[go: up one dir, main page]

RU2634428C2 - Способ получения суперабсорбента, содержащего микроэлементы - Google Patents

Способ получения суперабсорбента, содержащего микроэлементы Download PDF

Info

Publication number
RU2634428C2
RU2634428C2 RU2016110329A RU2016110329A RU2634428C2 RU 2634428 C2 RU2634428 C2 RU 2634428C2 RU 2016110329 A RU2016110329 A RU 2016110329A RU 2016110329 A RU2016110329 A RU 2016110329A RU 2634428 C2 RU2634428 C2 RU 2634428C2
Authority
RU
Russia
Prior art keywords
acrylamide
solution
temperature
chloride
glycol dimethacrylate
Prior art date
Application number
RU2016110329A
Other languages
English (en)
Other versions
RU2016110329A (ru
Inventor
Вячеслав Алексеевич Кузнецов
Владимир Федорович Селеменев
Виктор Николаевич Семенов
Ирина Валерьевна Останкова
Алексей Леонидович Лукин
Анна Витальевна Зенищева
Алексей Николаевич Харин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ")
Priority to RU2016110329A priority Critical patent/RU2634428C2/ru
Publication of RU2016110329A publication Critical patent/RU2016110329A/ru
Application granted granted Critical
Publication of RU2634428C2 publication Critical patent/RU2634428C2/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения сетчатых гидрофильных полимеров, которые могут найти применение в сельском хозяйстве для улучшения структуры почв и запасания почвенной влаги в засушливых регионах. Способ получения гидрофильного сшитого полимера заключается в том, что к раствору полисахарида в водном растворе уксусной кислоты, содержащем 0,1-2,5 масс. % хлорида железа(II), или хлорида кобальта(II), или хлорида никеля(II), при температуре 20-40°С прибавляют 0,01-0,30 мас. % пероксида водорода. Затем реакционную смесь выдерживают при интенсивном перемешивании в течение 15-40 минут. После этого в реакционную массу вводят раствор акриламида в (мет)акриловой кислоте или N,N-ди(метил)этилоксиэтилметакрилате в соотношении 0,1:0,9÷0,9:0,1 мольных долей, и 0,1-10,0 мас. % N,N-метилен-бис-акриламида или диэтиленгликольдиметакрилата, пропиленгликольдиметакрилата. Реакционную массу выдерживают при перемешивании в течение 3-х часов при температуре 20-40°С и лиофильно сушат. В качестве полисахарида используют хитозан или крахмал. Изобретение позволяет получить полимер, проявляющий свойства суперабсорбента и обладающий способностью поглощать большое количество воды. 1 з.п. ф-лы, 4 пр.

Description

Изобретение относится к химии высокомолекулярных соединений, в частности к способам получения сетчатых гидрофильных полимеров, относящихся к суперабсорбентам, обладающих способностью поглощать большое количество воды и содержащих в качестве необходимых для вегетации растений микроэлементов ионы железа, кобальта и никеля, который может быть использован в сельском хозяйстве при засухе.
Известны три подхода к получению сшитых полимеров, но каждый из них или основан на использовании дорогостоящих исходных компонентов, или требует применения дорогостоящего оборудования. Кроме этого, отсутствуют данные о получении суперабсорбентов, содержащих микроэлементы. Поэтому устранение этих недостатков является важной и необходимой задачей.
Известен способ получения сшитого полимера, проявляющего свойства свойства суперабсорбента [Е.Л. Жданкович, В.М. Анненкова, В.М. Анненков, Л.Г. Ерофеева, Д.В. Владимиров "Тройной сополимер акриловой кислоты, аммонийной соли акриловой кислоты и стирола в качестве суперабсорбента" // Пат РФ №2128191, МКП С08А 220/06, опубл. 1996 г.]. В соответствии с этим суперабсорбент получают сополимеризацией акриловой кислоты и стирола при 100-120°С в присутствии аммиака, персульфата калия и алюмомагнезиального силиката в качестве сшивающего агента. Полученный таким образом суперабсорбент способен поглощать 2553-4000 г воды на 1 г сшитого полимера. Недостатком этого способа получения является использование сложных гетерофазных, многокомпонентных исходных предполимеризационных систем, включающих высокотоксичный и пожароопасный стирол, необходимость использования высоких температур.
Указанные недостатки снижают привлекательность его для промышленного производства.
Известен другой способ получения полимеров, абсорбирующих жидкости [Д. Штокхаузен, Х.-Г. Хартан, Г. Брем, Г. Ионас, Б. Месснер, К. Пфлюгер "Абсорбирующие жидкость полимеры и их получение"// Пат. РФ 2193045); МПК C08F 220/06, А6115/60, опубл. 9.1996 г.], согласно которому сшитый полимер получают радикальной сополимеризацией аллилполиэтиленгликолевых эфиров (мет)акриловой кислоты, метилполиэтиленгликолевых эфиров (мет)акриловой кислоты в присутствии в качестве сшивающего агента триметилолпропаноксиэтилат(мет)акриловых эфиров, глицеринооксиэтилат (мет)акриловых эфиров, пентаэритритоксиэтилат(мет)акриловых эфиров, полиэтиленгликоль-ди(мет)акриловых эфиров и соответственно ди-, триаллиламина, N,N-метилен-бис-акриламида или бисакриламидоуксусной кислоты. Полученные таким способом суперабсорбенты способны впитывать водные растворы даже при механической нагрузке. К числу недостатков данного технического решения относятся: использование дорогостоящих мономеров - аллиловых и (мет)акриловых эфиров полиэтиленгликолей, сложный состав исходной мономерной смеси и многостадийность синтеза.
В патенте [G. Herth, М. Dannehl, N. Steiner "Water-soluble or water-swellable polymers, particularly water-soluble or water-swellable copolymers made of acryl-amide and least one ionic comonomer having a low residual monomer concentration" // US Pat. 7973095 (2006) C08F 2/16; C08F 220/56, опубл. 2001 г.] для получения суперабсорбента используют менее сложный состав исходной смеси сомономеров: один из акриловых мономеров (или их смесь) - акриловая кислота, метакриловая кислота, акриламид, метакриламид, N,N-диметилакриламид в условиях фотоинициирования.
Акриламидометилпропансульфоновая кислота, гидроксиэтил- и гидроксипропиловые эфиры акриловой или метакриловой кислот и др. В качестве сшивающего агента - различные диакрилаты, ди- и олигоэпоксиды, ди- и полиальдегиды и др. Также предложенный способ предусматривает использование фотоинициатора, например бензоина или его производных, азо-бис-изобутиронитрила, азо-бис-(2-аминопропан)гидрохлорида, ацетофенона и др. Полимеризацию проводят в адиабатических условиях при температуре -20-50°С. Недостатками данного способа является использование дорогостоящих фотоинициаторов и специальной аппаратуры, а также использование сшивающего агента до 10 мас. % не позволяет получать редко сшитые полимеры и, соответственно, количество поглощаемой влаги мало (количественные характеристики не приведены).
Известен способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента [В.И Лозинский, О.В. Заборина "Способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента // Патент РФ №2467017, C08F 2/00, опубл. 2012 г.], предусматривающий упрощение состава исходной смеси акриловых мономеров и повышения безопасности процесса. В качестве акрилового мономера используют N,N-диметилакриламид или его смесь с гидрофильными незаряженными и/или ионогенным акриловым сомономером (акриламид, метакриламид, N,N-диэтилакриламид, N-изопропилакриламид, 2-гидроксиэтилакрилат, N-акрилоил-2-гидроксиметил-1,3-пропандиол), а в качестве ионогенного сомономера - соль акриловой кислоты с щелочным металлом или аммонием, соль 3-сульфопропилакриловой кислоты с щелочным металлом или аммонием, соль 3-сульфопропилметакриловой кислоты с щелочным металлом или аммонием, соль акриламидометилпропанфосфоновой кислоты с щелочным металлом или аммонием. Для инициирования полимеризационного процесса используют окислительно-восстановительные системы: пероксид водорода - Fe2+, пирофосфат Mn3+ - ацетальдегид, персульфат - метабисульфит, персульфат - третичный амин и др. Температуру процесса поддерживают в интерале от -40°С до -5°С. Недостатком данного способа получения является использование отрицательных температур, что требует специального оборудования.
В патенте №2574722 описан способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента, основанный на включении в сетчатую полимерную структуру фрагментов биодеградируемых полимеров, которые при использовании в почве разлагаются, увеличивая при этом влагоемкость и насыщая почву необходимым для нормальной вегетации растений азотом.
Техническая задача состоит в разработке способа получения гидрофильного полимера, проявляющего свойства адсорбента, содержащего в качестве необходимых для вегетации растений микроэлементов ионы железа, кобальта и никеля на основе акриловых мономеров при комнатной температуре с включением в структуру его каркаса гидрофильных биодегадируемых фрагментов, способствующих увеличению количества поглощаемой воды в процессе их эксплуатации.
Технический результат достигается исключением из технологического процесса дорогостоящих исходных компонентов и сложного специального оборудования достигается тем, что в раствор (5 мас. %) полисахарида (хитозан, карбоксиметилцеллюлоза, крахмал) в 2% водном растворе уксусной кислоты, содержащем 0,1-2,5 мас. % хлорида железа (II), или хлорида кобальта(II) или хлорида никеля (II) при температуре 20-40°С прибавляют 0,01-0,30 мас. % пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15-40 минут. Затем в реакционную массу вводят раствор акриламида в (мет)акриловой кислоте или N,N-ди(метил)этилоксиэтилметакрилате в соотношении 0,1:0,9÷0,9:0,1 мольных долей и 0,1-10,0 мас. % N,N-метилен-бис-акриламида или диэтиленгликольдиметакрилата, пропиленгликольдиметакрилата и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 20-40°С. Реакционную массу подвергают лиофильной сушке с получением гидрофильного сшитого полимера со свойствами суперабсорбента с выпариваевым объемом в 5000-10000 весовых частей.
Реализация способа показана на конкретных примерах.
Пример 1
В трехгорлую колбу вносят 5 г хитозана в 100 мл 2% водного раствора уксусной кислоты, содержащего 1,2 г хлорида железа(II) при температуре 40°С прибавляют 2.0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 30 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 50 г акриламида, 5 г метакриловой кислоты и 0,5 г N,N-метилен-бис-акриламида, и реакционную массу при перемешивании выдерживают в течение трех часов при температуре 40°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 49 г.
Пример 2
В трехгорлую колбу вносят 5 г хитозана в 100 мл 2% водного раствора уксусной кислоты, содержащего 1,2 г хлорида кобальта(II), при температуре 40°С прибавляют 2,0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 35 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 50 г акриламида, 5 г акриловой кислоты и 0,5 г диэтиленгликольдиметакрилата, и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 40°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 57 г.
Пример 3
В трехгорлую колбу вносят 5 г крахмала в 100 мл 2% водного раствора уксусной кислоты, содержащего 1,2 г хлорида никеля(II) при температуре 40°С прибавляют 2.0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 30 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 60 г акриламида в 9 г акриловой кислоты и 0,4 г N,N-метилен-бис-акриламида. и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 40°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 71 г.
Пример 4
В трехгорлую колбу вносят 5 г крахмала в 100 мл воды, содержащей 1,2 г хлорида кобальта(II), при температуре 40°С прибавляют 2.0 г раствора пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 40 минут. Затем в реакционную массу при интенсивном перемешивании вводят раствор, содержащий 50 г акриламида в 8 г акриловой кислоты и 0,5 г диэтиленгликольдиметакрилата, и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 40°С. По окончании реакции реакционную массу лиофильно сушат. Выход сшитого полимера составил 64 г.
Предлагаемое изобретение найдет широкое применение в различных прикладных областях, в частности в сельском хозяйстве для улучшения структуры почв и запасания почвенной влаги в засушливых регионах ["Modern Superabsorbent Polymer Technology", Eds. F.L. Buchholz, A.T. Graham, J. Wiley & Sons, 1997].

Claims (2)

1. Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента, характеризующийся тем, что в раствор (5 мас. %) полисахарида в 2% водном растворе уксусной кислоты, содержащем 0,1-2,5 мас. % хлорида железа(II), или хлорида кобальта(II), или хлорида никеля(II), при температуре 20-40°С прибавляют 0,01-0,30 мас. % пероксида водорода и при интенсивном перемешивании реакционную смесь выдерживают в течение 15-40 минут, а в реакционную массу вводят раствор акриламида в (мет)акриловой кислоте или N,N-ди(метил)этилоксиэтилметакрилате в соотношении 0,1:0,9÷0,9:0,1 мольных долей и 0,1-10,0 мас. % N,N-метилен-бис-акриламида или диэтиленгликольдиметакрилата, пропиленгликольдиметакрилата и реакционную массу при перемешивании выдерживают в течение 3-х часов при температуре 20-40°С, лиофильно сушат.
2. Способ по п. 1, характеризующийся тем, что в качестве полисахарида используют хитозан или крахмал.
RU2016110329A 2016-03-21 2016-03-21 Способ получения суперабсорбента, содержащего микроэлементы RU2634428C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016110329A RU2634428C2 (ru) 2016-03-21 2016-03-21 Способ получения суперабсорбента, содержащего микроэлементы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016110329A RU2634428C2 (ru) 2016-03-21 2016-03-21 Способ получения суперабсорбента, содержащего микроэлементы

Publications (2)

Publication Number Publication Date
RU2016110329A RU2016110329A (ru) 2017-09-26
RU2634428C2 true RU2634428C2 (ru) 2017-10-30

Family

ID=59930869

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016110329A RU2634428C2 (ru) 2016-03-21 2016-03-21 Способ получения суперабсорбента, содержащего микроэлементы

Country Status (1)

Country Link
RU (1) RU2634428C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715380C1 (ru) * 2019-06-14 2020-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Способ получения влагопоглощающего композиционного полимерного материала с микробиологическими добавками
RU2763736C1 (ru) * 2020-12-30 2021-12-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ") Способ получения композитного суперабсорбирующего полимера на основе хитозана с улучшенной влагопоглощающей способностью

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089561C1 (ru) * 1994-07-21 1997-09-10 Акционерное общество закрытого типа Научно-внедренческая фирма "АСПА" Способ получения сополимеров с высокой влагоудерживающей способностью
RU2126023C1 (ru) * 1992-03-05 1999-02-10 Штокхаузен Гмбх Унд Ко. Кг Полимерная композиция и способ ее получения
RU2243975C2 (ru) * 1999-03-05 2005-01-10 Штокхаузен Гмбх Унд Ко. Кг Порошкообразные сшитые абсорбирующие водные жидкости, а также кровь, полимеры, способ их получения и их применение
RU2574722C1 (ru) * 2014-12-09 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" ФГБОУ ВПО "ВГУ" Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2126023C1 (ru) * 1992-03-05 1999-02-10 Штокхаузен Гмбх Унд Ко. Кг Полимерная композиция и способ ее получения
RU2089561C1 (ru) * 1994-07-21 1997-09-10 Акционерное общество закрытого типа Научно-внедренческая фирма "АСПА" Способ получения сополимеров с высокой влагоудерживающей способностью
RU2243975C2 (ru) * 1999-03-05 2005-01-10 Штокхаузен Гмбх Унд Ко. Кг Порошкообразные сшитые абсорбирующие водные жидкости, а также кровь, полимеры, способ их получения и их применение
RU2574722C1 (ru) * 2014-12-09 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" ФГБОУ ВПО "ВГУ" Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715380C1 (ru) * 2019-06-14 2020-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Способ получения влагопоглощающего композиционного полимерного материала с микробиологическими добавками
RU2763736C1 (ru) * 2020-12-30 2021-12-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ") Способ получения композитного суперабсорбирующего полимера на основе хитозана с улучшенной влагопоглощающей способностью

Also Published As

Publication number Publication date
RU2016110329A (ru) 2017-09-26

Similar Documents

Publication Publication Date Title
Chen et al. Synthesis and characterization of a novel superabsorbent polymer of N, O-carboxymethyl chitosan graft copolymerized with vinyl monomers
US4340706A (en) Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
Liu et al. Synthesis of a slow‐release and superabsorbent nitrogen fertilizer and its properties
CN102060959B (zh) 一种聚丙烯酸保水剂的制备方法
CN103214616B (zh) 一种多孔状高吸水性树脂的制备方法
CN103224635A (zh) 一种复合型淀粉改性高吸水树脂的制备方法
CN106117443A (zh) 淀粉接枝丙烯酸丙烯酰胺的三元共聚物树脂的合成方法
CN105733159A (zh) 一种半互穿型吸水树脂颗粒的制备方法
CN101935380B (zh) 以羧甲基马铃薯淀粉为原料制备含钾和氮元素高吸水树脂的方法
CN106565913A (zh) 一种尿素包裹型纤维素基高吸水树脂的制备方法
RU2634428C2 (ru) Способ получения суперабсорбента, содержащего микроэлементы
CN101691416A (zh) 马铃薯淀粉磷酸酯接枝共聚丙烯酸及其钠盐制备具有交联结构的高吸水树脂的方法
MXPA00004868A (es) Procedimiento para la preparacion de polimerizados solubles en agua o hinchables con agua con contenido monomerico residual muy bajo, productos asi preparados y su
CN108017750A (zh) 一种温敏水凝胶保水剂及其制备方法和应用
RU2715380C1 (ru) Способ получения влагопоглощающего композиционного полимерного материала с микробиологическими добавками
CN101440144A (zh) 两性离子缔合型高吸水树脂及其制备方法
CN103864992B (zh) 一种利用芦苇制备高吸水性树脂的方法
CN102702425B (zh) 一种抗盐性阳离子型高吸水树脂及其制备方法与应用
CN103374104B (zh) 高吸水性树脂的制法
RU2574722C1 (ru) Способ получения гидрофильного сшитого полимера со свойствами суперабсорбента
CN103059223B (zh) α-马铃薯淀粉接枝共聚合成高吸水树脂的方法
JPH0323567B2 (ru)
KATO et al. Synthesis of novel biodegradable superabsorbent polymer using chitosan for desert land development
CN101880351B (zh) 一种水溶液聚合法微晶白云母复合磺酸型高吸水树脂的制备方法
Venkatachalam et al. Synthesis and evaluation of trimethylolpropane triacrylate crosslinked superabsorbent polymers for conserving water and fertilizers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190322