RU2614411C2 - Цеолитный катализатор, содержащий металл - Google Patents
Цеолитный катализатор, содержащий металл Download PDFInfo
- Publication number
- RU2614411C2 RU2614411C2 RU2013129989A RU2013129989A RU2614411C2 RU 2614411 C2 RU2614411 C2 RU 2614411C2 RU 2013129989 A RU2013129989 A RU 2013129989A RU 2013129989 A RU2013129989 A RU 2013129989A RU 2614411 C2 RU2614411 C2 RU 2614411C2
- Authority
- RU
- Russia
- Prior art keywords
- zeolite
- catalyst
- cerium
- copper
- metal
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 134
- 239000010457 zeolite Substances 0.000 title claims abstract description 106
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 69
- 239000002184 metal Substances 0.000 title claims abstract description 69
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 68
- 239000010949 copper Substances 0.000 claims abstract description 45
- 229910052802 copper Inorganic materials 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 34
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 claims abstract description 29
- 230000003197 catalytic effect Effects 0.000 claims abstract description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 19
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 15
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 14
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 19
- 239000000446 fuel Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims 1
- 239000004927 clay Substances 0.000 claims 1
- 229910052676 chabazite Inorganic materials 0.000 abstract description 26
- 230000000694 effects Effects 0.000 abstract description 10
- -1 cerium ions Chemical class 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 4
- 239000004411 aluminium Substances 0.000 abstract 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 129
- 239000007789 gas Substances 0.000 description 57
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 40
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 39
- 239000013078 crystal Substances 0.000 description 38
- 239000002808 molecular sieve Substances 0.000 description 36
- 239000003638 chemical reducing agent Substances 0.000 description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 229910021529 ammonia Inorganic materials 0.000 description 20
- 230000003647 oxidation Effects 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 229910000323 aluminium silicate Inorganic materials 0.000 description 14
- 150000002739 metals Chemical class 0.000 description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000018537 nitric oxide storage Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003335 steric effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
- B01D53/565—Nitrogen oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7049—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
- B01J29/7065—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
- B01J35/77—Compounds characterised by their crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9202—Linear dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Изобретение относится к каталитической композиции для уменьшения содержания NOx, содержащей: цеолитный материал, имеющий шабазитный каркас, который содержит кремний и алюминий, и имеющий соотношение диоксида кремния и оксида алюминия (SAR), составляющее от 10 до 25; внекаркасный металл-промотор (М), содержащийся в указанном цеолитном материале, и, по меньшей мере, 1% мас. церия в указанном цеолитном материале по отношению к суммарной массе цеолита, причем указанный церий присутствует в форме, выбранной из обменных ионов церия, мономерного оксида церия, олигомерного оксида церия и их сочетаний, при том условии, что указанный олигомерный оксид церия имеет размер частиц, составляющий менее чем 5 мкм, в которой внекаркасный металл-промотор выбран из группы, состоящей из меди, железа и их смесей, и присутствует в атомном соотношении металла-промотора и алюминия (М:Al), составляющем от 0,10 до 0,24 по отношению к каркасному алюминию. Изобретение также относится к каталитически активному пористому оксидному покрытию и к способу уменьшения содержания NOx в отработавшем газе. Технический результат заключается в повышении каталитической активности. 3 н. и 9 з.п. ф-лы, 2 ил., 5 пр.
Description
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет предварительной патентной заявки США № 61/419015, поданной 02 декабря 2010 г., и предварительной патентной заявки США № 61/565774, поданной 01 декабря 2011 г., причем они обе включены в настоящий документ посредством ссылки.
УРОВЕНЬ ТЕХНИКИ
Область применения
Настоящее изобретение относится к катализаторам, системам и способам, которые являются полезными для очистки отработавшего газа, который образуется в результате сгорания углеводородного топлива, и, в частности, отработавшего газа, содержащего оксиды азота, такого как отработавший газ, производимый дизельными двигателями.
Описание предшествующего уровня техники
Основная масса большинства отработавших газообразных продуктов сгорания содержит относительно благоприятные азот (N2), водяной пар (H2O) и диоксид углерода (CO2); но отработавший газ также содержит в относительно малых количествах вредные и/или токсичные вещества, такие как моноксид углерода (CO) от неполного сгорания, углеводороды (HC) от несгоревшего топлива, оксиды азота (NOx) от чрезмерных температур сгорания и твердые вещества (главным образом, сажа). Чтобы уменьшить воздействие на окружающую среду отработавшего газа, выпускаемого в атмосферу, желательно устранить эти нежелательные компоненты или уменьшить их количество, используя предпочтительно процесс, в котором, в свою очередь, не образуются другие вредные или токсичные вещества.
К числу наиболее вредных для окружающей среды компонентов, которые следует удалять из отработавшего газа, выделяемого транспортными средствами, относятся оксиды азота NOx, которые включают моноксид азота (NO), диоксид азота (NO2) и закись азота (N2O). Восстановление NOx до N2 в полученном при сгорании обедненной топливом смеси отработавшем газе, таком как газ, производимый дизельными двигателями, является особенно проблематичным, потому что отработавший газ содержит достаточное количество кислорода, чтобы способствовать окислительным реакциям, а не восстановительным. Однако NOx можно восстанавливать в отработавшем газе дизельных двигателей, используя процесс, обычно известный как селективное каталитическое восстановление (SCR). Процесс SCR включает конверсию NOx в присутствии катализатора с использованием восстановителя в элементарный азот (N2) и воду. В процессе SCR газообразный восстановитель, такой как аммиак, вводят в поток отработавшего газа перед контактом отработавшего газа с катализатором SCR. Восстановитель абсорбируется катализатором и происходит реакция восстановления NOx, когда газы проходят через содержащий катализатор носитель или над ним. Уравнения стехиометрических химических реакций SCR с использованием аммиака следующие:
2NO+4NH3+2O2→3N2+6H2O
2NO2+4NH3+O2→3N2+6H2O
NO+NO2+2NH3→2N2+3H2O
Известные катализаторы SCR включают цеолиты и другие молекулярные сита. Молекулярные сита представляют собой микропористые кристаллические твердые вещества с четко определенными структурами, которые обычно содержат в своем каркасе кремний, алюминий и кислород, а также в своих порах могут содержать катионы. Определяющую особенность молекулярного сита представляет собой его кристаллическая или псевдокристаллическая структура, которую образуют молекулярные тетраэдрические ячейки, соединенные между собой регулярным и/или повторяющимся способом с образованием каркаса. Уникальные каркасы молекулярных сит, которые признает комиссия по структурам Международной цеолитной ассоциации (IZA), получили трехбуквенные коды, обозначающие тип каркаса. Примеры каркасов молекулярных сит, которые представляют собой известные катализаторы SCR, включают коды типов каркасов CHA (шабазит), BEA (бета) и MOR (морденит).
Некоторые молекулярные сита имеют трехмерный молекулярный каркас, который возникает вследствие ориентации их соединенных друг с другом ячеек. Ячейки этих молекулярных сит, как правило, имеют объемы порядка нескольких кубических нанометров и отверстия ячеек (также называемые «поры» или «проемы») порядка нескольких ангстремов в диаметре. Ячейки может определять размер кольца их пор, где, например, термин «восьмичленный» означает замкнутое кольцо, которое образуют 8 тетраэдрически координированных атомов кремния (или алюминия) и 8 атомов кислорода. В определенных цеолитах поры ячеек ориентированы в пределах каркаса, образуя один или более каналов, которые проходят сквозь каркас, таким образом, создавая механизм, ограничивающий поступление или прохождение различных молекулярных или ионных частиц через молекулярное сито на основании относительных размеров каналов и молекулярных или ионных частиц. Размер и форма молекулярных сит отчасти влияет на их каталитическую активность, потому что сита производят стерическое воздействие на реагенты, регулируя доступ реагентов и продуктов. Например, малые молекулы, такие как NOx, могут, как правило, входить в ячейки и выходить из них, и/или они могут диффундировать через каналы мелкопористого молекулярного сита (т.е. сита, имеющего каркас с максимальным размером кольца, содержащего восемь тетраэдрически координированных атомов), в то время как это оказывается недоступным для более крупных молекул, таких как длинноцепочечные углеводороды. Кроме того, частичная или полная дегидратация молекулярного сита может приводить к кристаллической структуре, содержащей переплетенные каналы молекулярных размеров.
Обнаружено, что молекулярные сита, имеющие мелкопористый каркас, т.е. содержащий не более чем восьмичленные кольца, являются особенно полезными для применения в процессах SCR. Мелкопористые молекулярные сита включают сита, имеющие кристаллические структуры следующих типов: CHA, LEV, ERI и AEI. Конкретные примеры алюмосиликатных и силикоалюмофосфатных молекулярных сит, имеющих шабазитный каркас, включают SAPO-34, AIPO-34 и SSZ-13.
Цеолиты представляют собой алюмосиликатные молекулярные сита, имеющие кристаллический каркас, содержащий взаимосвязанные оксид алюминия и диоксид кремния, в частности оксид алюминия и диоксид кремния, сшитые посредством общих атомов кислорода, и, таким образом, их может характеризовать соотношение диоксида кремния и оксида алюминия (SAR). Как правило, при увеличении SAR цеолита у цеолита увеличивается гидротермальная устойчивость. Поскольку температура отработавшего газа, выходящего после сгорания обедненной топливом смеси из автомобильного двигателя, такого как дизельный двигатель, часто составляет от 500 до 650°C или выше, и этот газ, как правило, содержит водяной пар, гидротермальная устойчивость представляет собой важный фактор в разработке катализатора SCR.
Хотя цеолиты сами по себе часто обладают каталитическими свойствами, их каталитическую активность в процессах SCR можно улучшать в определенных средах путем катионного обмена, при котором часть ионных частиц, существующих на поверхности или в объеме каркаса, замещают катионы металлов, такие как Cu2+. Таким образом, активность цеолитов в процессах SCR можно промотировать содержанием свободных ионов одного или более металлов в каркасе молекулярного сита.
Кроме того, для катализатора SCR, желательно, наличие высокой каталитической активности при низких рабочих температурах. При низких рабочих температурах, например, ниже 400°C увеличение содержания металла в молекулярном сите приводит к повышению активности в процессах SCR.
Однако достижимое содержание металла часто зависит от наличия обменных центров молекулярного сита, что, в свою очередь, зависит от SAR материала. Как правило, молекулярные сита с низким SAR допускают максимальное содержание металла, таким образом, приводя к противоречию между требованиями высокой каталитической активности и высокой гидротермальной устойчивости, которая достигается при относительно высоком значении SAR. Кроме того, имеющие высокое содержание меди катализаторы не обладают высокой активностью при высоких температурах (например, выше 450°C). Например, алюмосиликат с шабазитным каркасом, имеющий высокое содержание меди (т.е. атомное соотношение меди и алюминия выше 0,25), может обеспечивать значительное окисление NH3 при температурах выше 450°C, приводя к низкой селективности по отношению к N2. Этот недостаток проявляется особенно остро в условиях регенерации фильтров, которая включает обработку катализатора при температурах выше 650°C.
Еще одну важную проблему в разработке катализатора SCR для применения в автомобилях представляет собой устойчивая активность катализатора. Например, желательно, чтобы после старения свежего катализатора он обеспечивал близкий уровень конверсии NOx.
Соответственно остается потребность в катализаторах SCR, которые обладают более высокими эксплуатационными характеристиками по сравнению с существующими материалами для процессов SCR.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Заявители обнаружили, что в определенные цеолиты, имеющие кристаллическую структуру шабазита (CHA), можно вводить относительно низкие количества металла-промотора, такого как медь, чтобы обеспечивать хорошую конверсию при высоких температурах, сохраняя при этом хорошую селективность по отношению к NO. Более конкретно, настоящее изобретение использует и/или реализует неожиданное открытие того, что в определенные крупнокристаллические цеолиты, имеющие шабазитный каркас и относительно низкое SAR, можно вводить относительно малые количества каталитически активных металлов и при этом обеспечивать хорошую конверсия NOx в широком температурном интервале, одновременно повышая селективность по отношению к N2 при высоких температурах (например, превышающих приблизительно 450°C). Синергетический эффект одного или более таких факторов, как размер кристаллов, уровень обмена меди и SAR, до настоящего времени оставался неизвестным и непрогнозируемым.
Заявители также обнаружили, что высокие концентрации церия можно вводить в такие промотированные металлом цеолиты, чтобы повышать гидротермальную устойчивость материала, низкотемпературную каталитическую активность и/или сохранение каталитической активности свежего катализатора в процессе старения. Например, в определенных вариантах осуществления настоящего изобретения используется неожиданное обнаружение того, что введение высоких концентраций Ce в полностью составленный промотированный медью шабазитный цеолит с низким SAR повышает гидротермальную устойчивость катализатора по сравнению с аналогичными промотированными металлом алюмосиликатами с низким SAR, которые не содержат Ce. Кроме того, неожиданным является то, что эта повышенная активность не наблюдается, когда Ce вводят в аналогичные промотированные металлом цеолиты, имеющие более высокое SAR или более высокую концентрацию металла-промотора.
Соответственно, аспект настоящего изобретения предлагает каталитическую композицию, содержащую: (a) цеолитный материал, имеющий шабазитный каркас, который содержит кремний и алюминий и имеет соотношение диоксида кремния и оксида алюминия (SAR), составляющее от приблизительно 10 до приблизительно 25, и предпочтительно средний размер кристаллов составляющий, по меньшей мере, приблизительно 0,5 мкм; и (b) внекаркасный металл-промотор (M), содержащийся в указанном цеолитном материале как свободный и/или обменный металл, где внекаркасный металл-промотор выбран из группы, которую составляют медь, железо и их смеси, и присутствует в атомном соотношении металла-промотора и алюминия (M:Al), составляющем от приблизительно 0,10 до приблизительно 0,24 по отношению к каркасному алюминию. В определенных вариантах осуществления такой катализатор дополнительно содержит, по меньшей мере, приблизительно 1% мас. Ce по отношению к суммарной массе цеолита.
В еще одном аспекте настоящего изобретения предложено каталитически активное пористое оксидное покрытие, содержащее: (a) промотированный металлом цеолитный материал, имеющий шабазитный каркас, который содержит кремний и алюминий и имеет соотношение диоксида кремния и оксида алюминия (SAR), составляющее от приблизительно 10 до приблизительно 25, и предпочтительно имеющий средний размер кристаллов, составляющий, по меньшей мере, приблизительно 0,5 мкм; в котором цеолит промотирован внекаркасным металлом-промотором (M), выбранным из группы, которую составляют медь, железо и их смеси и в котором внекаркасный металл-промотор присутствует в атомном соотношении металла-промотора и алюминия (M:Al), составляющем от приблизительно 0,10 до приблизительно 0,24 по отношению к каркасному алюминию; и (b) один или более стабилизаторов и/или связующих материалов, где промотированный металлом цеолит и один или более стабилизаторов и/или связующих материалов совместно присутствуют в суспензии.
В еще одном аспекте настоящего изобретения предложен способ уменьшения содержания NOx в отработавшем газе, включающий (a) контакт отработавшего газа, полученного в процессе сгорания обедненной топливом смеси и содержащего NOx, с каталитической композицией, содержащей: (i) цеолитный материал, имеющий шабазитный каркас, который содержит кремний и алюминий, и имеющий соотношение диоксида кремния и оксида алюминия (SAR), составляющее от приблизительно 10 до приблизительно 25, и предпочтительно имеющий средний размер кристаллов, составляющий, по меньшей мере, приблизительно 0,5 мкм; и (ii) внекаркасный металл-промотор (M), содержащийся в указанном цеолитном материале как свободный и/или обменный металл, где внекаркасный металл-промотор выбран из группы, которую составляют медь, железо и их смеси, и присутствует в атомном соотношении металла-промотора и алюминия (M:Al), составляющем от приблизительно 0,10 до приблизительно 0,24 по отношению к каркасному алюминию; и (b) частичную конверсию указанного NOx в N2 и H2O.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 представляет собой графическое изображение данных в отношении к способности конверсии NOx (1) катализатора Cu-SSZ-13, имеющего низкое содержание меди согласно варианту осуществления настоящего изобретения, и (2) сравнительного материала, имеющего высокое содержание меди; и
фиг.2 представляет собой гистограмму, иллюстрирующую данные в отношении конверсии NOx на разнообразных катализаторах согласно настоящему изобретению, которые содержат Ce, а также на других каталитических материалах из сравнительных примеров.
Подробное описание предпочтительных вариантов осуществления изобретения
В предпочтительном варианте осуществления настоящее изобретение относится к катализатору для улучшения качества воздуха окружающей среды, в частности для улучшения качества выбросов отработавшего газа, производимого дизельными и другими двигателями при сгорании обедненной топливом смеси. Качество выбросов отработавшего газа улучшается, по меньшей мере, частично за счет уменьшения содержания концентраций NOx и/или проскока NH3 в полученном при сгорании обедненной топливом смеси отработавшем газе в широком интервале рабочих температур. Полезные катализаторы представляют собой катализаторы, которые селективно восстанавливают NOx и/или окисляют аммиак в окислительной среде (т.е. катализатор SCR и/или катализатор AMOX).
Согласно предпочтительному варианту осуществления предложена каталитическая композиция, представляющая собой цеолитный материал, имеющий шабазитный каркас и соотношение диоксида кремния и оксида алюминия (SAR), составляющее от приблизительно 10 до приблизительно 25, и предпочтительно имеющий средний размер кристаллов, составляющий от приблизительно 0,5 до приблизительно 5 мкм; и содержащая, по меньшей мере, один отличный от алюминия металл-промотор (M), присутствующий в указанном цеолитном материале при соотношении металла-промотора и алюминия (M:Al), составляющем от приблизительно 0,10 до приблизительно 0,24.
Цеолиты согласно настоящему изобретению представляют собой алюмосиликаты, имеющие кристаллическую или псевдокристаллическую структуру, и могут включать каркас, содержащий отличные от алюминия металлы, т.е. замещение металлов, но они не включают силикоалюмофосфаты (SAPO). При использовании в настоящем документе термин «замещение металлов» по отношению к цеолиту означает каркас, в котором вместо одного или более каркасных атомов алюминия или кремния присутствует замещающий металл. С другой стороны, термин «обмен металлов» означает цеолит, содержащий внекаркасные ионы металлов. Примеры металлов, подходящих в качестве замещающих металлов, включают медь и железо.
Подходящие цеолиты имеют кристаллическую структуру типа шабазита (CHA). Различие между материалами цеолитного тип, такими как встречающийся в природе (т.е. минеральный) шабазит, и изотипами, имеющими тот же код каркасного типа, не является просто произвольным, но отражает различие свойств данных материалов, что может, в свою очередь, приводить к различной активности в способе согласно настоящему изобретению. Цеолиты для использования в настоящей заявке включают природные и синтетические цеолиты, но представляют собой предпочтительно синтетические цеолиты, потому что эти цеолиты имеют более однородное соотношение SAR, размер кристаллитов и морфологию кристаллитов, а также содержат примеси в меньшем числе и меньшей концентрации (например, щелочноземельные металлы). Конкретные цеолиты, имеющие шабазитную структуру, которые являются полезными в настоящем изобретении, включают, но не ограничиваются этим, SSZ-13, LZ-218, Linde D, Linde R, Phi и ZK-14, причем предпочтительным является SSZ-13.
Предпочтительные цеолиты имеют кристаллическую структуру типа шабазита, не содержат существенные количества фосфора в своем каркасе. Таким образом, шабазитные каркасы цеолитов согласно настоящему изобретению не содержат фосфор в качестве регулярного повторяющегося элемента и/или не содержат фосфор в таком количестве, которое могло бы повлиять на основные физические и/или химические свойства материала, в частности, по отношению к способности материала селективно восстанавливать NOx в широком температурном интервале. Соответственно, бесфосфорные кристаллические структуры типа шабазита могут включать кристаллические структуры, содержащие минимальное количество фосфора.
Цеолиты, применяемые в настоящем изобретении, могут включать цеолиты, которые подвергают обработке для повышения их гидротермальной устойчивости. Традиционные способы повышения гидротермальной устойчивости включают: (i) деалюминирование при воздействии пара и кислотную экстракцию с использованием кислоты или комплексообразующего реагента, например, этилендиаминтетрауксусной кислоты (EDTA); обработку кислотой и/или комплексообразующим реагентом; обработку в потоке газообразного SiCl4 (Si заменяет Al в цеолитном каркасе); и (ii) катионный обмен с использованием многовалентных катионов, таких как лантан (La). Другие способы, такие как использование фосфорсодержащих соединений, не обязательно обусловлены синергетическим эффектом сочетания низкого содержания меди в шабазитном цеолите, имеющем относительно низкое SAR и относительно большой средний размер кристаллов.
В предпочтительных вариантах осуществления каталитическая композиция содержит кристаллы молекулярного сита, причем средний размер кристаллов составляет более чем приблизительно 0,5 мкм, предпочтительно от приблизительно 0,5 до приблизительно 15 мкм, например, от приблизительно 0,5 до приблизительно 5 мкм, от приблизительно 0,7 до приблизительно 5 мкм, от приблизительно 1 до приблизительно 5 мкм, от приблизительно 1,5 до приблизительно 5,0 мкм, от приблизительно 1,5 до приблизительно 4,0 мкм, от приблизительно 2 до приблизительно 5 мкм или от приблизительно 1 мкм до приблизительно 10 мкм. Кристаллы в каталитической композиции могут представлять собой индивидуальные кристаллы, агломераты кристаллов или их сочетания, притом условии, что агломерат кристаллов имеет средний размер частиц, который составляет предпочтительно менее чем приблизительно 15 мкм, предпочтительнее менее чем приблизительно 10 мкм и еще предпочтительнее менее чем приблизительно 5 мкм. Нижний предел среднего размера частиц агломерата представляет собой средний размер индивидуальных кристаллов композиции.
Размер кристалла (также называется в настоящем документе термином «диаметр кристалла») представляет собой длину одного ребра грани кристалла. Например, морфологию шабазитных кристаллов характеризуют ромбоэдрические (но приблизительно кубические) грани, где все ребра грани имеют приблизительно одинаковую длину. Непосредственное измерение размера кристаллов можно осуществлять, используя микроскопические методы, такие как сканирующая электронная микроскопия (SEM) и просвечивающая электронная микроскопия (TEM). Например, измерение методом SEM включает исследование морфологии материалов при высоком увеличении (как правило, от 1000 до 10000 раз). Метод SEM можно осуществлять путем распределения представительной порции порошка цеолита на подходящей подложке таким образом, чтобы отдельные частицы были распределены с обоснованной равномерностью в поле зрения при увеличении от 1000 до 10000 раз. Из данной выборки исследуют статистически значимый образец, содержащий, например, от 50 до 200 случайных отдельных кристаллов, чтобы измерить и записать максимальные размеры отдельных кристаллов, которые параллельны горизонтальной линии прямого ребра. (Частицы, которые представляют собой очевидные крупные агломераты, не следует включать в данные измерения.) На основании этих измерений вычисляют среднее арифметическое значение размера кристаллов в образце.
Размер частиц агломератов кристаллов можно определять аналогичным образом, за исключением того, что вместо измерения ребра грани отдельного кристалла измеряют длину наибольшей стороны агломерата. Можно также использовать и другие методы определения среднего размера частиц, такие как лазерная дифракция и рассеяние.
При использовании в настоящем документе термин «средний» по отношению к размеру кристаллов или частиц предназначен для представления среднего арифметического значения статистически значимого выбранного образца. Например, катализатор, содержащий кристаллы молекулярного сита, где средний размер кристаллов составляет от приблизительно 0,5 до приблизительно 5,0 мкм, представляет собой катализатор, содержащий множество кристаллов молекулярного сита, в котором статистически значимый выбранный образец (содержащий, например, 50 кристаллов) производит среднее арифметическое, составляющее приблизительно 0,5 до приблизительно 5,0 мкм.
В дополнение к среднему размеру кристаллов каталитические композиции предпочтительно имеют большинство кристаллов, размер которых составляет более чем приблизительно 0,5 мкм, предпочтительно от приблизительно 0,5 до приблизительно 15 мкм, например, от приблизительно 0,5 до приблизительно 5 мкм, от приблизительно 0,7 до приблизительно 5 мкм, от приблизительно 1 до приблизительно 5 мкм, от приблизительно 1,5 до приблизительно 5,0 мкм, от приблизительно 1,5 до приблизительно 4,0 мкм, от приблизительно 2 до приблизительно 5 мкм или от приблизительно 1 мкм до приблизительно 10 мкм. Предпочтительно первый и третий квартиль образца кристаллов соответствует размерам, составляющим более чем приблизительно 0,5 мкм, предпочтительно от приблизительно 0,5 до приблизительно 15 мкм, например, от приблизительно 0,5 до приблизительно 5 мкм, от приблизительно 0,7 до приблизительно 5 мкм, от приблизительно 1 до приблизительно 5 мкм, от приблизительно 1,5 до приблизительно 5,0 мкм, от приблизительно 1,5 до приблизительно 4,0 мкм, от приблизительно 2 до приблизительно 5 мкм или от приблизительно 1 мкм до приблизительно 10 мкм. При использовании в настоящем документе термин «первый квартиль» представляет собой уровень, ниже которого находится одна четверть элементов. Например, первый квартиль образца, который составляют сорок кристаллов, представляет собой размер десятого кристалла при расположении кристаллов в порядке увеличения размера от минимального до максимального. Аналогичным образом, термин «третий квартиль» представляет собой уровень, ниже которого находятся три четверти элементов.
Предпочтительные шабазитные цеолиты имеют молярное соотношение диоксида кремния и оксида алюминия, составляющее от приблизительно 10 до приблизительно 25, предпочтительнее от приблизительно 14 до приблизительно 18 и еще предпочтительнее от приблизительно 15 до приблизительно 17. Соотношение диоксида кремния и оксида алюминия в цеолитах можно определять традиционным анализом. Данное соотношение представляет собой максимально близкое приближение, насколько это возможно, соотношение в жестком каркасе атомов цеолитного кристалла и исключает кремний и алюминий в связующем материале или в катионной или другой форме внутри каналов. Следует отметить, что может оказаться чрезвычайно затруднительным измерение соотношения диоксида кремния и оксида алюминия цеолита после его соединения со связующим материалом. Соответственно, соотношение диоксида кремния и оксида алюминия представлено выше в настоящем документе как соотношение диоксида кремния и оксида алюминия исходного цеолита, т.е. цеолита, используемого для изготовления катализатора, при измерении перед соединением данного цеолита с другими компонентами катализатора.
В продаже имеются шабазитные цеолиты, в частности SSZ-13, имеющие низкое соотношение SAR и большой средний размер кристаллов. В качестве альтернативы, данные материалы можно синтезировать, используя известные в технике способы, такие как способы, описанные в международной патентной заявке WO 2010/043981 (которая включена в настоящий документ посредством ссылки), в международной патентной заявке WO 2010/074040 (которая включена в настоящий документ посредством ссылки), также в статье D. W. Fickel и др. «Исследование координации меди в Cu-SSZ-13 и Cu-SSZ-16 методом рентгеновской дифракции при переменной температуре», J. Phys. Chem., 2010 г., т. 114, с.1633-40, где продемонстрирован синтез содержащего медь цеолита SSZ-13, у которого SAR составляет 12.
Предпочтительно каталитическая композиция содержит, по меньшей мере, один внекаркасный металл для улучшения (т.е. промотирования) каталитической активности и/или термической устойчивости материала. При использовании в настоящем документе термин «внекаркасный металл» означает металл, который находится внутри молекулярного сита и/или, по меньшей мере, на части поверхности молекулярного сита, не включает алюминий, а также не включает атомы, составляющие каркас молекулярного сита. Внекаркасный металл можно вводить в молекулярное сито, используя любой известный способ, такой как ионный обмен, пропитывание, изоморфное замещение и т.д. Внекаркасные металлы могут представлять собой любые известные каталитически активные металлы, которые используют в отрасли катализаторов для изготовления металлообменных молекулярных сит. В одном варианте осуществления, по меньшей мере, один внекаркасный металл используют в сочетании с молекулярным ситом для увеличения активности катализатора. Предпочтительные внекаркасные металлы выбраны из группы, которую составляют медь, никель, цинк, железо, олово, вольфрам, молибден, кобальт, висмут, титан, цирконий, сурьма, марганец, хром, ванадий, ниобий, рутений, родий, палладий, золото, серебро, индий, платина, иридий, рений и их смеси. Более предпочтительные внекаркасные металлы включают металлы, выбранные из группы, которую составляют хром, марганец, железо, кобальт, никель, медь и их смеси. Предпочтительно, по меньшей мере, один из внекаркасных металлов представляет собой медь. Другие предпочтительные внекаркасные металлы включают железо, в частности в сочетании с медью. Для вариантов осуществления, в которых алюмосиликат имеет шабазитный каркас, предпочтительный промотор представляет собой медь.
В определенных вариантах осуществления содержание металла-промотора составляет от приблизительно 0,1 до приблизительно 10% мас. по отношению к суммарной массе молекулярного сита, например от приблизительно 0,5 до приблизительно 5% мас., от приблизительно 0,5 до приблизительно 1% мас. и от приблизительно 2 до приблизительно 5% мас. В определенных вариантах осуществления металл-промотор (M), предпочтительно медь, присутствует в алюмосиликатном цеолите в количестве, производящем атомное соотношение M:Al, составляющее от приблизительно 0,17 до приблизительно 0,24, предпочтительно от приблизительно 0,22 до приблизительно 0,24, в частности, когда алюмосиликатный цеолит имеет соотношение SAR, составляющее от приблизительно 15 до приблизительно 20. При использовании в настоящем документе соотношение M:Al определяют на основании количества M по отношению к количеству Al в каркасе соответствующего цеолита. В определенных вариантах осуществления, в которых используют обменную медь, эта медь присутствует в количестве, составляющем от приблизительно 80 до приблизительно 120 г/куб.фут (от 2,82 до 4,24 г/л) цеолита, или содержание в пористом оксидном покрытии составляет, например, от приблизительно 86 до приблизительно 94 г/куб.фут (от 3,04 до 3,32 г/л) или приблизительно от 92 до приблизительно 94 г/куб.фут (от 3,25 до 3,32 г/л).
Тип и концентрацию переходного металла можно изменять в зависимости от содержащего его молекулярного сита и применения.
В одном примере металлообменное молекулярное сито получают, смешивая молекулярное сито с раствором, в котором содержатся растворимые предшественники каталитически активного металла. Уровень pH раствора можно регулировать, чтобы вызывать осаждение каталитически активных катионов на поверхности или в объеме структуры молекулярного сита. Например, в предпочтительном варианте осуществления шабазит выдерживают в растворе, содержащем нитрат меди, в течение времени, достаточного для обеспечения введения каталитически активных катионов медь в структуру молекулярного сита посредством ионного обмена. Необменные ионы меди осаждаются. В зависимости от применения, в материале молекулярного сита может оставаться часть необменных ионов, таких как свободные ионы меди. Металлообменное молекулярное сито можно затем промывать, сушить и прокаливать. Когда железо и/или медь используют в качестве катионов металлов, массовое содержание металла в каталитическом материале составляет предпочтительно от приблизительно 0,1 до приблизительно 10% мас., предпочтительнее от приблизительно 0,5 до приблизительно 10% мас., например приблизительно от 1 до приблизительно 5% мас. или от приблизительно 2 до приблизительно 3% мас. по отношению к массе цеолита.
В еще одном варианте осуществления настоящего изобретения количество металла-промотора, такого как медь, в катализаторе не ограничено определенным образом, при том условии, что катализатор способен обеспечивать конверсию NOx, составляющую, по меньшей мере, приблизительно 65%, предпочтительно, по меньшей мере, приблизительно 75% и предпочтительнее, по меньшей мере, приблизительно 85%, при температуре, составляющей, по меньшей мере, приблизительно 450°C, предпочтительнее при температуре, составляющей, по меньшей мере, приблизительно 550°C и еще предпочтительнее при температуре, составляющей, по меньшей мере, приблизительно 650°C. Предпочтительно конверсия в каждом из данных температурных интервалов составляет, по меньшей мере, приблизительно 70%, предпочтительнее 80% и еще предпочтительнее 90% от способности катализатора осуществлять конверсию в случае работы катализатора при температуре 250°C. Предпочтительно катализатор может обеспечивать 80% конверсию с селективностью по отношению к N2, составляющей, по меньшей мере, приблизительно 85%, в одном или более из данных температурных интервалов.
Как правило, ионный обмен катионов каталитического металла в объеме или на поверхности молекулярного сита можно осуществлять при комнатной температуре или при температуре, составляющей вплоть до приблизительно 80°C, в течение периода, составляющего приблизительно от 1 до 24 часов, при значении pH, приблизительно равным 7. Полученный в результате каталитический материал молекулярного сита предпочтительно сушат в течение ночи при температуре, составляющей приблизительно от 100 до 120°С, и прокаливают при температуре, составляющей, по меньшей мере, приблизительно 500°C.
В определенных вариантах осуществления промотированные металлом цеолитные катализаторы согласно настоящему изобретению также содержат относительно большое количество Ce. В определенных вариантах осуществления цеолит, предпочтительно шабазитный алюмосиликат, имеет SAR, составляющее менее чем 20, предпочтительно от приблизительно 15 до приблизительно 18, и его промотируют, используя металл, предпочтительно медь, предпочтительно при атомном соотношении меди и алюминия, составляющем от приблизительно 0,17 до приблизительно 0,24, а также он содержит Ce в концентрации, составляющей более чем приблизительно 1% мас., предпочтительно более чем приблизительно 1,35% мас., предпочтительнее от 1,35 до 13,5% мас. по отношению к суммарной массе цеолита. Такие содержащие церий катализаторы являются более устойчивыми по сравнению с имеющими аналогичную структуру катализаторами, такими как другие шабазитные цеолиты, имеющие более высокое SAR, в частности цеолиты, имеющие более высокое содержание металлов-промоторов.
Предпочтительно церий присутствует в материале катализатора в концентрации, составляющей, по меньшей мере, приблизительно 1% мас. по отношению к суммарной массе цеолита. Примеры предпочтительных концентраций составляют, по меньшей мере, приблизительно 2,5% мас., по меньшей мере, приблизительно 5% мас., по меньшей мере, приблизительно 8% мас., по меньшей мере, приблизительно 10% мас., от приблизительно 1,35 до приблизительно 13,5% мас., от приблизительно 2,7 до приблизительно 13,5% мас., от приблизительно 2,7 до приблизительно 8,1% мас., от приблизительно 2 до приблизительно 4% мас., от приблизительно 2 до приблизительно 9,5% мас. и от приблизительно 5 до приблизительно 9,5% мас. по отношению к суммарной массе цеолита. Для большинства из данных интервалов повышение активности катализатора находится в прямой корреляции с концентрацией Ce в катализаторе. Данные интервалы являются особенно предпочтительными для промотированных медью алюмосиликатов, имеющих шабазитный каркас, такой как SSZ-13, причем SAR составляет от приблизительно 10 до приблизительно 25, от приблизительно 20 до приблизительно 25, от приблизительно 15 до приблизительно 20 или от приблизительно 16 до приблизительно 18, и предпочтительнее для таких вариантов осуществления, в которых медь присутствует при соотношении меди и алюминия, составляющем от приблизительно 0,17 до приблизительно 0,24.
В определенных вариантах осуществления концентрация церия в материале катализатора составляет от приблизительно 50 до приблизительно 550 г/куб.фут (от 1,77 до 19,42 г/л). Другие значения концентрации Ce составляют более 100 г/куб.фут (3,53 г/л), более 200 г/куб.фут (7,06 г/л), более 300 г/куб.фут (10,59 г/л), более 400 г/куб.фут (14,12 г/л), более 500 г/куб.фут (17,66 г/л), от приблизительно 75 до приблизительно 350 г/куб.фут (от 2,65 до 12,36 г/л), от приблизительно 100 до приблизительно 300 г/куб.фут (от 3,53 до 10,59 г/л) и от приблизительно 100 до приблизительно 250 г/куб.фут (от 3,53 до 8,83 г/л).
В определенных вариантах осуществления концентрация Ce превышает теоретическое максимальное доступное для обмена количество в промотированном металлом цеолите. Соответственно в некоторых вариантах осуществления Ce присутствует более чем в один форме, такой как ионы Ce, мономерный оксид церия, олигомерный оксид церия и их сочетания, при том условии, что указанный олигомерный оксид церия имеет средний размер кристаллов, составляющий менее чем 5 мкм, например, менее чем 1 мкм, от приблизительно 10 нм до приблизительно 1 мкм, от приблизительно 100 нм до приблизительно 1 мкм, от приблизительно 500 нм до приблизительно 1 мкм, от приблизительно 10 до приблизительно 500 нм, от приблизительно 100 до приблизительно 500 нм и от приблизительно 10 до приблизительно 100 нм. При использовании в настоящем документе термин «мономерный оксид церия» означает CeO2 в виде отдельных молекул или частиц, находящихся свободно на поверхности и/или в объеме цеолита или слабо связанных с цеолитом. При использовании в настоящем документе термин «олигомерный оксид церия» означает нанокристаллический CeO2, находящийся свободно на поверхности и/или в объеме цеолита или слабо связанный с цеолитом.
Для вариантов осуществления, в которых катализатор представляет собой часть композиции пористого оксидного покрытия, данное пористое оксидное покрытие может дополнительно включать связующий материал, содержащий Ce или оксид церия. Для таких вариантов осуществления, содержащие церий частицы в связующем материале значительно превышают по размерам содержащие Ce частицы в катализаторе.
Церий предпочтительно вводят в цеолит, содержащий промотирующий металл. Например, в предпочтительном варианте осуществления алюмосиликат, имеющий шабазитный каркас, претерпевает процесс обмена меди перед пропитыванием церием. Примерный процесс пропитывания церием включает введение нитрата Ce в промотированный медью цеолит посредством традиционной технологии пропитывания по влагоемкости.
Цеолитный катализатор для использования в настоящем изобретении может находиться в форме пористого оксидного покрытия, предпочтительно пористого оксидного покрытия, которое является подходящим для покрытия носителя, такого как поток, содержащий металлический или керамический материал, через монолитный носитель или фильтрующий носитель, включающий, например, фильтр с пристеночным течением, спеченный металлический фильтр или фильтр неполного потока. Соответственно, еще один аспект настоящего изобретения представляет собой пористое оксидное покрытие, содержащее компонент катализатора, который описан в настоящем документе. В дополнение к компоненту катализатора, композиции пористого оксидного покрытия могут дополнительно содержать связующий материал, выбранный из группы, которую составляют оксид алюминия, диоксид кремния, (нецеолитный) двойной оксид кремния и алюминия, встречающиеся в природе глины, TiO2, ZrO2 и SnO2.
В одном варианте осуществления предложен носитель, на который наносят цеолитный катализатор.
Предпочтительные носители для использования в автомобильных устройствах представляют собой монолитные материалы, имеющие так называемую ячеистую геометрию, которая содержит множество прилегающих параллельных каналов, причем каждый канал, как правило, имеет квадратную площадь поперечного сечения. Ячеистая форма обеспечивает большую каталитическую поверхность с минимальным габаритным размером и перепадом давления. Цеолитный катализатор можно наносить на проточный монолитный носитель (например, ячеистый монолитный носитель катализатора, структура которого содержит многочисленные мелкие параллельные каналы, проходящие аксиально через все изделие) или фильтрующий монолитный носитель, такой как фильтр с пристеночным течением, и т.д. В еще одном варианте осуществления цеолитный катализатор изготавливают как катализатор экструдируемого типа. Предпочтительно цеолитный катализатор наносят на носитель в количестве, достаточном для восстановления NOx, содержащегося в потоке отработавшего газа, который проходит через носитель. В определенных вариантах осуществления, по меньшей мере, часть носителя может также содержать металл платиновой группы, такой как платина (Pt), чтобы окислять аммиак в потоке отработавшего газа.
Предпочтительно содержащий молекулярное сито катализатор вводят в объем или на поверхность носителя в количестве, достаточном для восстановления NOx, содержащегося в потоке отработавшего газа, проходящего через носитель. В определенных вариантах осуществления, по меньшей мере, часть носителя может также содержать катализатор окисления, такой как металл платиновой группы (например, платину), чтобы окислять аммиак в потоке отработавшего газа или выполнять другие функции, такие как конверсия CO в CO2.
Каталитические цеолиты, описанные в настоящем документе, могут промотировать реакцию восстановителя, предпочтительно аммиака, с оксидами азота, в которой селективно образуются элементарный азот (N2) и вода (H2O), параллельно с конкурирующей реакцией кислорода и аммиака. В одном варианте осуществления катализатор может иметь состав, способствующий восстановлению оксидов азота аммиаком (т.е. катализатор SCR). В еще одном варианте осуществления катализатор может иметь состав, способствующий окислению аммиака кислородом (т.е. катализатор окисления аммиака (AMOX)). В еще одном варианте осуществления катализатор SCR и катализатор AMOX используют последовательно, причем оба катализатора представляют собой содержащий металл цеолит, описанный в настоящем документе, и катализатор SCR установлен выше по потоку относительно катализатора AMOX. В определенных вариантах осуществления катализатор AMOX расположен как верхний слой на окислительном нижнем слое, причем нижний слой представляет собой катализатор, содержащий металл платиновой группы (PGM), или катализатор, не содержащий PGM. Предпочтительно катализатор AMOX наносят на носитель, имеющий высокую удельную поверхность, включая, но не ограничиваясь этим, оксид алюминия. В определенных вариантах осуществления катализатор AMOX наносят на носители, предпочтительно носители, которые предназначены для обеспечения большой контактной поверхности при минимальном обратном давлении, такие как проточные металлические или кордиеритовые ячеистые материалы. Например, предпочтительный носитель содержит от приблизительно 25 до приблизительно 300 ячеек на квадратный дюйм (CPSI) (от 38750 до 465000 ячеек на 1 м2), чтобы обеспечивать низкое обратное давление. Достижение низкого обратного давления является особенно важным, чтобы сводить до минимума влияние катализатора AMOX на эффективность рециркуляции отработавшего газа (EGR). Катализатор AMOX можно наносить на носитель как пористое оксидное покрытие, чтобы предпочтительно обеспечивать содержание, составляющее приблизительно от 0,3 до 2,3 г/куб. дюйм (от 18,31 до 140,35 г/мл). Чтобы обеспечивать увеличение конверсии NOx, можно наносить на лицевую поверхность носителя только покрытие SCR, а на обратную поверхность носителя катализатор SCR и катализатор окисления NH3, который может дополнительно включать Pt или Pt/Pd на носителе из оксида алюминия.
Согласно еще одному аспекту настоящего изобретения предложен способ восстановления соединений NOx или окисления NH3 в газе, который включает контакт газа с описанной в настоящем документе каталитической композицией для каталитического восстановления соединений NOx в течение времени, достаточного для снижения содержания соединений NOx в газе. В одном варианте осуществления оксиды азота восстанавливают восстановителем при температуре, составляющей, по меньшей мере, 100°C. В еще одном варианте осуществления оксиды азота восстанавливают восстановителем при температуре, составляющей приблизительно от 150 до 750°C. В определенном варианте осуществления температурный интервал составляет от 175 до 550°C. В еще одном варианте осуществления температурный интервал составляет от 175 до 400°C. В еще одном варианте осуществления температурный интервал составляет от 450 до 900°C, предпочтительно от 500 до 750°C, от 500 до 650°C, от 450 до 550°C или от 650 до 850°C. Варианты осуществления с использованием температур, составляющих более чем 450°C, являются особенно полезными для очистки отработавших газов, выделяемых имеющими высокую и низкую мощность дизельными двигателями, которые оборудованы системой вывода отработавших газов, содержащей (необязательно катализируемые) дизельные фильтры очистки от микрочастиц, которые активно регенерируют, например, вводя углеводород в систему выпуска отработавших газов выше по потоку относительно фильтра, причем цеолитный катализатор для использования согласно настоящему изобретению находится ниже по потоку относительно фильтра. В других вариантах осуществления цеолитный катализатор SCR введен в фильтрующий носитель. Способы согласно настоящему изобретению могут включать одну или более из следующих стадий: (a) накопление и/или сжигание сажи, которая находится в контакте с впуском каталитического фильтра; (b) введение азотистого восстановителя в поток отработавшего газа перед контактом с каталитическим фильтром, предпочтительно без вмешательства в каталитические стадии, включающие обработку NOx восстановителем; (c) пропускание NH3 над адсорбирующим NOx катализатором с предпочтительным использованием такого NH3 в качестве восстановителя ниже по потоку относительно реакции SCR; (d) контакт потока отработавшего газа с катализатором окисления дизельного топлива (DOC) для окисления содержащей углеводородную основу растворимой органической фракции (SOF) и/или моноксида углерода до CO2 и/или окисления NO до NO2, который, в свою очередь, можно использовать для окисления микрочастиц в фильтре очистки от микрочастиц и/или для уменьшения содержания микрочастиц (PM) в отработавшем газе; (e) контакт отработавшего газа с одним или несколькими проточными каталитическими устройствами SCR в присутствии восстановителя для уменьшения концентрации NOx в отработавшем газе; и (f) контакт отработавшего газа с катализатором AMOX, предпочтительно ниже по потоку относительно катализатора SCR для окисления основной массы, если не всего аммиака перед выпуском отработавшего газа в атмосферу или прохождением отработавшего газа через рециркуляционный контур перед тем, как отработавший газ поступает/возвращается в двигатель.
Восстановитель (также известный как восстанавливающий реагент) для процессов SCR в широком смысле означает любое соединение, которое способствует уменьшению содержания NOx в отработавшем газе. В число примером восстановителей, полезных в настоящем изобретении, входят аммиак, гидразин или любой подходящий предшественник аммиака, такой как мочевина ((NH2)2CO), карбонат аммония, карбамат аммония, гидрокарбонат аммония или формиат аммония, а также углеводороды, такие как дизельное топливо и подобные вещества. Особенно предпочтительные восстановители представляют собой соединения на основе азота, причем аммиак является наиболее предпочтительным.
В еще одном варианте осуществления всю массу или, по меньшей мере, часть восстановителя на основе азота, в частности NH3, можно вводить в адсорбирующий NOx катализатор (NAC), ловушку обедненного NOx (LNT), или аккумулирующий/восстанавливающий NO катализатор (NSRC), которые расположены выше по потоку относительно катализатора SCR, например катализатора SCR согласно настоящему изобретению, который находится на фильтре с пристеночным течением. Компоненты NAC, полезные в настоящем изобретении, включают катализаторы, представляющие собой сочетание основного материала (такого, как щелочной, щелочноземельный металл или редкоземельный металл, включая оксиды щелочных металлов, оксиды щелочноземельных металлов и их сочетания) и благородного металла (такого, как платина) и необязательно компонент катализатора восстановления, такого как родий.
Конкретные типы основных материалов, полезных в NAC, включают оксид цезия, оксид калия, оксид магния, оксид натрия, оксид кальция, оксид стронция, оксид бария и их сочетания. Благородный металл предпочтительно присутствует в количестве, составляющем от приблизительно 10 до приблизительно 200 г/куб.фут (от 0,35 до 7,06 г/л), в том числе от 20 до 60 г/куб.фут (от 0,71 до 2,12 г/л). В качестве альтернативы благородный металл катализатора присутствует в средней концентрации, которая может составлять от приблизительно 40 до приблизительно 100 г/куб.фут (от 1,42 до 3,53 г/л).
При определенных условиях во время периодических операций по регенерации с обогащенной топливом смесью NH3 можно получать над адсорбирующим NOx катализатором. Катализатор SCR, установленный ниже по потоку относительно адсорбирующего NOx катализатора, может повышать суммарную эффективность системы, сокращающей содержание NOx. В комбинированной системе, катализатор SCR способен аккумулировать NH3, выделяющийся из катализатора NAC во время операций по регенерации с обогащенной топливом смесью, и использовать сохраненный NH3 для селективного восстановления некоторой части или всей массы оксидов азота, которые проскакивают через катализатор NAC во время работы в нормальных условиях с обедненной топливом смесью.
Данный способ можно осуществлять, используя газ, выделяющийся в процессе сгорания, например, из двигателя внутреннего сгорания (в том числе подвижного или стационарного), газовой турбины и электростанции, работающей на угольном или нефтяном топливе. Данный способ можно также использовать для обработки газа, выделяющегося в промышленных процессах, таких как очистка, из нагревателей и бойлеров нефтеперерабатывающих заводов, печей, химических промышленных предприятий, коксовых печей, муниципальных предприятий по переработке отходов, сжигательных установок и т.д. В конкретном варианте осуществления данный способ используют для очистки отработавшего газа из автомобилей с использующими обедненные топливом смеси двигателями внутреннего сгорания, включая дизельный двигатель, использующий обедненную топливом смесь бензиновый двигатель или использующий сжиженный нефтяной газ или природный газ двигатель.
Согласно следующему аспекту настоящее изобретение предлагает систему выпуска отработавших газов для использующего обедненную топливом смесь двигателя внутреннего сгорания, причем данная система включает трубопровод для движения потока отработавшего газа, источник азотистого восстановителя, цеолитный катализатор, описанный в настоящем документе. Данная система может включать регулятор для дозирования азотистого восстановителя в поток отработавшего газа только тогда, когда будет определено, что цеолитный катализатор способен катализировать восстановление NOx с эффективностью не ниже желательного уровня, при такой температуре, которая превышает 100°C, превышает 150°C или превышает 175°C. Определению средствами регулирования могут способствовать один или более подходящих входных сигналов от показывающих состояние двигателя датчиков, выбранных из группы, которую составляют: температура отработавшего газа, температура каталитического слоя, положение ускорителя, массовый поток отработавшего газа в системе, вакуум в коллекторе, время зажигания, скорость двигателя, соотношение окислителя и восстановителя (значение λ) отработавшего газа, количество топлива, впрыскиваемого в двигатель, положение клапана рециркуляции отработавшего газа (EGR) и, следовательно, величина EGR и давление наддува.
В конкретном варианте осуществления дозирование регулируют в зависимости от количества оксидов азота в отработавшем газе, которое определяют непосредственно (используя подходящий датчик NOx) или косвенно, например, путем использования предварительно коррелированных справочных таблиц или карт, которые хранятся в регулирующем устройстве, в соответствии с любым одним или несколькими из вышеупомянутых входных сигналов, показывающих состояние двигателя с прогнозируемым содержанием NOx в отработавшем газе. Дозирование азотистого восстановителя можно отрегулировать таким образом, чтобы от 60% до 200% теоретического количества аммиака присутствовало в отработавшем газе, поступающем в катализатор SCR, что соответствует соотношению 1:1 NH3/NO и 4:3 NH3/NO2. Регулирующее устройство может включать предварительно запрограммированный процессор, такой как электронный блок управления (ECU).
В следующем варианте осуществления катализатор окисления, который способствует окислению моноксида азота в отработавшем газе в диоксид азота, может находиться выше по потоку относительно точки дозирования азотистого восстановителя в отработавший газ. В одном варианте осуществления катализатор окисления приспособлен для создания газового потока, поступающего в цеолитный катализатор SCR и имеющего объемное соотношение NO и NO2, составляющее от приблизительно 4:1 до приблизительно 1:3, например, при температуре отработавшего газа у впуска катализатора окисления, составляющей от 250°C до 450°C. Катализатор окисления может содержать, по меньшей мере, один металл платиновой группы (или их некоторое сочетание), такой как платина, палладий или родий, нанесенный на проточный монолитный носитель. В одном варианте осуществления, по меньшей мере, один металл платиновой группы представляет собой платину, палладий или сочетание платины и палладия. Металл платиновой группы можно наносить на имеющий большую удельную поверхность компонент пористого оксидного покрытия, такой как оксид алюминия, цеолит, такой как алюмосиликатный цеолит, диоксид кремния, нецеолитный двойной оксид кремния и алюминия, оксид церия, диоксид циркония, диоксид титана или смешанный или композитный оксид, одновременно содержащий оксид церия и диоксид циркония.
В следующем варианте осуществления подходящий фильтрующий носитель находится между катализатором окисления и катализатором SCR. В качестве фильтрующих носителей можно выбирать любые из вышеупомянутых фильтров, например фильтры с пристеночным течением. Если фильтр содержит катализатор, например катализатор окисления обсуждаемого выше типа, устройство для дозирования азотистого восстановителя предпочтительно находится между фильтром и цеолитным катализатором. В качестве альтернативы, если в фильтре не содержится катализатор, устройство для дозирования азотистого восстановителя может находиться между катализатором окисления и фильтром.
В следующем варианте осуществления, цеолитный катализатор для использования в настоящем изобретении нанесен на фильтр, расположенный ниже по потоку относительно катализатора окисления. Если фильтр включает цеолитный катализатор для использования в настоящем изобретении, устройство для дозирования азотистого восстановителя предпочтительно находится между катализатором окисления и фильтром.
В следующем аспекте предложен автомобильный двигатель, работающий на обедненной топливом смеси и включающий систему выпуска отработавших газов согласно настоящему изобретению. Данный использующий обедненную топливом смесь двигатель внутреннего сгорания может представлять собой дизельный двигатель, использующий обедненную топливом смесь бензиновый двигатель или использующий сжиженный нефтяной газ или природный газ двигатель.
ПРИМЕРЫ
Пример 1
Изготавливали образец цеолита, имеющего шабазитный каркас (изотип SSZ-13) и SAR, составляющее приблизительно 17. В данный образец вводили медь, получая материал катализатора, в котором атомное соотношение Cu:Al составляло приблизительно 0,20. После выдерживания при температуре, составляющей приблизительно 550°C, в течение приблизительно 72 часов в катализатор пропускали модельный отработавший газ дизельного двигателя, который объединяли с аммиаком, получая поток, в котором соотношение аммиака и NOx (ANR) составляло 1, и объемная скорость составляла 50000 ч-1. Эффективность катализатора в конверсии NOx определяли при температурах, составлявших от 200 до 550°C.
Сравнительный пример 1
Для сравнения изготавливали аналогичный цеолит SSZ-13, но вместо введения в малого количества меди в сравнительный материал вводили достаточное количество меди, чтобы получить атомное соотношение Cu:Al, превышающее 0,44. В сравнительный материал пропускали аналогичный поток отработавшего газа при аналогичных условиях. Эффективность сравнительного материала в конверсии NOx определяли при температурах, составлявших от 200°C до 550°C.
Было обнаружено, что при температурах выше 350°C содержащий малое количество меди катализатор обеспечивал значительное увеличение конверсии NOx.
Пример 2
Алюмосиликат, имеющий шабазитный каркас (изотип SSZ-13), имеющий SAR 17 (цеолит A) и содержащий 2,4% мас. обменной меди (по отношению к суммарной массе цеолита) пропитывали нитратом церия, используя технологию пропитывания по влагоемкости, и затем пористое оксидное покрытие наносили на носитель, получая образец катализатора, содержащий 75 г/куб.фут (2,65 г/л) Ce (1,35% мас. Ce по отношению к суммарной массе цеолита). Такую же процедуру повторяли, чтобы получить образцы катализатора, содержащие 96 г/куб.фут (3,39 г/л) Ce, 119 г/куб.фут (4,20 г/л) Ce, 188 г/куб.фут (6,64 г/л) Ce и 285 г/куб.фут (10,06 г/л) Ce. Каждый из данных образцов подвергали гидротермальной обработке при 800°C в 10% H2O в течение пяти часов. После этого данные образцы анализировали, чтобы определить их способность к конверсии NOx в процессе SCR с NH3 при 200°C и при 500°C, причем процесс SCR с NH3 осуществляли в условиях проскока аммиака, составлявшего 20 частей на миллион. Результаты данного анализа представлены на фиг.2.
Сравнительные примеры 2 и 3
Цеолит A, не пропитанный церием, анализировали, чтобы определить его способность к конверсии NOx в процессе SCR с NH3 при 200°C и при 500°C, причем процесс SCR с NH3 осуществляли в условиях проскока аммиака, составлявшего 20 частей на миллион. Результаты данного анализа представлены на фиг.1.
Алюмосиликат, имеющий шабазитный каркас (изотип SSZ-13), SAR 25 и содержащий 3,3% мас. обменной меди (без пропитывания церием), анализировали, чтобы определить его способность к конверсии NOx в процессе SCR с NH3 при 200°C и при 500°C, причем процесс SCR с NH3 осуществляли в условиях проскока аммиака, составлявшего 20 частей на миллион. Результаты данного анализа представлены на фиг.2.
Результаты данных исследований демонстрируют, что имеющие низкие SAR промотированные медью цеолиты, пропитанные церием, обладают превосходной гидротермальной устойчивостью.
Claims (21)
1. Каталитическая композиция для уменьшения содержания NOx, содержащая:
a) цеолитный материал, имеющий шабазитный каркас, который содержит кремний и алюминий, и имеющий соотношение диоксида кремния и оксида алюминия (SAR), составляющее от 10 до 25; и
b) внекаркасный металл-промотор (М), содержащийся в указанном цеолитном материале; и
c) по меньшей мере, 1% мас. церия в указанном цеолитном материале по отношению к суммарной массе цеолита, причем указанный церий присутствует в форме, выбранной из обменных ионов церия, мономерного оксида церия, олигомерного оксида церия и их сочетаний, при том условии, что указанный олигомерный оксид церия имеет размер частиц, составляющий менее чем 5 мкм,
в которой внекаркасный металл-промотор выбран из группы, состоящей из меди, железа и их смесей, и присутствует в атомном соотношении металла-промотора и алюминия (М:Al), составляющем от 0,10 до 0,24 по отношению к каркасному алюминию.
2. Каталитическая композиция по п. 1, в которой указанный цеолит имеет SAR, составляющее от 14 до 18.
3. Каталитическая композиция по п. 1, в которой указанный цеолит представляет собой изотип SSZ-13.
4. Каталитическая композиция по п. 1, в которой указанный металл-промотор представляет собой медь.
5. Каталитическая композиция по п. 1, в которой катализатор имеет соотношение М:Al, составляющее от 0,17 до 0,24.
6. Каталитическая композиция по п. 1, в которой катализатор имеет соотношение М:Al, составляющее от 0,22 до 0,24.
7. Каталитическая композиция по п. 4, в которой катализатор содержит от 2 до 3% мас. указанной меди.
8. Каталитическая композиция по п. 1, где каталитическая композиция содержит от 1,35 до 13,5% мас. церия по отношению к суммарной массе цеолита.
9. Каталитическая композиция по п. 8, где указанная композиция по существу свободна от циркония и его оксидов, титана и его оксидов.
10. Каталитически активное пористое оксидное покрытие, содержащее:
a) каталитическую композицию по п. 1; и
b) один или более стабилизаторов и/или связующих материалов,
в котором промотированный металлом цеолит и один или более стабилизаторов и/или связующих материалов совместно присутствуют в суспензии.
11. Способ уменьшения содержания NOx в отработавшем газе, включающий:
контакт отработавшего газа, полученного в процессе сгорания обедненной топливом смеси и содержащего NOx, с каталитической композицией по п. 1; и
частичную конверсию указанного NOx в N2 и H2O.
12. Каталитически активное пористое оксидное покрытие по п. 10, содержащее связующий материал, в котором связующий материал выбран из группы, которую составляют оксид церия, оксид алюминия, диоксид кремния, (нецеолитный) двойной оксид кремния и алюминия, встречающиеся в природе глины, TiO2, ZrO2 и SnO2.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41901510P | 2010-12-02 | 2010-12-02 | |
US61/419,015 | 2010-12-02 | ||
US201161565774P | 2011-12-01 | 2011-12-01 | |
US61/565,774 | 2011-12-01 | ||
PCT/US2011/063079 WO2012075400A1 (en) | 2010-12-02 | 2011-12-02 | Zeolite catalyst containing metal |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013129989A RU2013129989A (ru) | 2015-01-10 |
RU2614411C2 true RU2614411C2 (ru) | 2017-03-28 |
Family
ID=45446178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013129989A RU2614411C2 (ru) | 2010-12-02 | 2011-12-02 | Цеолитный катализатор, содержащий металл |
Country Status (11)
Country | Link |
---|---|
US (3) | US8535629B2 (ru) |
EP (1) | EP2646149B1 (ru) |
JP (1) | JP6450521B2 (ru) |
KR (2) | KR101952557B1 (ru) |
CN (1) | CN103298557B (ru) |
BR (1) | BR112013013711B1 (ru) |
DE (1) | DE112011103996T8 (ru) |
DK (1) | DK2646149T3 (ru) |
GB (1) | GB2502207A (ru) |
RU (1) | RU2614411C2 (ru) |
WO (1) | WO2012075400A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767667C1 (ru) * | 2018-03-28 | 2022-03-18 | Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайэнс | Композиционный катализатор, способ его получения и способ получения этилена |
RU2807541C2 (ru) * | 2018-04-30 | 2023-11-16 | ЭКОВИСТ КАТАЛИСТ ТЕКНОЛОДЖИЗ ЛЛСи | Цеолиты типа шабазита с низким содержанием диоксида кремния, имеющие высокую кислотность |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2464478A (en) * | 2008-10-15 | 2010-04-21 | Johnson Matthey Plc | Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment |
JP5767206B2 (ja) * | 2009-04-17 | 2015-08-19 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | リーン/リッチエージングに対する耐久性を有する窒素酸化物の還元のための小細孔分子篩担持銅触媒 |
DK2646149T3 (da) * | 2010-12-02 | 2020-06-29 | Johnson Matthey Plc | Metalholdig zeolitkatalysator |
EP2481473A3 (en) * | 2011-01-26 | 2012-08-15 | Ford Global Technologies, LLC | LNT and SCR catalysts for combined LNT-SCR applications |
US20120258032A1 (en) * | 2011-11-02 | 2012-10-11 | Johnson Matthey Public Limited Company | Catalyzed filter for treating exhaust gas |
BR112014013246A8 (pt) * | 2011-12-01 | 2017-06-13 | Johnson Matthey Plc | composição catalisadora, e, método para tratar nox |
DE112013000620T5 (de) * | 2012-01-20 | 2014-10-16 | Gentherm Incorporated | Integrierter Katalysator/Thermoelektrischer Generator |
US10245582B2 (en) | 2012-04-11 | 2019-04-02 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metals |
CA2888518C (en) | 2012-10-19 | 2021-09-14 | Basf Corporation | 8-ring small pore molecular sieve with promoter to improve low temperature performance |
US8969599B2 (en) | 2013-03-08 | 2015-03-03 | University Of Notre Dame Du Lac | Cerium-containing zeolites and coke reduction methods |
DE102013005749A1 (de) | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | CuCHA Material für die SCR-Katalyse |
RU2675363C2 (ru) * | 2013-07-30 | 2018-12-19 | Джонсон Мэтти Паблик Лимитед Компани | Катализатор обработки проскочившего аммиака |
RU2669556C2 (ru) * | 2013-08-30 | 2018-10-12 | Джонсон Мэтти Паблик Лимитед Компани | Смешанные цеолитные катализаторы для очистки выхлопных газов |
DE102014115865A1 (de) * | 2013-10-31 | 2015-04-30 | Johnson Matthey Public Limited Company | Synthese eines AEI-Zeoliths |
WO2015077034A1 (en) | 2013-11-22 | 2015-05-28 | Saudi Basic Industries Corporation | Catalyst with improved activity/selectivity for light naphtha aromatization |
JP5880527B2 (ja) * | 2013-11-28 | 2016-03-09 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP5888312B2 (ja) * | 2013-11-29 | 2016-03-22 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
US11266981B2 (en) * | 2013-12-02 | 2022-03-08 | Johnson Matthey Public Limited Company | Mixed template synthesis of low silica CHA zeolite |
DE102014117669A1 (de) * | 2013-12-02 | 2015-06-03 | Johnson Matthey Public Limited Company | Struktursteuerungsmittelgemisch umfassende Synthese eines Cu-CHA mit hohem Siliciumdioxid-Anteil |
WO2015084930A1 (en) | 2013-12-03 | 2015-06-11 | Johnson Matthey Public Limited Company | Cu-cha containing scr catalyst |
DE102014203617A1 (de) * | 2014-02-27 | 2015-08-27 | Johnson Matthey Catalysts (Germany) Gmbh | Katalysatormodul, Aufnahmeeinheit für ein solches Katalysatormodul sowie Verfahren zum Herstellen eines solchen Katalysatormoduls |
KR102370137B1 (ko) * | 2014-03-24 | 2022-03-04 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 배기가스 처리 방법 및 시스템 |
US9561469B2 (en) | 2014-03-24 | 2017-02-07 | Johnson Matthey Public Limited Company | Catalyst for treating exhaust gas |
GB2530129B (en) * | 2014-05-16 | 2016-10-26 | Johnson Matthey Plc | Catalytic article for treating exhaust gas |
CN105289625A (zh) * | 2014-06-16 | 2016-02-03 | 天津朗鑫科技有限公司 | 一种用于氮氧化物脱除的催化材料及制备方法 |
US9889437B2 (en) | 2015-04-15 | 2018-02-13 | Basf Corporation | Isomorphously substituted catalyst |
US10850265B2 (en) | 2014-06-18 | 2020-12-01 | Basf Corporation | Molecular sieve catalyst compositions, catalytic composites, systems, and methods |
KR102436905B1 (ko) * | 2014-06-18 | 2022-08-29 | 바스프 코포레이션 | 분자체 촉매 조성물, 촉매 복합체, 시스템, 및 방법 |
US9764313B2 (en) | 2014-06-18 | 2017-09-19 | Basf Corporation | Molecular sieve catalyst compositions, catalyst composites, systems, and methods |
US9689293B2 (en) | 2014-08-19 | 2017-06-27 | Continental Automotive Systems, Inc. | Reductant delivery unit for automotive selective catalytic reduction with optimized fluid heating |
US10807082B2 (en) * | 2014-10-13 | 2020-10-20 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metals |
GB201504986D0 (en) * | 2015-02-13 | 2015-05-06 | Johnson Matthey Plc | Oxidation catalyst for treating a natural gas emission |
GB2540832B (en) * | 2015-02-20 | 2019-04-17 | Johnson Matthey Plc | Bi-metal molecular sieve catalysts |
JP6599637B2 (ja) | 2015-05-13 | 2019-10-30 | イビデン株式会社 | ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置 |
ES2789424T3 (es) * | 2015-06-12 | 2020-10-26 | Basf Corp | Sistema de tratamiento de gases de escape |
MY191845A (en) | 2015-08-21 | 2022-07-18 | Basf Corp | Exhaust gas treatment catalysts |
CA2997040A1 (en) | 2015-09-04 | 2017-03-09 | Basf Se | Integrated scr and ammonia oxidation catalyst systems |
GB201517579D0 (en) * | 2015-10-06 | 2015-11-18 | Johnson Matthey Plc | Passive nox adsorber |
CN105478103B (zh) * | 2015-11-19 | 2018-11-13 | 浙江大学 | 一种船舶柴油机scr脱硝催化剂及其制备方法 |
CA3013546A1 (en) * | 2016-02-03 | 2017-08-10 | Basf Corporation | Copper and iron co-exchanged chabazite catalyst |
JP2019513537A (ja) * | 2016-03-08 | 2019-05-30 | ビーエーエスエフ コーポレーション | N2o排出量の低減を示すイオン交換モレキュラーシーブ触媒 |
WO2018015930A1 (en) * | 2016-07-22 | 2018-01-25 | Johnson Matthey Public Limited Company | Exhaust gas catalyst and catalyst binders for filter substrates |
EP3281698A1 (de) * | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Scr-aktives material |
US10898886B2 (en) | 2016-08-26 | 2021-01-26 | Ford Global Technologies, Llc | Hydrocarbon and nitrogen oxides catalyst trap |
US10807080B2 (en) | 2016-09-30 | 2020-10-20 | Johnson Matthey Public Limited Company | Synthesis of metal promoted zeolite catalyst |
JP6792425B2 (ja) * | 2016-11-21 | 2020-11-25 | イビデン株式会社 | ゼオライトの製造方法 |
US11202991B2 (en) | 2017-02-20 | 2021-12-21 | Cataler Corporation | Exhaust gas purifying catalyst |
GB2560990A (en) * | 2017-03-31 | 2018-10-03 | Johnson Matthey Catalysts Germany Gmbh | Composite material |
US11179707B2 (en) | 2017-03-31 | 2021-11-23 | Johnson Matthey Catalysts (Germany) Gmbh | Composite material |
US11185849B2 (en) * | 2017-04-04 | 2021-11-30 | Sabic Global Technologies, B.V. | Nano-sized zeolite catalyst having a high silica to alumina ratio |
CN107262106A (zh) * | 2017-07-03 | 2017-10-20 | 中石化炼化工程(集团)股份有限公司 | 一种催化剂及其制备方法和应用 |
DE102018100833A1 (de) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Verfahren zur Herstellung eines SCR-Katalysators |
DE102018100834A1 (de) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Verfahren zur Herstellung eines SCR-Katalysators |
WO2019223761A1 (en) * | 2018-05-25 | 2019-11-28 | Basf Se | Rare earth element containing aluminum-rich zeolitic material |
CN110605141A (zh) * | 2018-06-15 | 2019-12-24 | 定州市荣鼎水环境生化技术有限公司 | 一种磷掺杂的Cu-SSZ-13催化剂及其制备方法和应用 |
CN109126862A (zh) * | 2018-08-20 | 2019-01-04 | 中国汽车技术研究中心有限公司 | 一种加快合成cha结构分子筛的方法及其催化剂在nh3-scr反应中的应用 |
CN112969535A (zh) | 2018-10-31 | 2021-06-15 | 巴斯夫公司 | 用于消除NOx的添加了氧化铝的催化洗涂层 |
JP2022509023A (ja) * | 2018-10-31 | 2022-01-20 | ビーエーエスエフ コーポレーション | Noxを低減するための銅トラップ成分を添加した触媒組成物 |
EP3877335A4 (en) | 2018-11-06 | 2022-08-03 | BASF Corporation | ALUMINOSILICATE-ZEOLITE ADDRESSES |
US11278874B2 (en) * | 2018-11-30 | 2022-03-22 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-framework metal into aluminosilicate zeolites |
EP3812034A1 (en) * | 2019-10-24 | 2021-04-28 | Dinex A/S | Durable copper-scr catalyst |
CN116406316A (zh) | 2020-10-30 | 2023-07-07 | 巴斯夫公司 | 用于增强高温转化和减少n2o生成的催化剂 |
EP4337379A1 (en) | 2021-05-12 | 2024-03-20 | Johnson Matthey Public Limited Company | Catalytic composition |
US11904305B2 (en) | 2021-05-12 | 2024-02-20 | Johnson Matthey Public Limited Company | Catalytic composition for treating a NOx-containing exhaust gas |
EP4377006A1 (en) | 2021-07-30 | 2024-06-05 | Johnson Matthey Public Limited Company | A method of making a catalytic composition |
US12201966B2 (en) * | 2021-09-14 | 2025-01-21 | Johnson Matthey Public Limited Company | Catalyst for treating exhaust gas |
KR102665354B1 (ko) | 2021-11-19 | 2024-05-14 | 한국세라믹기술원 | 다공판상체 마그네슘산화물이 담지된 탈질촉매 및 그의 제조 방법 |
KR20240162571A (ko) | 2022-03-23 | 2024-11-15 | 우미코레 아게 운트 코 카게 | 개선된 NOx 환원을 위한 SCR 제올라이트 촉매 |
WO2024059187A1 (en) * | 2022-09-15 | 2024-03-21 | Syracuse University | High-silica pd-based small pore zeolite catalysts for low temperature ch4 oxidation |
KR102596533B1 (ko) | 2023-06-16 | 2023-11-01 | 주식회사 태건리너텍 | 하수 오니를 처리한 부숙 연료 및 그 처리 방법과 시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270024A (en) * | 1989-08-31 | 1993-12-14 | Tosoh Corporation | Process for reducing nitrogen oxides from exhaust gas |
RU2088316C1 (ru) * | 1995-02-28 | 1997-08-27 | Институт катализа имени Г.К.Борескова СО РАН | Способ очистки отходящих газов от оксидов азота |
EP1754527A2 (en) * | 2001-09-07 | 2007-02-21 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
WO2008106519A1 (en) * | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Copper cha zeolite catalysts |
WO2009141324A1 (en) * | 2008-05-21 | 2009-11-26 | Basf Se | Process for the direct synthesis of cu containing zeolites having cha structure |
WO2010043891A1 (en) * | 2008-10-15 | 2010-04-22 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7481983B2 (en) * | 2004-08-23 | 2009-01-27 | Basf Catalysts Llc | Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia |
US7998423B2 (en) * | 2007-02-27 | 2011-08-16 | Basf Corporation | SCR on low thermal mass filter substrates |
US10384162B2 (en) * | 2007-03-26 | 2019-08-20 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
EP2517775B1 (en) * | 2007-04-26 | 2016-12-21 | Johnson Matthey Public Limited Company | Transition metal/afx-zeolite scr catalyst |
JP6176891B2 (ja) * | 2007-08-13 | 2017-08-09 | ピーキュー コーポレイション | 新規鉄含有アルミノケイ酸塩ゼオライト、ならびにその作製方法および使用方法 |
JP5324297B2 (ja) * | 2009-04-15 | 2013-10-23 | 株式会社ジャパンディスプレイ | 座標入力装置、およびそれを備える表示装置 |
US20100092397A1 (en) | 2008-10-14 | 2010-04-15 | Activaero Gmbh | Method For Treatment of COPD and Other Pulmonary Diseases |
JP5482179B2 (ja) | 2008-12-22 | 2014-04-23 | 東ソー株式会社 | チャバザイト型ゼオライト及びその製造方法 |
US8293198B2 (en) * | 2009-12-18 | 2012-10-23 | Basf Corporation | Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods |
US8293199B2 (en) * | 2009-12-18 | 2012-10-23 | Basf Corporation | Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods |
US8987162B2 (en) * | 2010-08-13 | 2015-03-24 | Ut-Battelle, Llc | Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst |
JP5810852B2 (ja) * | 2010-11-09 | 2015-11-11 | 東ソー株式会社 | チャバザイト型ゼオライト及びこれを含む窒素酸化物還元触媒 |
DK2646149T3 (da) * | 2010-12-02 | 2020-06-29 | Johnson Matthey Plc | Metalholdig zeolitkatalysator |
US20120269719A1 (en) * | 2011-04-18 | 2012-10-25 | Pq Corporation | Large crystal, organic-free chabazite, methods of making and using the same |
-
2011
- 2011-12-02 DK DK11805281.0T patent/DK2646149T3/da active
- 2011-12-02 JP JP2013542209A patent/JP6450521B2/ja active Active
- 2011-12-02 KR KR1020187010111A patent/KR101952557B1/ko active Active
- 2011-12-02 US US13/310,216 patent/US8535629B2/en active Active
- 2011-12-02 EP EP11805281.0A patent/EP2646149B1/en active Active
- 2011-12-02 WO PCT/US2011/063079 patent/WO2012075400A1/en active Application Filing
- 2011-12-02 BR BR112013013711-8A patent/BR112013013711B1/pt active IP Right Grant
- 2011-12-02 GB GB1311816.1A patent/GB2502207A/en not_active Withdrawn
- 2011-12-02 DE DE112011103996T patent/DE112011103996T8/de active Active
- 2011-12-02 RU RU2013129989A patent/RU2614411C2/ru active
- 2011-12-02 KR KR1020137017187A patent/KR101849296B1/ko active Active
- 2011-12-02 CN CN201180064520.3A patent/CN103298557B/zh active Active
-
2013
- 2013-08-14 US US13/966,382 patent/US8906329B2/en active Active
-
2014
- 2014-11-11 US US14/538,321 patent/US20150064074A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270024A (en) * | 1989-08-31 | 1993-12-14 | Tosoh Corporation | Process for reducing nitrogen oxides from exhaust gas |
RU2088316C1 (ru) * | 1995-02-28 | 1997-08-27 | Институт катализа имени Г.К.Борескова СО РАН | Способ очистки отходящих газов от оксидов азота |
EP1754527A2 (en) * | 2001-09-07 | 2007-02-21 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
WO2008106519A1 (en) * | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Copper cha zeolite catalysts |
WO2009141324A1 (en) * | 2008-05-21 | 2009-11-26 | Basf Se | Process for the direct synthesis of cu containing zeolites having cha structure |
WO2010043891A1 (en) * | 2008-10-15 | 2010-04-22 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
Non-Patent Citations (2)
Title |
---|
DUSTIN W. FICKEL AND RAUL F. LOBO, Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD, J.PHYS.CHEM. C., 2010, v.114, p.p.1633-1640. * |
SATU T.KORHONEN ET AL., Isolated Cu 2+ ions: active sites for selective catalytic reduction of NO, Chem. Commun., 2011, v. 47, p.p. 800-802. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767667C1 (ru) * | 2018-03-28 | 2022-03-18 | Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайэнс | Композиционный катализатор, способ его получения и способ получения этилена |
RU2807541C2 (ru) * | 2018-04-30 | 2023-11-16 | ЭКОВИСТ КАТАЛИСТ ТЕКНОЛОДЖИЗ ЛЛСи | Цеолиты типа шабазита с низким содержанием диоксида кремния, имеющие высокую кислотность |
RU2807541C9 (ru) * | 2018-04-30 | 2024-01-26 | ЭКОВИСТ КАТАЛИСТ ТЕКНОЛОДЖИЗ ЛЛСи | Цеолиты типа шабазита с низким содержанием диоксида кремния, имеющие высокую кислотность |
Also Published As
Publication number | Publication date |
---|---|
US20150064074A1 (en) | 2015-03-05 |
DE112011103996T5 (de) | 2013-08-29 |
US20120201731A1 (en) | 2012-08-09 |
GB2502207A (en) | 2013-11-20 |
CN103298557A (zh) | 2013-09-11 |
KR20180042440A (ko) | 2018-04-25 |
KR20130125377A (ko) | 2013-11-18 |
WO2012075400A1 (en) | 2012-06-07 |
RU2013129989A (ru) | 2015-01-10 |
KR101849296B1 (ko) | 2018-04-16 |
JP2014506182A (ja) | 2014-03-13 |
EP2646149A1 (en) | 2013-10-09 |
BR112013013711B1 (pt) | 2019-04-24 |
DE112011103996T8 (de) | 2013-12-19 |
GB201311816D0 (en) | 2013-08-14 |
JP6450521B2 (ja) | 2019-01-09 |
DK2646149T3 (da) | 2020-06-29 |
US8906329B2 (en) | 2014-12-09 |
KR101952557B1 (ko) | 2019-02-26 |
EP2646149B1 (en) | 2020-03-25 |
US20140037523A1 (en) | 2014-02-06 |
BR112013013711A2 (pt) | 2017-04-18 |
CN103298557B (zh) | 2016-10-12 |
US8535629B2 (en) | 2013-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2614411C2 (ru) | Цеолитный катализатор, содержащий металл | |
RU2634899C2 (ru) | Цеолитные катализаторы, содержащие металлы | |
EP2785452B1 (en) | Catalyst for treating exhaust gas | |
US9999876B2 (en) | Catalyst blends | |
RU2670760C9 (ru) | ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ | |
JP2014506182A5 (ru) | ||
US10807082B2 (en) | Zeolite catalyst containing metals | |
US11590482B1 (en) | Alumina binders for SCR catalysts | |
RU2822826C2 (ru) | ЦЕОЛИТНЫЕ ПРОМОТИРОВАННЫЕ V/Ti/W КАТАЛИЗАТОРЫ |