего анализа. Извещение может также содержать отображение карты искажений. Этап может обеспечивать итерационные корректировки и возврат на предыдущие этапы для определения, эффективны ли корректировки. Если искажения находятся в пределах
или приведены в пределы допустимых уровней, то уведомление выдается на этапе 80.
Если центры согласуются в пределах заданного допуска, то на этапе 80 на дисплее 36 выдается сообщение об успешном выполнении калибровки. Сообщение об успешном выполнении калибровки может содержать отображение карты искажений и/или других статистических данных, релевантных в отношении планирования лучевой терапии.
Созданная карта искажений может быть также создана сравнением КТ изображения фантома, полученного пользователем, с хранящимся в памяти опорным КТ изображением фантома, что обеспечивает проверку качества для механической целостности фантома. Карты искажений можно также сравнивать с течением времени, например, в течение курса терапии. Например, такие статистические данные, как минимальное значение, среднее значение, максимальное значение, могут вычерчиваться в виде кривых для вычисления разностей значений искажений для каждого визуализируемого элемента.
Следует понимать, что, в связи с конкретными наглядными вариантами осуществления, представленными в настоящем описании, некоторые конструктивные и/или функциональные признаки описаны входящими в заданные элементы и/или компоненты. Однако, предполагается, что упомянутые признаки могут быть также, с таким же или подобным успехом, аналогичным образом объединены с другими элементами и/или компонентами, в подходящем случае. Следует также понимать, что разные аспекты примерных вариантов осуществления можно выборочно использовать в качестве подходящих
для обеспечения других дополнительных вариантов осуществления, подходящих для требуемых применений, при этом другие дополнительные варианты осуществления тем самым реализуют соответствующие преимущества заложенных в них аспектов.
Следует также понимать, что конкретные элементы или компоненты, представленные в настоящем описании, могут иметь функции, соответственно реализуемые аппаратным обеспечением, программным обеспечением, встроенным программным обеспечением или их сочетанием. Кроме того, следует понимать, что некоторые элементы, представленные в настоящем описании в объединенной форме, могут быть в некоторых подходящих обстоятельствах автономными или иначе разделенными элементами. Аналогично, множество конкретных функций, выполняемых согласно настоящему описанию одним конкретным элементом, могут выполняться множеством отдельных элементов, работающих независимо для выполнения отдельных функций, или некоторые отдельные функции могут быть разбиты для выполнения множеством отдельных, совместно работающих элементов. В качестве альтернативы, некоторые элементы или компоненты, представленные и/или показанные в настоящем описании, напротив, отдельными друг от друга, можно физически или функционально объединять в подходящих случаях.
В краткой форме, настоящее описание изложено со ссылкой на предпочтительные варианты осуществления. Очевидно, что специалистами после прочтения и изучения настоящего описания будут разработаны модификации и изменения. Предполагается, что настоящее изобретение следует интерпретировать как включающее в себя все упомянутые модификации и изменения в той степени, в которой они не выходят за пределы объема притязаний прилагаемой формулы изобретения или ее эквивалентов. То есть следует понимать, что многие из вышеописанных и других признаков и функций или их альтернативных вариантов можно при необходимости объединить во множестве других отличающихся систем или устройств, а также что специалистами в данной области техники могут быть предложены различные пока непредвиденные или непредусмотренные их альтернативные варианты, модификации, изменения или усовершенствования, которые, как также предполагается, не выходят за пределы объема притязаний нижеследующей формулы изобретения.
Claims (78)
1. Система (20) для контроля качества устройства (23) магнитно-резонансной (MP) визуализации, содержащая:
фантом (10), имеющий вес менее 18,2 кг (40 фунтов) и содержащий:
известное трехмерное пространственное распределение элементов (12), визуализируемых методами MP и компьютерной томографии (КТ) и расположенных в пористой опоре (14), не воспринимаемой методами MP и КТ, при этом пространственное распределение имеет такие размеры, чтобы полностью заполнять объем визуализации устройства магнитно-резонансной визуализации;
контрольный столбик; и
внешнюю несущую конструкцию (16), не воспринимаемую методами MP и КТ, которая охватывает и герметично уплотняет пористую опору.
2. Система (20) по п. 1, дополнительно содержащая:
один или более процессоров, выполненных с возможностью:
получения (50) MP-изображения фантома посредством устройства (23) MP-визуализации;
идентификации местоположений визуализируемых элементов в MP-изображении фантома;
сравнения (56) местоположений визуализируемых элементов из MP изображения фантома с местоположениями визуализируемых элементов в ранее полученном опорном КТ-изображении.
3. Система (20) по п. 1, в которой один или более процессоров дополнительно выполнены с возможностью
получения опорного КТ-изображения фантома из устройства КТ визуализации;
совмещения опорного КТ-изображения и MP-изображения;
сегментации КТ-изображения на единичные ячейки на основании пространственного распределения визуализируемых элементов таким образом, чтобы каждый визуализируемый элемент находился в одной единичной ячейке;
формирования шаблона, который включает в себя местоположение каждого визуализируемого элемента;
корреляции местоположения каждого визуализируемого элемента в шаблоне с соответствующим объемом в MP-изображении;
вычисления максимальной корреляции; и
формирования карты искажений на основании максимальной корреляции.
4. Система по п. 1, в которой фантом (10) дополнительно включает в себя:
контрольный столбик (18), наполненный материалом, который обеспечивает по меньшей мере одно из:
сильного опорного сигнала для центральной частоты магнитного резонанса;
сильного опорного сигнала для калибровки радиочастотной мощности; и
геометрического ориентира в плоскостях изображения.
5. Система по п. 2, дополнительно включающая в себя:
постоянный машиночитаемый носитель данных, содержащий по меньшей мере одно из КТ-изображения фантома или MP-изображения фантома.
6. Система (20) по п. 1, в которой фантом (10) имеет по меньшей мере 40 см в каждом из трех пространственных измерений.
7. Система (20) по п. 1, в которой фантом дополнительно включает в себя по меньшей мере одно из:
осушителя, герметизированного внутри фантома;
стоек, прикрепленных к основанию фантома, которые выравнивают фантом;
уровней по двум направлениям, которые указывают уровень фантома; и
направляющих, углубленных на внешней стороне фантома.
8. Система (20) по п. 1, в которой пористая опора (14) включает в себя по меньшей мере одно из:
полистирола;
полипропилена;
поливинилхлорида (ПВХ);
пористой резины с закрытыми порами;
аэрогеля;
бумаги;
картона;
пробковой древесины;
полиэтилена; и
полиимида.
9. Система (20) по любому из пп. 1-8, в которой внешняя несущая конструкция (16) содержит по меньшей мере одно из:
акрилового пластика;
политетрафторэтилена;
полиоксиметилена;поликарбоната;
политена;
полипропилена;
нейлона;
стекловолоконного композитного материала; и
фанеры.
10. Способ контроля качества с использованием фантома для планирования лучевой терапии, содержащий этапы, на которых
вручную поднимают (70) фантом для медицинской визуализации, который весит менее 18,2 кг, в устройство магнитно-резонансной (MP) визуализации, и фантом для медицинской визуализации включает в себя:
известное трехмерное пространственное распределение элементов (12), визуализируемых методами MP и компьютерной томографии (КТ) и расположенных в пористой опоре (14), не воспринимаемой методами MP и КТ, при этом пространственное распределение имеет такие размеры, чтобы полностью заполнять объем визуализации устройства магнитно-резонансной визуализации;
контрольный столбик; и
внешнюю несущую конструкцию (16), не воспринимаемую методами MP и КТ, которая охватывает и герметично уплотняет пористую опору;
получают (50) MP-изображение фантома посредством устройства MP визуализации;
сравнивают (56) местоположения визуализируемых элементов из MP изображения фантома с местоположениями визуализируемых элементов в ранее полученном опорном КТ-изображении.
11. Способ по п. 10, дополнительно включающий в себя этапы, на которых
получают опорное КТ-изображение фантома из устройства КТ-визуализации;
совмещают опорное КТ-изображение и MP-изображение;
сегментирует КТ-изображение на единичные ячейки на основании пространственного распределения визуализируемых элементов таким образом, чтобы каждый визуализируемый элемент находился в одной единичной ячейке;
формируют шаблон, который содержит местоположение каждого визуализируемого элемента;
коррелируют местоположение каждого визуализируемого элемента в шаблоне с соответствующим объемом в MP-изображении;
вычисляют максимальную корреляцию; и
формируют карту искажений на основании максимальной корреляции.
12. Способ по п. 10, в котором сравнивают карты искажений, формируемые с течением времени.
13. Способ по п. 10, дополнительно включающий в себя этап, на котором вычисляют центры каждого визуализируемого элемента в координатах MP изображения с использованием координат (x,y,z) КТ, представляемых в виде , где ν означает любое из пространственных измерений (x,y,z), и ην представляет вызванное искажение и задается выражением , где является линейной частью канала градиента υ, означает нелинейное магнитное поле, обусловленное каналом градиента выраженным сферическими гармониками в виде
где (r, θ, φ) являются сферическими координатами, aν(n,m) и bν(n,m) являются коэффициентами сферических гармоник степени n и порядка m, и P(n,m) является соответствующим многочленом Лежандра степени n и порядка m.
14. Способ по п. 10, дополнительно включающий в себя этапы, на которых
проверяют (72), что фантом первого изображения тождественен фантому второго изображения, на основании идентификационных данных фантома; и
отображают на устройстве отображения сообщение, что калибровка выполнена успешно.
15. Способ по любому из пп. 10-14, в котором контрольный столбик (18) используют для выполнения по меньшей мере одного из:
идентификации опорного сигнала для центральной частоты магнитного резонанса;
идентификации опорного сигнала для калибровки радиочастотной мощности; и
идентификации геометрического ориентира в плоскостях изображения.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261616548P | 2012-03-28 | 2012-03-28 | |
US61/616,548 | 2012-03-28 | ||
PCT/IB2013/052292 WO2013144802A1 (en) | 2012-03-28 | 2013-03-22 | Quality assurance apparatus and method for magnetic resonance based radiation therapy planning |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014143276A RU2014143276A (ru) | 2016-05-20 |
RU2637289C2 true RU2637289C2 (ru) | 2017-12-01 |
Family
ID=48430868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014143276A RU2637289C2 (ru) | 2012-03-28 | 2013-03-22 | Устройство и способ контроля качества при планировании лучевой терапии на основе магнитного резонанса |
Country Status (6)
Country | Link |
---|---|
US (1) | US10203395B2 (ru) |
EP (1) | EP2830501B1 (ru) |
JP (1) | JP6118394B2 (ru) |
CN (1) | CN104203102B (ru) |
RU (1) | RU2637289C2 (ru) |
WO (1) | WO2013144802A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2682459C1 (ru) * | 2017-12-13 | 2019-03-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ формирования фантомов кровеносных сосудов для эндоскопической оптической когерентной эластографии |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012211507A1 (de) * | 2012-07-03 | 2014-01-09 | Siemens Aktiengesellschaft | Verfahren zur Ermittlung einer Verzeichnungsinformation und Kalibrierungsphantom |
US20140195954A1 (en) * | 2013-01-09 | 2014-07-10 | Siemens Medical Solutions Usa, Inc. | Accessories as Workflow Priors in Medical Systems |
US9857443B2 (en) * | 2013-03-15 | 2018-01-02 | University Health Network | Method and apparatus for the measurement, characterization and correction of geometric distortions in magnetic resonance imaging |
GB2512384B (en) | 2013-03-28 | 2016-07-20 | Elekta Ab | Markers, Phantoms and Associated Methods for Calibrating Imaging Systems |
WO2015085252A1 (en) * | 2013-12-06 | 2015-06-11 | Sonitrack Systems, Inc. | Radiotherapy dose assessment and adaptation using online imaging |
JP6316078B2 (ja) * | 2014-04-23 | 2018-04-25 | 三菱電機株式会社 | 患者位置決めシステム、および位置ずれ量算出方法 |
JP6395504B2 (ja) * | 2014-08-20 | 2018-09-26 | キヤノン株式会社 | 放射線撮影装置の評価方法、及び評価方法に用いるファントム |
US10871591B2 (en) | 2014-09-26 | 2020-12-22 | Battelle Memorial Institute | Image quality test article set |
US10739492B2 (en) * | 2014-09-26 | 2020-08-11 | Battelle Memorial Institute | Image quality test article |
US10830844B2 (en) * | 2015-04-17 | 2020-11-10 | Cornell University | Systems and methods for MR microscopy analysis of resected tissue |
WO2017045964A1 (en) * | 2015-09-15 | 2017-03-23 | Koninklijke Philips N.V. | A method for calibrating a magnetic resonance imaging (mri) phantom |
CN109073721B (zh) | 2016-04-28 | 2022-02-08 | 皇家飞利浦有限公司 | 处置计划评价工具 |
US10555715B2 (en) * | 2016-06-29 | 2020-02-11 | The Phantom Laboratory, Incorporated | Apparatus and method for large field-of-view measurements of geometric distortion and spatial uniformity of signals acquired in imaging systems |
CN106657991B (zh) * | 2017-01-25 | 2019-02-15 | 泰山医学院 | 一种磁共振质量控制方法、服务器及系统 |
EP3421086B1 (en) * | 2017-06-28 | 2020-01-15 | OptiNav Sp. z o.o. | Determination of geometrical information about a medical treatment arrangement comprising a rotatable treatment radiation source unit |
AU2019356529A1 (en) | 2018-10-12 | 2021-06-03 | Elekta Ltd. | Quality assurance for MR-LINAC |
CN109350865B (zh) * | 2018-11-26 | 2020-06-09 | 泰山医学院 | 一种磁共振引导的放射治疗系统成像质量控制体模 |
WO2021023825A1 (en) | 2019-08-07 | 2021-02-11 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Quality control devices and methods for magnetic resonance imaging systems |
US20210340007A1 (en) * | 2020-04-29 | 2021-11-04 | Elbit Systems Of America, Llc | Mems hermetic seal apparatus and methods |
FR3116905B1 (fr) | 2020-12-02 | 2024-01-12 | Spin Up | Caractérisation des distorsions en imagerie par résonance magnétique |
CN114403846A (zh) * | 2022-02-10 | 2022-04-29 | 济南华宇新铸锻材料有限公司 | 一种磁共振体部线圈通用固定桥架 |
JP1752514S (ja) * | 2022-10-31 | 2023-09-07 | 放射線治療機用ファントム | |
GB2634949A (en) * | 2023-10-27 | 2025-04-30 | Elekta Instr Ab | Device testing |
CN118416410A (zh) * | 2024-06-05 | 2024-08-02 | 中国医学科学院北京协和医院 | 一种磁共振加速器束流中心与成像中心检测装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2171652C2 (ru) * | 1999-01-05 | 2001-08-10 | Научно-исследовательский институт неврологии Российской Академии медицинских наук | Способ проведения модельных компьютерно-томографических направленных стереотаксических операций и фантомное устройство для его осуществления |
US20060036170A1 (en) * | 2004-07-20 | 2006-02-16 | Martin Lachaine | Calibrating imaging devices |
US20060195030A1 (en) * | 2004-12-23 | 2006-08-31 | George Ogrezeanu | Fiber tracking phantom |
US20090226066A1 (en) * | 2008-03-10 | 2009-09-10 | General Electric Company | Method and apparatus for aligning a multi-modality imaging system |
US20100066372A1 (en) * | 2008-09-18 | 2010-03-18 | Siemens Medical Solutions Usa,Inc. | Electro-conductive pet phantom for mr/pet quality control measurement |
US20110229055A1 (en) * | 2007-06-29 | 2011-09-22 | King's College Hospital Nhs Foundation Trust | Phantom for imaging apparatuses |
JP2011239830A (ja) * | 2010-05-14 | 2011-12-01 | Gunma Univ | 多目的ファントム及びその使用方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59157547A (ja) * | 1983-02-25 | 1984-09-06 | Asahi Chem Ind Co Ltd | Nmr−ct断層面歪測定用フアントム |
JPS59228832A (ja) * | 1983-06-10 | 1984-12-22 | 旭化成株式会社 | 画像解析用フアント−ム |
FR2601459B1 (fr) * | 1986-07-08 | 1988-08-05 | Thomson Cgr | Fantome de machine de rmn et procede de mesure des caracteristiques d'un champ magnetique utilisant un tel fantome |
JPH0747023B2 (ja) * | 1986-07-14 | 1995-05-24 | 株式会社日立製作所 | 核磁気共鳴を用いた検査装置 |
JPH02159253A (ja) * | 1988-12-14 | 1990-06-19 | Hitachi Ltd | Mrイメージング装置用フアントム台 |
JPH03103237A (ja) * | 1989-09-16 | 1991-04-30 | Menikon:Kk | 交差緩和時間mri調整用ファントム |
JP2001000430A (ja) * | 1999-06-24 | 2001-01-09 | Alcare Co Ltd | 画像撮影用のマ−カ− |
EP2311527B1 (en) * | 2000-02-18 | 2019-08-28 | William Beaumont Hospital | Cone-beam computerized tomography with a flat-panel imager |
DE10107421A1 (de) * | 2001-02-14 | 2002-09-12 | Siemens Ag | Verfahren zum Bestimmen von Verzerrungen in einer Abbildung und Kalibriergegenstand dazu |
US20030212320A1 (en) * | 2001-10-01 | 2003-11-13 | Michael Wilk | Coordinate registration system for dual modality imaging systems |
US7056019B1 (en) | 2002-10-22 | 2006-06-06 | Todd Hanson | Quality assurance phantom system |
US7256392B2 (en) | 2003-03-03 | 2007-08-14 | Fujifilm Corporation | Inspection method of radiation imaging system and medical image processing apparatus using the same, and phantom for use of inspection of radiation imaging system |
EP1634093A4 (en) | 2003-05-29 | 2006-12-20 | Univ Queensland | Method and apparatus for mapping and correcting geometric distortion in mri |
CA2435190A1 (en) * | 2003-07-14 | 2005-01-14 | Cancer Care Ontario | Phantom for evaluating nondosimetric functions in a multi-leaf collimated radiation treatment planning system |
JP4603862B2 (ja) * | 2004-11-22 | 2010-12-22 | 学校法人金沢工業大学 | 磁気共鳴イメージング装置の校正用ファントム |
US20080085041A1 (en) | 2004-11-29 | 2008-04-10 | Koninklijke Philips Electronics, N.V. | Method Of Geometrical Distortion Correction In 3D Images |
JP2008012131A (ja) * | 2006-07-07 | 2008-01-24 | Kanazawa Inst Of Technology | 磁気共鳴装置用ファントム |
DE102006033248B4 (de) | 2006-07-18 | 2009-10-22 | Siemens Ag | Verfahren zur Transformation eines verzeichnungskorrigierten Magnetresonanzbilds, Verfahren zur Durchführung von Magnetresonanzmessungen und Bildtransformationseinheit |
KR100912832B1 (ko) | 2008-01-25 | 2009-08-18 | 가톨릭대학교 산학협력단 | 영상기반 방사선 치료장치의 정도관리용 팬텀 |
EP2247253A4 (en) * | 2008-02-22 | 2015-08-05 | Univ Loma Linda Med | SYSTEMS AND METHODS FOR CHARACTERIZING SPATIAL DISTORTION OF 3D IMAGING SYSTEMS |
US8039790B2 (en) * | 2009-05-14 | 2011-10-18 | University Health Network | Phantoms and methods for verification in radiotherapy systems |
-
2013
- 2013-03-22 US US14/386,134 patent/US10203395B2/en active Active
- 2013-03-22 CN CN201380016764.3A patent/CN104203102B/zh active Active
- 2013-03-22 RU RU2014143276A patent/RU2637289C2/ru not_active IP Right Cessation
- 2013-03-22 EP EP13722540.5A patent/EP2830501B1/en active Active
- 2013-03-22 JP JP2015502505A patent/JP6118394B2/ja active Active
- 2013-03-22 WO PCT/IB2013/052292 patent/WO2013144802A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2171652C2 (ru) * | 1999-01-05 | 2001-08-10 | Научно-исследовательский институт неврологии Российской Академии медицинских наук | Способ проведения модельных компьютерно-томографических направленных стереотаксических операций и фантомное устройство для его осуществления |
US20060036170A1 (en) * | 2004-07-20 | 2006-02-16 | Martin Lachaine | Calibrating imaging devices |
US20060195030A1 (en) * | 2004-12-23 | 2006-08-31 | George Ogrezeanu | Fiber tracking phantom |
US20110229055A1 (en) * | 2007-06-29 | 2011-09-22 | King's College Hospital Nhs Foundation Trust | Phantom for imaging apparatuses |
US20090226066A1 (en) * | 2008-03-10 | 2009-09-10 | General Electric Company | Method and apparatus for aligning a multi-modality imaging system |
US20100066372A1 (en) * | 2008-09-18 | 2010-03-18 | Siemens Medical Solutions Usa,Inc. | Electro-conductive pet phantom for mr/pet quality control measurement |
JP2011239830A (ja) * | 2010-05-14 | 2011-12-01 | Gunma Univ | 多目的ファントム及びその使用方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2682459C1 (ru) * | 2017-12-13 | 2019-03-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") | Способ формирования фантомов кровеносных сосудов для эндоскопической оптической когерентной эластографии |
Also Published As
Publication number | Publication date |
---|---|
CN104203102B (zh) | 2017-10-17 |
EP2830501A1 (en) | 2015-02-04 |
US10203395B2 (en) | 2019-02-12 |
JP6118394B2 (ja) | 2017-04-19 |
EP2830501B1 (en) | 2016-05-18 |
US20150088449A1 (en) | 2015-03-26 |
RU2014143276A (ru) | 2016-05-20 |
CN104203102A (zh) | 2014-12-10 |
WO2013144802A1 (en) | 2013-10-03 |
JP2015511524A (ja) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2637289C2 (ru) | Устройство и способ контроля качества при планировании лучевой терапии на основе магнитного резонанса | |
CN104394764B (zh) | 用于mr‑引导的组织间介入的专用用户接口 | |
US7604405B2 (en) | Integrated quality assurance for an image guided radiation treatment delivery system | |
CN104487859B (zh) | 用于医学仪器的图形用户界面 | |
CN107106868B (zh) | 用于放射治疗程序的移动式ct扫描仪的应用 | |
KR20220159359A (ko) | 증강 현실 디스플레이들에서의 의료 이미지들의 정렬 | |
US6826313B2 (en) | Method and automated system for creating volumetric data sets | |
CN105658278A (zh) | 具有辐射治疗设备和辐射探测系统的医学装置 | |
JP5516579B2 (ja) | ガンマ誘導式定位位置特定システム及びガンマ誘導式定位位置特定方法 | |
Kellermeier et al. | Electromagnetic tracking (EMT) technology for improved treatment quality assurance in interstitial brachytherapy | |
Wang et al. | An end-to-end examination of geometric accuracy of IGRT using a new digital accelerator equipped with onboard imaging system | |
BR112013005406A2 (pt) | Dosímetro, aparelho terapêutico e produto de programa de computador | |
JP2016525436A (ja) | モバイルラジオグラフィシステムのためのx線管アライメント機能 | |
US11051694B2 (en) | Systems and methods for tracking imaging attenuators | |
CN109890283B (zh) | 用于根据磁共振图像来准确定位3d对象的辐射治疗系统 | |
CN105813563A (zh) | 利用用于呼吸监测的磁跟踪器来进行电磁跟踪的方法和系统 | |
Meschini et al. | Virtual 4DCT from 4DMRI for the management of respiratory motion in carbon ion therapy of abdominal tumors | |
Slagowski et al. | A modular phantom and software to characterize 3D geometric distortion in MRI | |
Reicher et al. | Radiofrequency identification tags for preoperative tumor localization: proof of concept | |
CN107106238A (zh) | 一种用于规划患者体内针的导入的系统 | |
Schwaab et al. | First steps toward ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging | |
US10272270B2 (en) | Coordinate transformation of graphical objects registered to a magnetic resonance image | |
Natanasabapathi et al. | Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film | |
Beitone et al. | Towards real‐time free‐hand biopsy navigation | |
Dickinson et al. | Hybrid modality fusion of planar scintigrams and CT topograms to localize sentinel lymph nodes in breast lymphoscintigraphy: Technical description and phantom studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200323 |