RU2613851C1 - Способ передачи и приема цифровой информации - Google Patents
Способ передачи и приема цифровой информации Download PDFInfo
- Publication number
- RU2613851C1 RU2613851C1 RU2016113441A RU2016113441A RU2613851C1 RU 2613851 C1 RU2613851 C1 RU 2613851C1 RU 2016113441 A RU2016113441 A RU 2016113441A RU 2016113441 A RU2016113441 A RU 2016113441A RU 2613851 C1 RU2613851 C1 RU 2613851C1
- Authority
- RU
- Russia
- Prior art keywords
- bits
- signals
- harmonic signals
- values
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000004891 communication Methods 0.000 claims abstract description 11
- 230000036039 immunity Effects 0.000 abstract description 11
- 230000003595 spectral effect Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 241000876472 Umma Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/365—Modulation using digital generation of the modulated carrier (not including modulation of a digitally generated carrier)
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Изобретение относится к технике связи. Технический результат – повышение помехоустойчивости передаваемых сигналов и спектральной эффективности. Для этого на предающей стороне пакет информационных бит разделяют на блоки по K бит в каждом, где число возможных комбинаций бит в блоке составляет М=2K, каждой из М комбинаций бит ставятся в соответствие L КАМ символов, значения которых определяются точками соответствующих созвездий сигналов, формируют L гармонических сигналов с использованием полученных значений L КАМ символов, объединяют L гармонических сигналов в один групповой сигнал несущей частоты, усиливают и передают групповой сигнал в канал связи, где групповой сигнал принимается, усиливается и фильтруется аналоговым приемником, из полученного отфильтрованного сигнала выделяются все L гармонических сигналов и осуществляется их общая демодуляция путем вычисления суммы квадратов модулей разностей между принятыми значениями квадратурных составляющих L гармонических сигналов и М возможными значениями соответствующих L созвездий, а каждая сумма квадратов соответствует своей комбинации K переданных бит, для которой эта сумма минимальна, и является наиболее вероятной переданной комбинацией. 1 з.п. ф-лы, 5 ил.
Description
Изобретение относится к технике связи, а именно к способам передачи и приема информации посредством цифровой связи.
Известен способ формирования сигналов квадратурной амплитудной модуляции (патент РФ №2365050, 2009 г.), где осуществляется оптимизация сигнального созвездия квадратурной амплитудной модуляции (КАМ) в зависимости от отношения сигнал/шум (ОСШ). В данном способе каждой группе из K бит (K=4 для КАМ-16) ставится в соответствие одно из 2K значений одного КАМ символа. Недостатком такого способа является недостаточно высокая помехоустойчивость при высоких отношениях сигнал/шум, так как оптимизация осуществляется только при плохих ОСШ. Кроме того, в данном способе используются одинаковые созвездия для всех КАМ символов и каждая группа из K бит передается только одним КАМ символом, что ограничивает возможности оптимизации.
Известен способ адаптивного переотображения сигнальных созвездий при квадратурно-амплитудной модуляции для повторных передач пакетов данных (патент РФ №2391782, 2010 г.), где для повышения помехоустойчивости используется повторная передача пакета данных по запросу приемника с переотображением КАМ созвездия. Повторная передача позволяет улучшить качество демодуляции ошибочно принятых бит, а переотображение созвездия при повторной передачи позволяет сделать более равномерным качество демодуляции каждого бита и дополнительно улучшить помехоустойчивость. Однако такой подход приводит к уменьшению скорости передачи и требует наличие обратного канала.
Наиболее близким аналогом и прототипом является способом передачи и приема цифровой информации (Варгузин В.А. Методы повышения энергетической и спектральной эффективности цифровой радиосвязи: учебное пособие / В.А., Варгузин, И.А. Цикин. - СПб.: БХВ-Петербург, 2013. - 352 с. 39-40), в котором на передающей стороне последовательность символов канального алфавита (двоичных бит) представляют в виде блоков из k бит, общее число комбинаций таких блоков равно m=2k. Каждой r-ой комбинации бит ставится во взаимно однозначное соответствие сигнал sr(t), r=1,2, …, m. На приемной стороне осуществляется демодуляция сигнала каждого блока и определяется, какой из m возможных сигналов поступил на вход демодулятора. Одновременно это означает и принятие решения относительно номера переданной комбинации данного блока и, следовательно, относительно переданной комбинации бит.
Предлагаемый способ передачи и приема цифровой информации отличается от ближайшего аналога тем, что один блок равен нескольким блокам, описанным в известном способе. При этом каждой комбинации K битов одного блока ставятся во взаимно однозначное соответствие L КАМ (квадратурная амплитудная модуляция) сигналов sIr(f), r=1,2,…,М, I=1,2,…L, а в прототипе только один КАМ сигнал меньшего порядка sr(t), r=1,2,…,m. Помимо этого в прототипе решение о переданной комбинации блока из k битов выносится на основании анализа одного принятого КАМ сигнала, а в предлагаемом способе решение о переданной комбинации блока из K битов выносится на основании L принятых КАМ сигналов, при этом спектральная эффективность в прототипе равна k (бит/сек/Гц), определяется порядком КАМ модуляции и принимает только целые значения, тогда как в предлагаемом способе она равна KIL (бит/сек/Гц) и может принимать не только целые, но и дробные значения.
Кроме того, что если K=kL, то в этом случае спектральная эффективность предлагаемого способа и известного способа будут одинаковыми, но благодаря использованию нескольких сигналов минимальную суммарную разность (евклидовое расстояние) между сигналами, соответствующими разным комбинациям бит, можно сделать больше при одинаковой средней мощности сигнала, и в результате помехоустойчивость приема (энергетическая эффективность) таких сигналов будет выше.
Задачей изобретения является повышение помехоустойчивости передаваемых сигналов и спектральной эффективности за счет увеличения порядка квадратурной амплитудной модуляции и передачи одной и той же информации разными КАМ символами с разными расположениями сигнальных точек созвездий.
Поставленная задача решается способом передачи и приема цифровой информации, заключающемся в том, что на предающей стороне пакет информационных бит разделяют на блоки по K бит в каждом, при этом число возможных комбинаций бит в блоке составляет М=2K, каждой из М комбинаций бит ставятся в соответствие L значений КАМ символов, значения которых определяются определяемых точками соответствующих созвездий сигналов, формируют L гармонических сигналов с использованием полученных L значений L КАМ символов и объединяют L гармонических сигналов в один групповой сигнал несущей частоты, после чего групповой сигнал усиливается и передается в канал связи, где на приемной стороне групповой сигнал принимается, усиливается и фильтруется аналоговым приемником, из полученного отфильтрованного сигнала выделяются все L гармонических сигналов и осуществляется их общая демодуляция, осуществляемая путем вычисления суммы квадратов модулей разностей между принятыми значениями квадратурных составляющих L гармонических сигналов и М возможными значениями соответствующих L созвездий, а каждая сумма квадратов соответствует своей комбинации K переданных бит, для которой эта сумма минимальна, и является наиболее вероятной переданной комбинацией.
Объединение L гармонических сигналов осуществляется либо последовательно, тогда все гармонические сигналы формируются на одной поднесущей частоте, либо параллельно, тогда каждый гармонический сигнал формируется на своей поднесущей частоте.
На фиг. 1 приведена упрощенная функциональная схема варианта реализации заявленного способа передачи и приема цифровой информации.
На фиг. 2 изображены точки двух оптимизированных созвездий для предложенного способа при K=4 и L=2, что обеспечивает спектральную эффективность 2 бит/сек/Гц.
На фиг. 3 в виде таблицы приведены соответствия комбинаций битов и точек двух созвездий, приведенных на фиг. 2.
На фиг. 4 приведены характеристики помехоустойчивости заявленного способа при разных соотношениях параметров K и L при одинаковой спектральной эффективности 2 бит/сек/Гц и характеристики помехоустойчивости способа прототипа с модуляцией 4ФМ.
На фиг. 5 приведены характеристики помехоустойчивости заявленного способа при разных соотношениях параметров K и L при разной спектральной эффективности (2, 2,25, 2,33 и 2,67 бит/сек/Гц) и характеристики помехоустойчивости способа прототипа с модуляцией 4ФМ (2 бит/сек/Гц).
Двоичная информация в виде последовательного потока двоичных битов преобразуется в параллельный поток блоков из K битов. Эти K двоичных битов поступают на L КАМ модуляторов, каждый из которых формирует КАМ сигнал SIr(t), r=1,2,…,М, I=1,2,…L, в соответствии со своим созвездием. Параллельные потоки КАМ сигналов объединяются в один общий поток на несущей частоте, который передается в канал связи. На приемной стороне сигнал, прошедший канал связи вместе с шумом, усиливается и фильтруется приемником. Затем из общего потока выделяются L КАМ сигналов одного блока. Осуществляется совместная демодуляция всех L КАМ сигналов, и выносится решение о переданных K битов.
Для совместной демодуляции может использоваться алгоритм максимального правдоподобия для систем с MIMO каналами (Бакулин М.Г., Варукина Л.А., Крейнделин В.Б. Технология MIMO: принципы и алгоритмы. - М.: Горячая линия - Телеком, 2014. - 244 с.).
Для достижения поставленной цели повышения энергетической эффективности должны использоваться созвездия, обеспечивающие максимальное минимальное эвклидовое расстояние для всей совокупности L КАМ сигналов. Получить такие созвездия можно методами, аналогичными описанным в (G. Foschini, R. Gitlin, and S. Weinstein, "Optimization of two-dimensional signal constellations in the presence of Gaussian noise," IEEE Transactions on Communications, vol. COM-22, no. 1, pp.28-38, Jan. 1974 г.).
Использование предложенного способа передачи и приема цифровой информации позволяет получить энергетический выигрыш по сравнению со способом прототипа без введения избыточности и, следовательно, без ухудшения спектральной эффективности. Так при вероятности ошибки 10-6 для K=4 и L=2 выигрыш составляет 0,6 дБ. При увеличении числа битов в блоке K и пропорциональном увеличении числа символов в блоке L (при постоянном отношении K/L=2) энергетический выигрыш увеличивается. Так при K=10 и L=5 выигрыш составляет 1,9 дБ.
Предложенный способ передачи и приема цифровой информации обеспечивает на 33% более высокую спектральную эффективность по сравнению с прототипом. Кроме того, заявленный способ позволяет иметь больший набор возможных значений пропускной способности системы связи, что позволяет обеспечить лучшее согласование скорости передачи и полосы канала связи.
Технический результат заключается в повышении энергетической эффективности системы (помехоустойчивость) и спектральной эффективности (пропускную способность) одновременно.
Claims (2)
1. Способ передачи и приема цифровой информации, заключающийся в том, что на предающей стороне пакет информационных бит разделяют на блоки по K бит в каждом, при этом число возможных комбинаций бит в блоке составляет М=2K, каждой из М комбинаций бит ставятся в соответствие L КАМ символов, значения которых определяются точками соответствующих созвездий сигналов, формируют L гармонических сигналов с использованием полученных значений L КАМ символов и объединяют L гармонических сигналов в один групповой сигнал несущей частоты, после чего групповой сигнал усиливается и передается в канал связи, где на приемной стороне групповой сигнал принимается, усиливается и фильтруется аналоговым приемником, из полученного отфильтрованного сигнала выделяются все L гармонических сигналов и осуществляется их общая демодуляция, осуществляемая путем вычисления суммы квадратов модулей разностей между принятыми значениями квадратурных составляющих L гармонических сигналов и М возможными значениями соответствующих L созвездий, а каждая сумма квадратов соответствует своей комбинации K переданных бит, для которой эта сумма минимальна, и является наиболее вероятной переданной комбинацией.
2. Способ по п. 1, в котором объединение L гармонических сигналов осуществляется либо последовательно, тогда все гармонические сигналы формируются на одной поднесущей частоте, либо параллельно, тогда каждый гармонический сигнал формируется на своей поднесущей частоте.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016113441A RU2613851C1 (ru) | 2016-04-08 | 2016-04-08 | Способ передачи и приема цифровой информации |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016113441A RU2613851C1 (ru) | 2016-04-08 | 2016-04-08 | Способ передачи и приема цифровой информации |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2613851C1 true RU2613851C1 (ru) | 2017-03-21 |
Family
ID=58453095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016113441A RU2613851C1 (ru) | 2016-04-08 | 2016-04-08 | Способ передачи и приема цифровой информации |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2613851C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2794314C1 (ru) * | 2022-12-09 | 2023-04-14 | Акционерное общество "Концерн "Созвездие" | Способ передачи и приёма сигналов квадратурной амплитудной модуляции |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661948A (en) * | 1985-02-12 | 1987-04-28 | Fairchild Semiconductor Corporation | Digital quadrature amplitude modulator |
US7406261B2 (en) * | 1999-11-02 | 2008-07-29 | Lot 41 Acquisition Foundation, Llc | Unified multi-carrier framework for multiple-access technologies |
RU2350031C1 (ru) * | 2007-07-04 | 2009-03-20 | Игорь Борисович Дунаев | Способ передачи и приема сигналов квадратурной амплитудной модуляции, система для его осуществления, машиночитаемый носитель и применение способа для синхронизации приема сигналов квадратурной амплитудной модуляции |
US7965761B2 (en) * | 1998-02-12 | 2011-06-21 | Lot 41 Acquisition Foundation, Llc | Multicarrier sub-layer for direct sequence channel and multiple-access coding |
RU2497294C2 (ru) * | 2008-11-12 | 2013-10-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Устройство для передачи и приема сигнала и способ передачи и приема сигнала |
-
2016
- 2016-04-08 RU RU2016113441A patent/RU2613851C1/ru active IP Right Revival
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661948A (en) * | 1985-02-12 | 1987-04-28 | Fairchild Semiconductor Corporation | Digital quadrature amplitude modulator |
US7965761B2 (en) * | 1998-02-12 | 2011-06-21 | Lot 41 Acquisition Foundation, Llc | Multicarrier sub-layer for direct sequence channel and multiple-access coding |
US7406261B2 (en) * | 1999-11-02 | 2008-07-29 | Lot 41 Acquisition Foundation, Llc | Unified multi-carrier framework for multiple-access technologies |
RU2350031C1 (ru) * | 2007-07-04 | 2009-03-20 | Игорь Борисович Дунаев | Способ передачи и приема сигналов квадратурной амплитудной модуляции, система для его осуществления, машиночитаемый носитель и применение способа для синхронизации приема сигналов квадратурной амплитудной модуляции |
RU2497294C2 (ru) * | 2008-11-12 | 2013-10-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Устройство для передачи и приема сигнала и способ передачи и приема сигнала |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2794314C1 (ru) * | 2022-12-09 | 2023-04-14 | Акционерное общество "Концерн "Созвездие" | Способ передачи и приёма сигналов квадратурной амплитудной модуляции |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5640423A (en) | Method for signal transmission using spectrally efficient orthogonal modulation | |
ES2307547T3 (es) | Estimacion de dos canales de propagacion de ofdm. | |
US7706486B2 (en) | Efficient diversity combining for wideband downlink | |
US20090161784A1 (en) | Transmit power allocation for adaptive multi-carrier multiplexing mimo systems | |
EP1123613B1 (en) | Fractional-bit transmission using multiplexed constellations | |
WO2010083718A1 (zh) | 高效的多用户多元并行传输方法及装置 | |
CN105846880A (zh) | 基于星座分割与双天线激活的空间调制传输系统的传输方法 | |
KR20140123764A (ko) | 무선 통신 시스템에서 비트 심볼 매핑 방법 및 장치 | |
US7003716B2 (en) | Method and apparatus for using multi-dimensional trellis codes over multi-path channels | |
RU2613851C1 (ru) | Способ передачи и приема цифровой информации | |
WO2011007680A1 (ja) | 無線基地局装置及び変調・符号化方式選択方法 | |
WO2017041626A1 (en) | Method for low complexity decision metric compression of higher-order square-qam constellation | |
US8085881B2 (en) | High data rate demodulation system | |
US8989314B1 (en) | Method and apparatus for jointly decoding independently encoded signals | |
US11405256B2 (en) | Apparatus and method for receiving quadrature amplitude modulated “QAM” symbol | |
CN107147602B (zh) | 基于信号相位补偿的差分接收方法及装置 | |
US9369316B2 (en) | Digital demodulation method and system | |
JP2013009023A (ja) | 受信装置、通信システム、受信方法及び通信方法 | |
JP6737951B2 (ja) | 無線通信システム | |
CN110855588B (zh) | 一种频域自适应均衡的传输数据处理方法、数据接收端及存储介质 | |
Priyadharshini et al. | An overview of DAPSK–OFDMA Fundamentals and Design Considerations | |
Sun | Linear diversity analysis for QAM in Rician fading channels | |
JP5388351B2 (ja) | 受信装置及び受信方法 | |
Kumar et al. | Various diversity combining techniques with LDPC codes in MIMO-OFDM | |
KR101573827B1 (ko) | 공간 변조 시스템의 활성 안테나 검파 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180409 |
|
NF4A | Reinstatement of patent |
Effective date: 20210526 |