RU2625104C1 - Способ получения субмикронного порошка альфа-оксида алюминия - Google Patents
Способ получения субмикронного порошка альфа-оксида алюминия Download PDFInfo
- Publication number
- RU2625104C1 RU2625104C1 RU2016123040A RU2016123040A RU2625104C1 RU 2625104 C1 RU2625104 C1 RU 2625104C1 RU 2016123040 A RU2016123040 A RU 2016123040A RU 2016123040 A RU2016123040 A RU 2016123040A RU 2625104 C1 RU2625104 C1 RU 2625104C1
- Authority
- RU
- Russia
- Prior art keywords
- alpha
- powder
- alumina
- calcination
- seed
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/44—Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
- C01F7/441—Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/25—Oxide
- B22F2302/253—Aluminum oxide (Al2O3)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/056—Particle size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/058—Particle size above 300 nm up to 1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Изобретение может быть использовано в неорганической химии. Способ получения субмикронного порошка альфа-оксида алюминия включает обработку гидроксида алюминия, полученного способом Байера, в мельнице с затравочными частицами, сушку, прокаливание и дезагрегацию полученного порошка путем помола в органическом растворителе. В качестве затравки используют нанопорошок альфа-оксида алюминия с размером частиц менее 25 нм в количестве 1-5 масс. %. Смесь гидроксида алюминия с затравкой обрабатывают методом сухого помола в шаровой мельнице с добавлением 20-30 масс. % гексана. Затем проводят сушку на воздухе и прокаливание при 900-950°С в токе воздуха. Принудительный поток воздуха над прокаливаемым материалом имеет температуру в интервале 500-950°С. Скорость подъема температуры при прокаливании 300°С/час. Изобретение позволяет получить порошок, состоящий из частиц альфа-оксида алюминия сферической формы, слабоагрегированный, с узким распределением частиц по размерам, а именно от 0,1 до 0,3 мкм, пригодный для получения плотной алюмооксидной керамики при снижении энергозатрат. 2 з.п. ф-лы, 1 ил., 5 пр.
Description
Изобретение относится к области химии, а именно к способам получения субмикронного порошка альфа-оксида алюминия с узким распределением частиц по размерам, предназначенного для низкотемпературного получения плотной алюмооксидной керамики с высокими механическими свойствами.
Задача изготовления субмикронного альфа-оксида алюминия с узким распределением по размерам, требующегося в качестве абразивного материала и/или сырья для керамики, стоит вот уже в течение длительного времени. Ключом к решению этой задачи является предотвращение быстрого роста зерен, вызванного высокой температурой перехода промежуточных модификаций в стабильную альфа-фазу. Хорошо известно, что температуру перехода можно снизить при использовании затравки, вводимой в кристаллизующиеся алюмогидроксидные прекурсоры. В водный раствор, содержащий ионы алюминия, обычно добавляют несколько процентов по весу затравки из альфа-оксида алюминия в виде мелких частиц, чтобы создать условия для осуществления фазового превращения при более низкой температуре. Золь сушат на воздухе ориентировочно при 100-150°С, преобразуя в сухой гель, а затем обжигают при температуре, ориентировочно выше 1000°С, чтобы получить частицы из альфа-оксида алюминия.
Известно также, что чем меньше размер частиц затравки, тем меньше будет температура кристаллизации. За счет наличия затравочных частиц температура преобразования снижается, ориентировочно от температур в диапазоне от 1200 до 1250°С для золей, приготовленных без затравки, до температур в диапазоне от 1000 до 1050°С. Приготовленный таким образом альфа-оксид алюминия может иметь субмикронные размеры частиц. Процесс последующего размалывания образовавшихся при 1000-1050°С достаточно прочных частиц приводит к высокому уровню загрязнения примесями и, кроме того, малоэффективен.
Известен способ получения зерен и волокон из альфа-оксида алюминия из бемита, который пептизируют, а затем диспергируют в воде с образованием золя оксида алюминия. Полученный золь быстро охлаждают в жидком азоте или, альтернативно, медленно охлаждают при помощи сублимационной сушки. Вода сублимируется из золя с образованием из него геля, содержащего чешуйки, хлопья, имеющие толщину, ориентировочно, от 1 до 3 мкм. При помощи данного способа могут быть получены более мелкие порошки, чешуйки, волокна и зерна из оксида алюминия, однако данные порошки не имеют пористости, а для их размола требуется высокая механическая энергия, причем процесс размалывания приводит к высоким уровням загрязнения примесями продукта из альфа-оксида алюминия (1. Пат. US №5312791, опубл. 17.05.1994 г).
Известен способ получения нанокорундовых порошков с помощью затравочных наночастиц диаспора (2. DE №19922492, опубл. 16.11.2000 г.). Использование затравочных наночастиц диаспора позволило получить порошок, состоящий на 90% из нанопорошка альфа-оксида алюминия с размером частиц в интервале 25-60 нм. Этот порошок затем размалывали в водной среде. Недостатком данного способа является невозможность полной дезагрегации его при размоле в водной среде. Около 25% порошка приходилось затем отцентрифугировать. Кроме того, диаспор получают синтетическим путем с помощью дорогостоящего гидротермального синтеза, что не позволяет использовать данный способ для получения корундовой керамики из-за дороговизны.
Известно, что образование альфа-фазы оксида алюминия протекает при 970°С, после механохимической обработки гамма-оксида алюминия в течении 0-12 часов шарами из WC. Данный способ получения корундовых порошков также приводит к высоким (до 60% масс.) уровням загрязнения примесями продуктами износа мелющих тел. (3. Martin L. Panchula and Jackie Y. Ying MECHANICAL SYNTHESIS OF NANOCRYSTALLINE α>Al2O3 SEEDS FOR ENHANCED TRANSFORMATION KINETICS Nanostructured Materials. Vol. 9. pp. 161-164. 1997).
Наиболее близким техническим решением, выбранным за прототип, является способ приготовления порошков из альфа-оксида алюминия, включающий мокрый помол гидроксида алюминия в течение 0-144 часов, во время которого образуются затравочные кристаллы из осколков мелющих тел размером 0,1-0,8 мкм в количестве до 23 масс. %, образовавшийся продукт прокаливают при 1100°С на воздухе в течение 2 часов и дезагируют путем помола в спирте в течение 17 часов. Для получения керамического материала полученный порошок альфа-окиси алюминия прессуют и спекают (4. Zhi-Peng Xie, Ji-Wei Lu, Yong Huang, Yi-Bing Cheng Influence of a-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide Materials Letters 57 (2003) 2501-2508).
Недостатком данного технического решения является то, что полный фазовый переход в альфа-оксид алюминия осуществляется при 1100°С и приводит к крупнокристаллическим частицам, имеющим пластинчатую морфологию с размером частиц 0,45-0,75 мкм. Такой порошок не пригоден для формования и низкотемпературного (ниже 1600°С) спекания в плотный керамический материал.
Задача, решаемая заявляемым техническим решением, заключается в получении слабоагрегированного субмикронного порошка альфа-оксида алюминия с узким распределением сферических частиц по размерам, а именно от 0,1 до 0,3 мкм, пригодного для формования и низкотемпературного спекания плотной (не ниже 3,85 г/см3) алюмооксидной керамики при снижении энергозатрат.
Поставленная задача решается благодаря тому, что в заявляемом способе получения субмикронного порошка альфа-оксида алюминия, включающем обработку гидроксида алюминия, полученного способом Байера, в мельнице с затравочными частицами, сушку, прокаливание, дезагрегацию полученного порошка путем помола в органическом растворителе, в качестве затравки используют нанопорошок альфа-оксида алюминия с размером частиц менее 25 нм в количестве 1-5 масс. %, смесь гидроксида алюминия с затравкой обрабатывают методом сухого помола в шаровой мельнице с добавлением 20-30 масс. % гексана, с последующей сушкой на воздухе, прокаливанием при 900-950°С в токе воздуха.
Предпочтительно, принудительный поток воздуха над прокаливаемым материалом осуществляют в интервале температур 500-950°С.
Предпочтительно, скорость подъема температуры при прокаливании 300°С/час.
В предлагаемом техническом решении в качестве затравки используют механохимически синтезированный слабоагрегированный порошок альфа-оксида алюминия с размером частиц не более 25 нм [5. Karagedov and N.Z. Lyakhov, "Mechanochemical Grinding of Inorganic Oxides" KONA Powder and Particle, 21 (2003) 76-87]. Столь малый размер частиц позволяет использовать меньшее количество затравки (1-5 масс. %) по отношению к получаемому порошку, но при этом значительно увеличить число центров кристаллизации альфа-фазы, тем самым уменьшив разброс порошка продукта по размерам.
Из полученного порошка альфа-оксида алюминия можно непосредственно формовать изделия сухим одноосным или изостатическим прессованием и спекать его до плотности более 95% при 1350°С, следствием чего является сохранение среднего размера зерна в субмикронном диапазоне и повышение механических свойств керамического изделия.
Существенными отличительными признаками заявляемого технического решения являются:
- используют в качестве затравки нанопорошок альфа-оксида алюминия с размером частиц до 25 нм в количестве не более 1-5 масс. %;
- смесь обрабатывают методом сухого помола в шаровой мельнице с добавлением 20-30 масс. % гексана в качестве вещества, предотвращающего агрегатообразование при помоле;
- прокаливание полученного и высушенного на воздухе прекурсора проводят при 900-950°С в токе воздуха.
Совокупность существенных отличительных признаков позволяет решить поставленную задачу и не известна из существующего уровня техники.
Техническим результатом данного изобретения является получение порошка из частиц альфа-оксида алюминия сферической формы, слабоагрегированного, с узким распределением частиц по размерам, легко формуемого и спекаемого при температурах ниже 1400°С до плотности >97% от теоретически возможной, пригодного для получения прочной керамики.
Заявляемое техническое решение подтверждается приведенными ниже примерами.
Пример 1
75 г гидроксида алюминия со средним размером частиц 11 мкм (РУСАЛ, ТУ 1711-046-00196368-95) смешали с 0.5 г (1 масс. %) нанопорошка α-Al2O3 со средним размером частиц 20 нм, полученного по методу, описанному в [4], и содержащего 0,1 масс. % примесей, и 31 мл гексана (20 масс. %), используемого в качестве вещества, предотвращающего агрегатообразование при помоле. Полученную смесь подвергли механической обработке в шаровой мельнице в течение 24 часов, используя стальные шары 28 мм общим весом 1,5 кг. Полученный прекурсор затем сушили до полного испарения гексана на воздухе в течении 12 часов, после чего прокаливают в токе воздуха при температуре 900°С в течение 120 минут, поднимая температуру со скоростью 300°С/ час. Рентгенофазовый анализ показывает, что полученный порошок представляет собой Al2O3, содержащий не менее 98% альфа-оксида алюминия. По данным сканирующей электронной микроскопии размер первичных частиц составляет не более 320 нм. Полученный порошок подвергали мягкому размолу (дезагрегации) на шаровой мельнице в полимерном барабане шарами из диоксида циркония с добавлением 40 масс. % спирта в течение 1 часа.
После дезагрегации порошок прессуется при давлении 150 МПа до плотности 1,66 г/см3 и спекается при температуре 1350°С в течение 1,5 часов до плотности 3,41 г/см3. Дальнейшее спекание при 1540°С приводит к плотности 3,75 г/см3.
Пример 2
Пример осуществляют аналогично примеру 1, но затравку вводят в количестве 5 масс. %, а смесь обрабатывают сухим помолом с добавлением 26 масс. % гексана. Рентгенофазовый анализ показывает, что полученный порошок представляет собой Al2O3, содержащий 100% альфа-оксида алюминия. По данным сканирующей электронной микроскопии размер первичных частиц составляет не более 290 нм.
После дезагрегации порошок высушивается и прессуется сухим одноосным прессованием при давлении 150 МПа до плотности 2,23 г/см3 и спекается при температуре 1350°С в течение 1,5 часов до плотности 3,81 г/см3. Дальнейшее спекание при 1540°С приводит к плотности 3,85 г/см3.
Пример 3
Пример аналогичен примеру 2, только прокаливание проводят при температуре 950°С. Рентгенофазовый анализ показывает, что полученный порошок представляет собой Al2O3, содержащий 100% альфа-оксида алюминия. По данным сканирующей электронной микроскопии размер первичных частиц составляет не более 400 нм. Полученный порошок подвергали мягкому размолу на шаровой мельнице в полимерном барабане шарами из диоксида циркония с добавлением 30 масс. % спирта в течение 1 часа.
После испарения спирта, порошок прессуется при давлении 150 МПа до плотности 1,63 г/см3 и спекается при температуре 1350°С в течение 1,5 часов до плотности 3,70 г/см3. Дальнейшее спекание при 1540°С приводит к плотности 3,73 г/см3.
Пример 4
Пример аналогичен примеру 2, только прокаливание проводят без соблюдения вышеназванной скорости. Рентгенофазовый анализ показывает, что полученный порошок представляет собой Al2O3, содержащий 100% альфа-оксида алюминия. По данным сканирующей электронной микроскопии размер первичных частиц составляет не более 450 нм. Полученный порошок подвергали мягкому размолу (дезагрегации) на шаровой мельнице в полимерном барабане шарами из диоксида циркония с добавлением 40 масс. % спирта в течение 1 часа.
После испарения спирта, порошок прессуется при давлении 150 МПа до плотности 1,59 г/см3 и спекается при температуре 1350°С в течение 1,5 часов до плотности 3,57 г/см3. Дальнейшее спекание при 1540°С приводит к плотности 3,71 г/см3.
Пример 5
Пример аналогичен примеру 2, только принудительный поток воздуха над прокаливаемым материалом осуществляют в интервале температур 500-950°С. Рентгенофазовый анализ показывает, что полученный порошок представляет собой Al2O3, содержащий 100% альфа-оксида алюминия. По данным сканирующей электронной микроскопии размер первичных частиц составляет не более 290 нм. На фиг. 1 представлен внешний вид полученного порошка по данным сканирующей электронной микроскопии.
После дезагрегации порошок высушивается и прессуется сухим одноосным прессованием при давлении 150 МПа до плотности 2,27 г/см3 и спекается при температуре 1350°С в течение 1,5 часов до плотности 3,86 г/см3. Дальнейшее спекание при 1540°С приводит к плотности 3,89 г/см3.
Либо полученный порошок прессуется холодным изостатическим способом при давлении 200 МПа до плотности 2,36 г/см3 и спекается при температуре 1350°С в течение 1,5 часов до плотности 3,87 г/см3. Микротвердость по Виккерсу данного материала HV500=17,8 ГПа. Дальнейшее спекание при 1540°С приводит к плотности 3,89 г/см3.
Claims (3)
1. Способ получения субмикронного порошка альфа-оксида алюминия, включающий обработку гидроксида алюминия, полученного способом Байера, в мельнице с затравочными частицами, сушку, прокаливание, дезагрегацию полученного порошка путем помола в органическом растворителе, отличающийся тем, что в качестве затравки используют нанопорошок альфа-оксида алюминия с размером частиц менее 25 нм в количестве 1-5 масс. %, смесь гидроксида алюминия с затравкой обрабатывают методом сухого помола в шаровой мельнице с добавлением 20-30 масс. % гексана, с последующей сушкой на воздухе, прокаливанием при 900-950°С в токе воздуха.
2. Способ по п. 1, отличающийся тем, что принудительный поток воздуха над прокаливаемым материалом осуществляют в интервале температур 500-950°С.
3. Способ по п. 1, отличающийся тем, что скорость подъема температуры при прокаливании 300°С/час.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016123040A RU2625104C1 (ru) | 2016-06-09 | 2016-06-09 | Способ получения субмикронного порошка альфа-оксида алюминия |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016123040A RU2625104C1 (ru) | 2016-06-09 | 2016-06-09 | Способ получения субмикронного порошка альфа-оксида алюминия |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2625104C1 true RU2625104C1 (ru) | 2017-07-11 |
Family
ID=59495184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016123040A RU2625104C1 (ru) | 2016-06-09 | 2016-06-09 | Способ получения субмикронного порошка альфа-оксида алюминия |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2625104C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2770921C1 (ru) * | 2021-12-24 | 2022-04-25 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения тонкодисперсного активированного альфа-оксида алюминия |
RU2790705C1 (ru) * | 2022-06-16 | 2023-02-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения ультрадисперсного активированного альфа-оксида алюминия |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2076083C1 (ru) * | 1991-06-21 | 1997-03-27 | Х.Ц. Штарк ГмбХ унд Ко., КГ | СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ |
RU2136596C1 (ru) * | 1993-11-25 | 1999-09-10 | Сумитомо Кемикал Компани, Лимитед | СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА α--ОКСИДА АЛЮМИНИЯ И ПОРОШОК α--ОКСИДА АЛЮМИНИЯ |
US7307033B2 (en) * | 2003-03-04 | 2007-12-11 | Sumitomo Chemical Company, Limited. | Method for producing α-alumina particulate |
US7674525B2 (en) * | 2005-03-18 | 2010-03-09 | Sumitomo Chemical Company, Limited | Process for producing fine α-alumina particles |
RU2409519C1 (ru) * | 2009-07-08 | 2011-01-20 | Закрытое акционерное общество "Центр инновационных керамических нанотехнологий Нанокомпозит" | Способ получения нанопорошка альфа-оксида алюминия с узким распределением частиц по размерам |
-
2016
- 2016-06-09 RU RU2016123040A patent/RU2625104C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2076083C1 (ru) * | 1991-06-21 | 1997-03-27 | Х.Ц. Штарк ГмбХ унд Ко., КГ | СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ |
RU2136596C1 (ru) * | 1993-11-25 | 1999-09-10 | Сумитомо Кемикал Компани, Лимитед | СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА α--ОКСИДА АЛЮМИНИЯ И ПОРОШОК α--ОКСИДА АЛЮМИНИЯ |
US7307033B2 (en) * | 2003-03-04 | 2007-12-11 | Sumitomo Chemical Company, Limited. | Method for producing α-alumina particulate |
US7674525B2 (en) * | 2005-03-18 | 2010-03-09 | Sumitomo Chemical Company, Limited | Process for producing fine α-alumina particles |
RU2409519C1 (ru) * | 2009-07-08 | 2011-01-20 | Закрытое акционерное общество "Центр инновационных керамических нанотехнологий Нанокомпозит" | Способ получения нанопорошка альфа-оксида алюминия с узким распределением частиц по размерам |
Non-Patent Citations (1)
Title |
---|
XIE ZHI-PENG et al., Influence of α-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide, Materials Letters, 2003, N 57, pp. 2501-2508. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2770921C1 (ru) * | 2021-12-24 | 2022-04-25 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения тонкодисперсного активированного альфа-оксида алюминия |
RU2790705C1 (ru) * | 2022-06-16 | 2023-02-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения ультрадисперсного активированного альфа-оксида алюминия |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2462416C2 (ru) | Керамический порошковый материал (варианты) и способ его изготовления | |
RU2076083C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ | |
ES2654295T3 (es) | Procedimiento para la producción de alfa-AL2O3 nanocristalino | |
US4657754A (en) | Aluminum oxide powders and process | |
JP5412109B2 (ja) | 酸化アルミニウム及び元素周期律表の第1及び2主族の元素の酸化物よりなるナノ粒子ならびにその製造方法 | |
US6841497B1 (en) | Method of producing aluminum oxides and products obtained on the basis thereof | |
RU2299179C2 (ru) | Нанопористые сверхмелкие порошки из альфа оксида алюминия и способ их приготовления при помощи сублимационной сушки | |
CN1386705A (zh) | α-氧化铝细粉及其制造方法 | |
CN101247911A (zh) | 基于α-氧化铝的纳米结晶的烧结体、其制备方法及其用途 | |
Sun et al. | Synthesis of Nanocrystalline α‐Al2O3 Powders from Nanometric Ammonium Aluminum Carbonate Hydroxide | |
Vasudevan et al. | Effect of microwave sintering on the structural and densification behavior of sol–gel derived zirconia toughened alumina (ZTA) nanocomposites | |
US10144645B1 (en) | Method for preparing spherical aluminum oxynitride powder | |
Lu et al. | Preparation of plate-like nano α-Al2O3 using nano-aluminum seeds by wet-chemical methods | |
Guo et al. | Selective corrosion preparation and sintering of disperse α‐Al2O3 nanoparticles | |
KR20070028370A (ko) | 시딩된 보에마이트 미립 물질 및 이의 제조방법 | |
TWI333940B (en) | Slip containing zirconium dioxide and aluminium oxide and shaped body obtainable therefrom | |
CZ345192A3 (en) | Process for producing aluminium alpha-oxide powder | |
RU2625104C1 (ru) | Способ получения субмикронного порошка альфа-оксида алюминия | |
RU2424186C1 (ru) | Способ получения нанокристаллов оксида алюминия | |
RU2409519C1 (ru) | Способ получения нанопорошка альфа-оксида алюминия с узким распределением частиц по размерам | |
JPH10101329A (ja) | α−アルミナおよびその製造方法 | |
Kim et al. | Effect of Drying Method on the Synthesis of Yttria-Stabilized Zirconia Powders by Co-Precipitation | |
JP2654276B2 (ja) | 微細板状アルミナ粒子の製造方法 | |
Xie et al. | Influence of different seeds on transformation of aluminum hydroxides and morphology of alumina grains by hot-pressing | |
CN104788094A (zh) | 一种钛酸铋陶瓷材料的制备方法 |