[go: up one dir, main page]

RU2613100C2 - Газовая турбина (варианты) и способ эксплуатации газовой турбины - Google Patents

Газовая турбина (варианты) и способ эксплуатации газовой турбины Download PDF

Info

Publication number
RU2613100C2
RU2613100C2 RU2012158295A RU2012158295A RU2613100C2 RU 2613100 C2 RU2613100 C2 RU 2613100C2 RU 2012158295 A RU2012158295 A RU 2012158295A RU 2012158295 A RU2012158295 A RU 2012158295A RU 2613100 C2 RU2613100 C2 RU 2613100C2
Authority
RU
Russia
Prior art keywords
combustion chamber
heat exchange
exchange system
compressor
gas turbine
Prior art date
Application number
RU2012158295A
Other languages
English (en)
Other versions
RU2012158295A (ru
Inventor
Предраг ПОПОВИЧ
МЛ.Уилльям Фрэнсис КАРНЕЛЛ
Эндрю Митчелл РОДВЕЛЛ
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2012158295A publication Critical patent/RU2012158295A/ru
Application granted granted Critical
Publication of RU2613100C2 publication Critical patent/RU2613100C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Изобретение относится к энергетике. Газовая турбина содержит компрессор, камеру сгорания, расположенную ниже по потоку от компрессора, и систему теплообмена, принимающую сжатую рабочую текучую среду из компрессора. Между системой теплообмена и камерой сгорания расположено гидравлическое соединение, принимающее сжатую рабочую текучую среду из системы теплообмена. Газовая турбина содержит далее кондиционер, находящийся в проточном сообщении с компрессором, и гидравлическое соединение, расположенное между системой теплообмена и кондиционером и принимающее охлаждающую среду из системы теплообмена. Способ эксплуатации газовой турбины включает обеспечение прохождения сжатой рабочей текучей среды из компрессора к системе теплообмена, передачу тепловой энергии от сжатой рабочей текучей среды к системе теплообмена, обеспечение прохождения сжатой рабочей текучей среды из системы теплообмена к камере сгорания и обеспечение прохождения охлаждающей среды из системы теплообмена к впускному отверстию компрессора. Изобретение позволяет повысить эффективность работы газовой турбины. 2 н. и 12 з.п. ф-лы, 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
[0001] Данное изобретение относится в целом к газовой турбине и к способу эксплуатации указанной газовой турбины.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[0002] Газотурбинные установки широко используются в различных областях для выработки электроэнергии. Обычная газотурбинная установка содержит компрессор, камеру сгорания и турбину. В типичной газотурбинной установке компрессор обеспечивает подачу сжатого воздуха к камере сгорания. Воздух, поступающий в камеру сгорания, смешивается с топливом и сжигается. Высокотемпературные газы, образующиеся в процессе сгорания, выпускаются из камеры сгорания и проходят по лопаткам турбины, обеспечивая вращение турбинного вала, присоединенного к лопаткам. Некоторая часть механической энергии вращающегося вала приводит в действие компрессор и/или другие механические системы.
[0003] Температуры в современных камерах сгорания газовых турбин могут превышать 2000°F (1093°C). В результате механические компоненты, подвергаемые воздействию этих температур внутри камеры сгорания, могут испытывать значительное термическое напряжение во время работы газовой турбины, что существенно снижает срок службы камеры сгорания. Кроме того, когда газовая турбина эксплуатируется в среде, в которой окружающая температура воздуха, поступающего в компрессор, превышает определенные значения, то температура внутри центральной установки может повышаться до неприемлемо высокого значения, что в свою очередь влияет на КПД установки и возможно снижает срок службы компонентов газовой турбины.
[0004] Для снижения температуры внутри газовой турбины существует множество способов. Например, один способ регулирования температуры в камере сгорания газовой турбины заключается в прохождении воздуха, поступающего в компрессор, через охладитель, расположенный на входе компрессора, что уменьшает тем самым температуру сжатого воздуха при его поступлении в компрессор. Однако при таком способе температура сжатого воздуха, существующая в камере сгорания, не может обеспечивать достаточного охлаждения механических компонентов внутри камеры сгорания. Кроме того, этот способ не допускает направления охлажденного сжатого воздуха к отдельным компонентам или зонам внутри камеры сгорания. Соответственно, представляется полезным создание усовершенствованной газовой турбины и способа эксплуатации указанной газовой турбины.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0005] Аспекты и преимущества данного изобретения изложены ниже в последующем описании, при этом они могут быть очевидны из данного описания или могут быть выявлены при реализации данного изобретения на практике.
[0006] В одном варианте выполнения данного изобретения предлагается газовая турбина, которая в целом содержит компрессор, содержащий впускное отверстие и производящий сжатую рабочую текучую среду. Ниже по потоку от компрессора расположена камера сгорания и система теплообмена, расположенная ниже по потоку от компрессора и выше по потоку от камеры сгорания и принимающая сжатую рабочую текучую среду из компрессора. Между системой теплообмена и камерой сгорания проходит первое гидравлическое соединение, принимающее сжатую рабочую текучую среду из системы теплообмена. В проточном сообщении с указанным впускным отверстием находится кондиционер, а между системой теплообмена и кондиционером расположено второе гидравлическое соединение, принимающее охлаждающую среду из системы теплообмена.
[0007] Во втором варианте выполнения данного изобретения предлагается газовая турбина, которая в целом содержит компрессор, содержащий впускное отверстие и производящий сжатую рабочую текучую среду. Газовая турбина далее содержит камеру сгорания, расположенную ниже по потоку от компрессора, а также средства подачи охлажденной сжатой рабочей текучей среды к камере сгорания и охлаждающей среды к впускному отверстию компрессора.
[0008] В вариантах выполнения данного изобретения также может предлагаться способ эксплуатации газовой турбины, который включает обеспечение прохождения сжатой рабочей текучей среды из компрессора к системе теплообмена, передачу тепловой энергии от сжатой рабочей текучей среды к системе теплообмена, обеспечение прохождения сжатой рабочей текучей среды из системы теплообмена к камере сгорания и обеспечение прохождения охлаждающей среды из системы теплообмена к впускному отверстию компрессора.
[0009] Признаки и аспекты этих и других вариантов выполнения будут более понятны специалисту из нижеследующего описания.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0010] Полное и достаточное раскрытие данного изобретения, включающее его лучший для специалиста вариант выполнения, изложено более детально ниже в описании со ссылкой на сопроводительные чертежи, на которых:
[0011] Фиг.1 показывает схематический вид иллюстративной газовой турбины в соответствии с одним вариантом выполнения данного изобретения;
[0012] Фиг.2 показывает разрез иллюстративной камеры сгорания, изображенной на сриг.1.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0013] Рассмотрим теперь подробно представленные варианты выполнения данного изобретения, один или несколько примеров которых показаны на сопроводительных чертежах. В подробном описании используются численные и буквенные обозначения для отсылки к деталям на чертежах. Одинаковые или подобные обозначения на чертежах и в описании использованы для ссылки на одинаковые или подобные детали данного изобретения. Применительно к данному документу термины «первый», «второй» и «третий» равноценны и используются для различения одного компонента от другого, при этом они не предназначены для определения положения или значимости отдельных компонентов. Кроме того, термины «выше по потоку» и «ниже по потоку» указывают на относительное расположение компонентов в тракте прохождения текучей среды. Например, компонент A расположен выше по потоку от компонента B, если текучая среда проходит от компонента A к компоненту B. И, наоборот, компонент B расположен ниже по потоку от компонента A, если компонент B принимает поток текучей среды от компонента A.
[0014] Каждый пример приведен для объяснения данного изобретения, а не для ограничения данного изобретения. Фактически, специалист должен понимать, что в данное изобретение возможно внесение модификаций и изменений без отклонения от объема правовой охраны или сущности данного изобретения. Например, детали, проиллюстрированные или описанные в качестве части одного варианта выполнения, могут использоваться в другом варианте выполнения для создания еще одного варианта выполнения. Таким образом, предполагается, что данное изобретение охватывает подобные модификации и изменения как подпадающие под объем правовой охраны прилагаемой формулы изобретения.
[0015] В различных вариантах выполнения данного изобретения предлагаются газовая турбина и способ подачи охлажденной сжатой рабочей текучей среды и охлаждающей среды к газовой турбине. Указанная газовая турбина содержит в целом компрессор, систему теплообмена, камеру сгорания и турбину. В конкретном варианте выполнения компрессор может проточно сообщаться с системой теплообмена и камерой сгорания, создавая тем самым возможность прохождения по меньшей мере части сжатой рабочей текучей среды, извлеченной из компрессора, через систему теплообмена, причем из указанной сжатой рабочей текучей среды может быть извлечена тепловая энергия. Таким образом, энергия, извлеченная теплообменником, может охлаждать сжатую рабочую текучую среду и/или может обеспечивать энергию для работы системы теплообмена и/или вспомогательных компонентов газовой турбины, например охладителя. Несмотря на то, что иллюстративные варианты выполнения данного изобретения рассмотрены по существу в контексте промышленной газовой турбины и способа эксплуатации указанной газовой турбины с пояснительной целью, тем не менее специалист должен понимать, что варианты выполнения данного изобретения могут быть применены к любой газовой турбине и не ограничиваются промышленной газовой турбиной до тех пор, пока это не будет специально указано в формуле изобретения.
[0016] На фиг.1 показан упрощенный схематический вид газовой турбины 10 в соответствии с одним вариантом выполнения данного изобретения. Как показано, газовая турбина 10 может в целом содержать компрессор 12, по меньшей мере одну камеру 14 сгорания, расположенную ниже по потоку от компрессора 12, и турбину 16, расположенную ниже по потоку от камеры 14 сгорания. Указанный компрессор 12 может быть осевым компрессором 12, в котором рабочая текучая среда 18, например, окружающий воздух, поступает в
компрессор 12 через впускное отверстие 20 и проходит через перемежающиеся ступени стационарных и вращающихся лопаток, которые постепенно сообщают кинетическую энергию рабочей текучей среде 18 с образованием непрерывного потока сжатой рабочей текучей среды 22. По меньшей мере часть указанной текучей среды 22 может быть извлечена из компрессора для обеспечения различных операций газовой турбины 10. По меньшей мере часть оставшейся сжатой рабочей текучей среды 22 может проходить к камерам 14 сгорания, в которых она смешивается с топливом и воспламеняется с образованием высокотемпературного газа под большим давлением. Указанный высокотемпературный газ проходит к турбине 16 и расширяется с производством работы.
[0017] Различные варианты выполнения данного изобретения содержат средства для подачи охлажденной сжатой рабочей текучей среды 24 к камере 14 сгорания и охлаждающей среды к впускному отверстию 20 компрессора. Как показано на фиг. 1, конструкция указанных средств может содержать по меньшей мере одну систему 30 теплообмена, расположенную ниже по потоку от компрессора 12 и выше по потоку от камеры 14 сгорания. Указанная система 30 теплообмена может содержать один или несколько теплообменников 32 и одно или несколько гидравлических соединений 34. Один или несколько теплообменников 32 могут представлять собой теплообменник 32 кожухотрубного и/или холодильного типа. Однако специалисту следует понимать, что указанные один или несколько теплообменников 32 могут быть любого типа и/или любым сочетанием теплообменников 32, известных в настоящее время в данной области техники, которые обеспечивают передачу энергию к теплопередающей среде или от нее. В конкретных вариантах выполнения теплопередающая среда может содержать любой жидкий раствор, такой как аммиачная вода, или любую жидкую, газообразную и/или твердую среду, пригодную для переноса тепловой энергии в теплообменнике 32. Одно или несколько соединений 34 могут содержать трубы, трубопроводы, шланги, соединительные средства или любую конструкцию любого размера и/или формы, пригодную для прохождения сжатой рабочей текучей среды 22 и/или теплопередающей среды. Как вариант или дополнительно, указанные средства могут дополнительно содержать кондиционер 36, например охладитель, находящийся в проточном сообщении с системой 30 теплообмена и впускным отверстием 20 компрессора. Указанный кондиционер 36 может находиться в проточном сообщении с системой 30 теплообмена через одно или несколько гидравлических соединений 34.
[0018] Как показано на фиг. 1, в конкретных вариантах выполнения в пределах объема правовой охраны данного изобретения система 30 теплообмена может содержать абсорбционный охладитель 50. Указанный абсорбционный охладитель 50 может содержать в целом генератор 52, конденсатор 54, испаритель 56, абсорбционный аппарат 58, а также одно или несколько из указанных одного или нескольких гидравлических соединений 34. В конкретных вариантах выполнения теплопередающая среда может содержать раствор из аммиака и воды, в котором хладагентом является аммиак. Специалисту следует понимать, что теплопередающая среда может содержать любой раствор, широко используемый для подобных применений, в которых хладагент может быть подвергнут перегонке. Исключительно в качестве примера, в последующем описании абсорбционного охладителя будет по существу рассматриваться работа абсорбционного охладителя, работающей на основе аммиака/воды.
[0019] В конкретных вариантах выполнения одна или несколько питающих линий 60 может обеспечивать проточное сообщение между компрессором 12 и генератором 52. Указанная одна или несколько питающих линий 60 может содержать трубы, трубопроводы, шланги, соединительные средства или любую конструкцию любого размера и/или формы, пригодную для прохождения сжатой рабочей текучей среды 22. Таким образом, сжатая рабочая текучая среда 22 проходит из компрессора 12 через генератор 52, в котором тепловая энергия может быть перенесена от сжатой рабочей текучей среды 22 к теплопередающей среде из аммиака/воды, создавая возможность перегонки по меньшей мере части хладагента из указанной теплопередающей среды в качестве нагретого испаряемого хладагента и рециркуляции оставшейся части раствора аммиак/вода через абсорбционный аппарат 58. Таким образом, может быть инициирован цикл теплопередачи внутри абсорбционного охладителя 50 с образованием тем самым охлажденной сжатой рабочей текучей среды 24. Генератор 52 может проточно сообщаться с камерой 14 сгорания через первую из указанных одного или нескольких соединений 34. Таким образом, в камеру 14 сгорания может проходить охлажденная сжатая рабочая текучая среда 24, которая в результате может улучшать предварительное смешивание сжатой рабочей текучей среды 24 с топливом и/или может снижать термические напряжения внутри камеры 14 сгорания. Дополнительно или как вариант, по меньшей мере одно из указанных одного или нескольких гидравлических соединений 34, обеспечивающих проточное сообщение между системой 30 теплообмена и камерой 14 сгорания, может содержать регулятор расхода 100. Таким образом, поток охлажденной сжатой рабочей текучей среды 24, поступающей в камеру 14 сгорания, может быть отрегулирован для согласования с рабочими режимами камеры 14 сгорания и/или газовой турбины 10.
[0020] Нагреваемый испаряемый хладагент может проходить из генератора 52 через одно или несколько из указанных одного или нескольких соединений 34 в конденсатор 54, где он подвергается охлаждению и преобразованию в жидкий хладагент под высоким давлением. Тепло из конденсатора 54 рассеивается через окружающий воздух, хотя для этого может использоваться другая охлаждающая среда. В конкретных вариантах выполнения для улучшения КПД конденсатора может использоваться один или несколько вентиляторов, обеспечивающих подачу охлаждающего потока через указанный конденсатор. Указанный жидкий хладагент проходит из конденсатора 54 через одно или несколько из указанных одного или нескольких соединений 34 и через расширительный клапан 62, например термостатический расширительный клапан, с образованием жидкости под низким давлением или 2-фазного хладагента. Указанная жидкость под низким давлением или 2-фазный хладагент проходит через одно или несколько из указанных одного или нескольких соединений 34 к испарителю 56. Хладагент под низким давлением закипает в испарителе 56, обеспечивая тем самым охлаждающий или холодильный эффект. В конкретных вариантах выполнения испаритель 56 может находиться в проточном сообщении с кондиционером 36 через одно или несколько из указанных одного или нескольких соединений 34. В результате испаритель 56 может обеспечивать подачу охлаждающей среды к кондиционеру 36. Таким образом, температура рабочей текучей среды 18, проходящей через кондиционер 36 во впускное отверстие 20 компрессора, может быть понижена с улучшением тем самым общего КПД газовой турбины.
[0021] Указанный хладагент под низким давлением при кипении в испарителе 56 преобразуется в высокотемпературный пар хладагента низкого давления. Указанный пар низкого давления проходит к абсорбционному аппарату 58 через одно или несколько из указанных одного или нескольких соединений 34 и смешивается с раствором из аммиака/воды, полученного в результате рециркуляции из генератора 42, с воспроизведением тем самым исходных концентраций смеси жидкого раствора аммиак/вода. Абсорбционный аппарат 58 обеспечивает перенос тепловой энергии из жидкого раствора путем его рассеивания в окружающий воздух или любую другую доступную охлаждающую среду. В конкретных вариантах выполнения для улучшения охлаждающего эффекта указанного абсорбционного аппарата может использоваться один или несколько вентиляторов. Например, для охлаждения конденсатора и абсорбционного аппарата может использоваться один вентилятор. В других вариантах выполнения указанный абсорбционный аппарат может содержать специальный вентилятор для охлаждения. Указанный жидкий раствор закачивается обратно к генератору 52 посредством одного или нескольких гидравлических насосов 64 для воспроизведения указанного цикла теплопередачи. В конкретных вариантах выполнения одно или несколько из указанных гидравлических соединений 34, содержащих по меньшей мере один перепускной клапан 66, могут обеспечивать проточное сообщение между конденсатором и абсорбционным аппаратом. Таким образом, указанный испаритель может быть по меньшей мере частично или полностью блокирован для передачи регулирования охлаждающей способности абсорбционному охладителю 50. Специалисту следует понимать, что вышеупомянутое описание работы указанного абсорбционного охладителя и его компонентов предназначено для краткого и общего описания указанного цикла переноса тепла абсорбционным охладителем и его компонентов, и в любом случае не подразумевает ограничения.
[0022] Дополнительно или как вариант, газовая турбина может содержать конденсатный бак 70, находящийся в проточном сообщении с кондиционером 36 и/или испарителем 56, и/или камерой 14 сгорания. Таким образом, указанный конденсатный бак 70 может собирать воду, конденсирующуюся из рабочей текучей среды 18, проходящей через кондиционер 36 и/или испаритель 56. Указанная вода может проходить из указанного конденсатного бака 70 к фильтру 72, находящемуся в проточном сообщении с конденсатным баком 70, и может быть проведена из фильтра 72 в камеру 14 сгорания посредством одного или нескольких из указанных одного или нескольких гидронасосов 64 и/или одного или нескольких из указанных одного или нескольких гидравлических соединений 34. В результате указанная вода может подаваться в камеру 14 сгорания для обеспечения улучшения смешивания сжатой рабочей текучей среды 18 и топлива, для регулирования выделений NOx и/или обеспечения охлаждения камеры 14 сгорания.
[0023] На фиг. 2 показана в разрезе иллюстративная камера 14 сгорания, изображенная на фиг. 1. Как показано на фиг. 2, камера 14 сгорания может содержать торцевую крышку 80, одну или несколько топливных форсунок 82, переходной элемент 84, футеровку 86, торцевую заглушку 88 и/или корпус 90, который по меньшей мере частично окружает камеру 14 сгорания. Переходной элемент 84 и/или футеровка 86 может обеспечивать по меньшей мере частично кольцевой проход, проходящий в осевом направлении через корпус 90. В результате указанный по меньшей мере частично кольцевой проход и корпус 90 могут ограничивать камеру сгорания и/или один или несколько трактов, обеспечивающих прохождение внутри камеры 14 сгорания сжатой рабочей текучей среды 22 и/или высокотемпературного газа. Камера 14 сгорания может содержать первую зону 96 горения и/или вторую зону 98 горения, расположенную в осевом направлении ниже по потоку от первой зоны 96 горения. Камера 14 сгорания может содержать одно или несколько из указанных одного или нескольких гидравлических соединений 34, обеспечивающих проточное сообщение между системой 30 теплообмена и камерой 14 сгорания. Таким образом, охлажденная сжатая рабочая текучая среда 24 может проходить из системы 30 теплообмена к камере 14 сгорания.
[0024] В конкретных вариантах выполнения охлажденная сжатая рабочая текучая среда 24 может проходить из системы 30 теплообмена через одно или несколько из указанных одного или нескольких соединений 34 в торцевую крышку 80, обеспечивая более низкую температуру охлаждения и со снижением тем самым термических напряжений в торцевой крышке 80. В других вариантах выполнения одно или несколько из указанных одного или нескольких соединений 34 могут направлять указанную текучую среду 24 через корпус 90 в зону 102 предварительного смешивания, расположенную в целом выше по потоку от первой зоны 96 горения. В результате охлажденная рабочая текучая среда 24 может снижать температуру высокотемпературного газа с улучшением тем самым возможностей предварительного смешивания путем повышения противодействия обратному удару пламени и увеличения времени задержки самовоспламенения сжатой рабочей текучей среды 22 и топлива. Дополнительно, охлажденная сжатая рабочая текучая среда 24, проходящая к зоне 102 предварительного смешивания, может существенно улучшать КПД камеры 14 сгорания и увеличивать срок ее службы благодаря уменьшению опасности возникновения обратного удара пламени, а также благодаря самовоспламенению внутри камеры 14 сгорания.
[0025] В других вариантах выполнения одно или несколько из указанных одного или нескольких соединений 34 могут направлять охлажденную сжатую рабочую текучую среду 24 через футеровку 86 и/или через переходной элемент 84 в тракт 90 высокотемпературного газа камеры 14 сгорания, расположенной ниже по потоку от первой зоны 96 горения и выше по потоку от второй зоны 98 горения. Таким образом, охлажденная сжатая рабочая текучая среда 24 может обеспечивать снижение температуры высокотемпературного газа при его выходе из первой зоны 96 горения, уменьшая тем самым температуру внутри камеры 14 сгорания. Дополнительно, введение охлажденной сжатой рабочей текучей среды 24 выше по потоку от второй зоны 98 горения может обеспечивать улучшение предварительного смешивания топлива и сжатой рабочей текучей среды 22 во второй зоне 98 горения. В других вариантах выполнения одно или несколько из указанных одного или нескольких соединений 34 могут направлять по меньшей мере часть указанной текучей среды 24 в полость 104 повышенного давления, по меньшей мере частично окружающую камеру 14 сгорания, обеспечивая тем самым улучшение охлаждения внутри камеры 14 сгорания. В других вариантах выполнения одна или несколько из указанных одной или нескольких муфт 34, обеспечивающих проточное сообщение между системой 30 теплообмена и камерой 14 сгорания, могут подавать по меньшей мере часть указанной текучей среды 24 к подающему топливопроводу 106, находящемуся в проточном сообщении с камерой 14 сгорания. Таким образом, охлажденная текучая среда 24 может использоваться для образования окружающей топливо пленки, не допуская тем самым нагревания топлива перед процессом его сжигания с уменьшением тем самым возможности возникновения спекания или самовоспламенения в топливопроводах внутри камеры 14 сгорания.
[0026] В различных вариантах выполнения, показанных и описанных в отношении фиг. 1-2, также может предлагаться способ эксплуатации газовой турбины 10. Указанный способ по существу включает прохождение сжатой рабочей текучей среды 22 из компрессора 12 к системе 30 теплообмена, перенос тепловой энергии от сжатой рабочей текучей среды 22 к системе 30 теплообмена, прохождение сжатой рабочей текучей среды 22 из системы 30 теплообмена к камере 14 сгорания и прохождение охлаждающей среды из системы 30 теплообмена к впускному отверстию 20 компрессора. Указанный способ также может включать прохождение рабочей текучей среды 18 через кондиционер 36 в компрессор 12. В конкретных вариантах выполнения, в которых система 30 теплообмена содержит абсорбционный охладитель 50, находящийся в проточном сообщении с компрессором 12, указанный способ может включать перенос тепловой энергии от сжатой рабочей текучей среды 22 к теплопередающей среде, проходящей внутри указанного охладителя 50, с охлаждением сжатой текучей среды 22 и с инициацией цикла теплопередачи абсорбционного охладителя 50. Указанный способ может дополнительно включать прохождение по меньшей мере части сжатой рабочей текучей среды 22 через одну или несколько из указанных одной или нескольких муфт 34 из системы 30 теплообмена в торцевую крышку 80, или первую зону 102 предварительного смешивания, или первую зону 96 горения, или вторую зону 98 горения, или тракт 94 высокотемпературного газа, или одну или несколько топливных форсунок 82 внутри камеры 14 сгорания, или в любую комбинацию указанных элементов. В других вариантах выполнения указанный способ может включать смешивание по меньшей мере части сжатой рабочей текучей среды 22 с топливом в подающем топливопроводе 106, находящимся в проточном сообщении с указанным одним или несколькими гидравлическими соединениями 34 и камерой 14 сгорания, и прохождение указанной смеси в камеру 14 сгорания. Указанный способ может дополнительно включать прохождение по меньшей мере части сжатой рабочей текучей среды 22 из системы 30 теплообмена через одно или несколько из указанных соединений 34 в рукав 108, окружающий топливопровод 106 и в камеру 14 сгорания. Дополнительно или как вариант, указанный способ может дополнительно включать сбор конденсата из рабочей текучей среды 18, проходящей через кондиционер 36, и прохождение указанного конденсата к камере 14 сгорания.
[0027] Различными вариантами выполнения, которые показаны и описаны в отношении фиг.1-2, обеспечивается одно или несколько промышленных и/или технических преимуществ по сравнению с известными газовыми турбинами и способами эксплуатации газовых турбин. Например, механический срок службы камеры сгорания может быть увеличен благодаря прохождению высокотемпературной сжатой рабочей текучей среды из компрессора через систему теплообмена в камеру сгорания с уменьшением тем самым возникновения термических напряжений в камере сгорания и/или возможного возникновения удержания пламени или обратного удара пламени в камере сгорания. В результате операторы могут увеличивать период времени между простоями для проведения ремонтов со снижением тем самым эксплуатационных расходов и расходов на техническое обслуживание газовой турбины. Дополнительно, благодаря проведению охлаждающей среды к впускному отверстию компрессора для охлаждения рабочей текучей среды, поступающей в компрессор, газовая турбина может эксплуатироваться с большей эффективностью, чем обеспечивается экономия топлива и увеличение мощности на выходе.
[0028] В изложенном описании используются примеры, характеризующие данное изобретение, включая предпочтительные варианты выполнения, а также предоставляющие любому специалисту возможность осуществить на практике данное изобретение, включая выполнение и использование любых устройств или систем, а также осуществление любых относящихся к этому способов. Объем правовой охраны данного изобретения определен формулой изобретения, при этом он может включать другие примеры, которые встретятся специалисту. Подразумевается, что такие другие примеры подпадают под объем правовой охраны формулы изобретения, если они содержат конструктивные элементы, которые не отличаются от буквального изложения в формуле изобретения, или если они содержат равноценные конструктивные элементы с несущественными отличиями от буквального изложения в формуле изобретения.

Claims (24)

1. Газовая турбина, содержащая
a) компрессор, имеющий впускное отверстие, и камеру сгорания, расположенную ниже по потоку от компрессора, и
b) систему теплообмена, содержащую абсорбционный охладитель, содержащий абсорбционный аппарат, через который рециркулирует теплопередающая среда, содержащая смесь хладагента и текучей среды,
генератор, находящийся в проточном сообщении с компрессором и выполненный с обеспечением переноса тепловой энергии от сжатой рабочей текучей среды, подаваемой компрессором, к теплопередающей среде и перегонки по меньшей мере части хладагента из указанной теплопередающей среды с получением нагретой испаряемой части хладагента и оставшейся части хладагента, и
c) кондиционер, расположенный выше по потоку от впускного отверстия компрессора и находящийся в проточном сообщении с компрессором и с системой теплообмена.
2. Газовая турбина по п. 1, в которой охлаждающая среда содержит воду, или бромистый литий, или аммиак, или любую комбинацию из указанных веществ.
3. Газовая турбина по п. 1, дополнительно содержащая конденсатный бак, находящийся в проточном сообщении с камерой сгорания и обеспечивающий сбор конденсата из окружающего воздуха, проходящего через кондиционер.
4. Газовая турбина по п. 1, в которой абсорбционный охладитель дополнительно содержит конденсатор.
5. Газовая турбина по п. 1, дополнительно содержащая одно или несколько гидравлических соединений, обеспечивающих проточное сообщение между системой теплообмена и камерой сгорания и между генератором и камерой сгорания.
6. Газовая турбина по п. 4, в которой первое из указанных одного или нескольких гидравлических соединений обеспечивает проточное сообщение между системой теплообмена и топливной форсункой, расположенной в камере сгорания.
7. Газовая турбина по п. 4, в которой одно или несколько из указанных одного или нескольких гидравлических соединений обеспечивают направление охлажденной сжатой рабочей текучей среды в тракт высокотемпературного газа, расположенного в камере сгорания.
8. Газовая турбина по п. 4, дополнительно содержащая конденсатный бак, находящийся в проточном сообщении с кондиционером и камерой сгорания и обеспечивающий сбор конденсата из окружающего воздуха, проходящего через кондиционер во впускное отверстие компрессора.
9. Способ эксплуатации газовой турбины, включающий
a) обеспечение прохождения сжатой рабочей текучей среды из компрессора газовой турбины через генератор абсорбционного охладителя системы теплообмена,
b) передачу тепловой энергии из сжатой рабочей текучей среды к теплопередающей среде, проходящей внутри абсорбционного охладителя и содержащей хладагент и текучую среду,
c) перегонки части хладагента из указанной теплопередающей среды через генератор с получением испаряемой части и оставшейся части,
d) пропускание указанной испаряемой части хладагента к кондиционеру, расположенному выше по потоку от впускного отверстия компрессора,
e) пропускание указанной оставшейся части от генератора к абсорбционному аппарату,
f) пропускание испаряемой части хладагента к абсорбционному аппарату и его смешивание с хладагентом и теплопередающей средой в указанном аппарате.
10. Способ по п. 9, в котором кондиционер системы теплообмена находится в проточном сообщении с охлаждающей средой, при этом в указанном способе обеспечивают прохождение рабочей текучей среды через кондиционер в компрессор.
11. Способ по п. 9, в котором абсорбционный охладитель системы теплообмена находится в проточном сообщении с компрессором.
12. Способ по п. 9, в котором обеспечивают пропускание по меньшей мере части сжатой рабочей текучей среды от системы теплообмена в торцевую крышку камеры сгорания.
13. Способ по п. 9, в котором обеспечивают пропускание по меньшей мере части сжатой рабочей текучей среды от системы теплообмена в зону предварительного смешивания внутри камеры сгорания.
14. Способ по п. 9, в котором обеспечивают пропускание по меньшей мере части сжатой рабочей текучей среды из системы теплообмена в одну или несколько топливных форсунок в камере сгорания.
RU2012158295A 2012-01-04 2012-12-27 Газовая турбина (варианты) и способ эксплуатации газовой турбины RU2613100C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/343,286 US9181876B2 (en) 2012-01-04 2012-01-04 Method and apparatus for operating a gas turbine engine
US13/343,286 2012-01-04

Publications (2)

Publication Number Publication Date
RU2012158295A RU2012158295A (ru) 2014-07-10
RU2613100C2 true RU2613100C2 (ru) 2017-03-15

Family

ID=47665818

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012158295A RU2613100C2 (ru) 2012-01-04 2012-12-27 Газовая турбина (варианты) и способ эксплуатации газовой турбины

Country Status (5)

Country Link
US (1) US9181876B2 (ru)
EP (1) EP2613037A3 (ru)
JP (1) JP2013139784A (ru)
CN (1) CN103195570B (ru)
RU (1) RU2613100C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748110C1 (ru) * 2017-09-05 2021-05-19 Сименс Акциенгезелльшафт Узел камеры сгорания газотурбинного двигателя с конструктивным элементом, обеспечивающим захватываемый вихрь

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857656A1 (en) * 2013-10-01 2015-04-08 Alstom Technology Ltd Gas turbine with cooling air cooling system and method for operation of a gas turbine at low part load
JP6296286B2 (ja) * 2014-03-24 2018-03-20 三菱日立パワーシステムズ株式会社 排熱回収システム、これを備えているガスタービンプラント、排熱回収方法、及び排熱回収システムの追設方法
CN104047730A (zh) * 2014-06-27 2014-09-17 双良节能系统股份有限公司 采用复叠式溴化锂制冷机的燃气轮机进气冷却系统
RU2621448C2 (ru) * 2015-10-06 2017-06-06 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Способ работы комбинированной газопаровой установки
FR3052440B1 (fr) * 2016-06-13 2018-05-18 Safran Helicopter Engines Integration d'un materiau a changement de phase pour limiter la temperature du carburant a partir d'un module electronique.
JP6769370B2 (ja) 2017-03-27 2020-10-14 株式会社Ihi 燃焼装置及びガスタービン
GB201903328D0 (en) * 2019-03-12 2019-04-24 Rolls Royce Plc Fuel manifold cooling
US11092075B2 (en) * 2019-11-04 2021-08-17 New York Power Authority High-capacity electric energy storage system for gas turbine based power plants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444913A1 (en) * 1990-02-27 1991-09-04 Turbine Developments Aktiengesellschaft A gas turbine
EP0524435A2 (en) * 1991-06-21 1993-01-27 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
CH683018A5 (de) * 1990-06-19 1993-12-31 Asea Brown Boveri Verfahren zur Erhöhung des verdichterbedingten Druckgefälles einer Gasturbine einer Kraftwerksanlage.
EP0770771A1 (de) * 1995-10-26 1997-05-02 Asea Brown Boveri Ag Zwischengekühlter Verdichter
RU2229030C2 (ru) * 2002-02-20 2004-05-20 Общество с ограниченной ответственностью "Интербизнеспроект" Способ повышения эффективности работы газотурбинной установки
RU2278286C2 (ru) * 2004-03-18 2006-06-20 Институт теплофизики экстремальных состояний Объединенного института высоких температур Российской Академии Наук (ИТЭС ОВИТ РАН) РФ Газотурбинная установка

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678531A (en) * 1951-02-21 1954-05-18 Chemical Foundation Inc Gas turbine process with addition of steam
US3969446A (en) 1974-06-03 1976-07-13 Franklin Jr Grover C Apparatus and method for aerating liquids
US4195485A (en) 1978-03-23 1980-04-01 Brinkerhoff Verdon C Distillation/absorption engine
AU8798782A (en) * 1981-09-16 1983-03-24 Bbc Brown Boveri A.G Reducing nox in gas turbine exhaust
US4745768A (en) 1987-08-27 1988-05-24 The Brooklyn Union Gas Company Combustion-powered refrigeration with decreased fuel consumption
US5203161A (en) 1990-10-30 1993-04-20 Lehto John M Method and arrangement for cooling air to gas turbine inlet
JPH0510627A (ja) * 1991-07-02 1993-01-19 Yazaki Corp 吸収冷温水機
JP2897587B2 (ja) 1993-04-07 1999-05-31 株式会社日立製作所 吸収式冷凍機
AU8122794A (en) * 1993-10-19 1995-05-08 State Of California Energy Resources Conservation And Development Commission Performance enhanced gas turbine powerplants
JPH08285282A (ja) * 1995-04-12 1996-11-01 Mitsubishi Heavy Ind Ltd ガスタービン
JP2000328962A (ja) * 1999-05-19 2000-11-28 Mitsubishi Heavy Ind Ltd タービン設備
AU1177100A (en) * 1999-11-10 2001-06-06 Hitachi Limited Gas turbine equipment and gas turbine cooling method
JP3750474B2 (ja) 2000-03-08 2006-03-01 株式会社日立製作所 熱電併給設備およびその運転方法
US6651443B1 (en) 2000-10-20 2003-11-25 Milton Meckler Integrated absorption cogeneration
US6457315B1 (en) 2000-12-07 2002-10-01 Ipsi, Llc Hybrid refrigeration cycle for combustion turbine inlet air cooling
US6694772B2 (en) 2001-08-09 2004-02-24 Ebara Corporation Absorption chiller-heater and generator for use in such absorption chiller-heater
DE10214183C1 (de) 2002-03-28 2003-05-08 Siemens Ag Kraftwerk zur Kälteerzeugung
US6604360B1 (en) 2002-04-18 2003-08-12 Deere & Company Exhaust driven engine cooling system
US6745574B1 (en) 2002-11-27 2004-06-08 Elliott Energy Systems, Inc. Microturbine direct fired absorption chiller
US7007484B2 (en) 2003-06-06 2006-03-07 General Electric Company Methods and apparatus for operating gas turbine engines
JP2005315127A (ja) * 2004-04-27 2005-11-10 Mitsubishi Heavy Ind Ltd ガスタービン
GB2414047B (en) 2004-05-14 2006-06-28 Rolls Royce Plc Load absorption arrangements for gas turbine engines
WO2006046976A2 (en) 2004-06-14 2006-05-04 University Of Florida Research Foundation, Inc. Turbine system with exhaust gas recirculation and absorption refrigeration system
BRPI0613266A2 (pt) * 2005-05-18 2010-12-28 Du Pont aparelhos de ajuste de temperatura e processos de ajuste de temperatura
US7827794B1 (en) 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
US7644573B2 (en) 2006-04-18 2010-01-12 General Electric Company Gas turbine inlet conditioning system and method
JP2007298192A (ja) * 2006-04-27 2007-11-15 Toshiba Corp ガスタービンコジェネレーションシステムおよびその使用方法
FR2906868B1 (fr) * 2006-10-06 2011-11-18 Snecma Injecteur de carburant pour chambre de combustion de moteur a turbine a gaz
US7716930B2 (en) * 2007-01-29 2010-05-18 General Electric Company Integrated plant cooling system
US7762054B2 (en) 2007-08-21 2010-07-27 Donald Charles Erickson Thermally powered turbine inlet air chiller heater
US8683808B2 (en) 2009-01-07 2014-04-01 General Electric Company Late lean injection control strategy
US20110023491A1 (en) 2009-07-30 2011-02-03 General Electric Company System and method for supplying fuel to a gas turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444913A1 (en) * 1990-02-27 1991-09-04 Turbine Developments Aktiengesellschaft A gas turbine
CH683018A5 (de) * 1990-06-19 1993-12-31 Asea Brown Boveri Verfahren zur Erhöhung des verdichterbedingten Druckgefälles einer Gasturbine einer Kraftwerksanlage.
EP0524435A2 (en) * 1991-06-21 1993-01-27 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
EP0770771A1 (de) * 1995-10-26 1997-05-02 Asea Brown Boveri Ag Zwischengekühlter Verdichter
RU2229030C2 (ru) * 2002-02-20 2004-05-20 Общество с ограниченной ответственностью "Интербизнеспроект" Способ повышения эффективности работы газотурбинной установки
RU2278286C2 (ru) * 2004-03-18 2006-06-20 Институт теплофизики экстремальных состояний Объединенного института высоких температур Российской Академии Наук (ИТЭС ОВИТ РАН) РФ Газотурбинная установка

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748110C1 (ru) * 2017-09-05 2021-05-19 Сименс Акциенгезелльшафт Узел камеры сгорания газотурбинного двигателя с конструктивным элементом, обеспечивающим захватываемый вихрь
US11371710B2 (en) 2017-09-05 2022-06-28 Siemens Energy Global GmbH & Co. KG Gas turbine combustor assembly with a trapped vortex feature

Also Published As

Publication number Publication date
JP2013139784A (ja) 2013-07-18
CN103195570A (zh) 2013-07-10
RU2012158295A (ru) 2014-07-10
US20130167548A1 (en) 2013-07-04
US9181876B2 (en) 2015-11-10
EP2613037A2 (en) 2013-07-10
CN103195570B (zh) 2016-12-28
EP2613037A3 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
RU2613100C2 (ru) Газовая турбина (варианты) и способ эксплуатации газовой турбины
US10415432B2 (en) Power plant with steam generation and fuel heating capabilities
US8127547B2 (en) Gas turbine engine with air and fuel cooling system
CN206429309U (zh) 用于经由涡轮提取和压缩机提取生成蒸汽的系统
US20140150443A1 (en) Gas Turbine Engine with Integrated Bottoming Cycle System
CN106979073B (zh) 生成蒸汽且提供冷却的燃烧气体的系统
US20110247335A1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
US9970354B2 (en) Power plant including an ejector and steam generating system via turbine extraction and compressor extraction
US10415476B2 (en) System for generating steam and for providing cooled combustion gas to a secondary gas turbine
US10436073B2 (en) System for generating steam via turbine extraction and compressor extraction
US10584615B2 (en) System for generating steam via turbine extraction and compressor extraction including an ejector and static mixer
US9890710B2 (en) Power plant with steam generation via combustor gas extraction
EP2454461B1 (en) Gas turbine exhaust gas cooling system
US10072573B2 (en) Power plant including an ejector and steam generating system via turbine extraction
US10577982B2 (en) Power plant with steam generation via turbine extraction and including a gas distribution manifold
US20160290174A1 (en) Heat pipe aftercooling system for a turbomachine
US9964035B2 (en) Power plant including exhaust gas coolant injection system and steam generating system via turbine extraction
RU2439446C1 (ru) Нагреватель текучей среды
JP2022161839A (ja) 直列熱交換器を有する複合サイクル発電プラント
EP3318733A1 (en) Feedwater bypass system for a desuperheater
RU2013157317A (ru) Способ работы парогазовой установки
RU2709587C1 (ru) Способ работы парогазовой установки, работающей с использованием парового охлаждения
Warren et al. Advanced Technology Combustion Turbines in Combined-Cycle Applications
US20140216045A1 (en) Gas turbine with improved power output

Legal Events

Date Code Title Description
HC9A Changing information about inventors
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171228