[go: up one dir, main page]

RU2611700C1 - Автономная тепловая пушка - Google Patents

Автономная тепловая пушка Download PDF

Info

Publication number
RU2611700C1
RU2611700C1 RU2015145456A RU2015145456A RU2611700C1 RU 2611700 C1 RU2611700 C1 RU 2611700C1 RU 2015145456 A RU2015145456 A RU 2015145456A RU 2015145456 A RU2015145456 A RU 2015145456A RU 2611700 C1 RU2611700 C1 RU 2611700C1
Authority
RU
Russia
Prior art keywords
thermoelectric
forming
combustion chamber
cylindrical
heat
Prior art date
Application number
RU2015145456A
Other languages
English (en)
Inventor
Владимир Сергеевич Ежов
Сергей Геннадьевич Емельянов
Олег Гурьевич Добросердов
Сергей Владимирович Березин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2015145456A priority Critical patent/RU2611700C1/ru
Application granted granted Critical
Publication of RU2611700C1 publication Critical patent/RU2611700C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления. Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания, совмещенная с теплообменником, соединенная с инжектором, кольцевую тепловую камеру, очистной насадок, заполненный гранулами металлургической пемзы, изготовленной из металлургических шлаков, при этом поверхность цилиндрической камеры сгорания выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов, спаянных на концах между собой, термоэлектрические звенья попарно соединены между собой перемычкой и электрическим конденсатором, образуя термоэлектрические секции, которые также последовательно соединены между собой через электрические конденсаторы, образуя термоэлектрический блок, соединенный с токовыводами, преобразователем, аккумулятором и электродвигателем вентилятора. 8 ил.

Description

Предлагаемое изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления для нагревания воздуха в бытовых и производственных помещениях.
Известен нагреватель воздуха, содержащий корпус с сетчатыми входом и выходом, кожухом, образующим с корпусом теплозащитную полость, размещенный внутри корпуса на стойках осевой вентилятор с электродвигателем, соосные вентилятору теплоэлектронагревательные элементы, выполненные в виде спиралей, закрепленных на кронштейнах, систему управления, связанную электрически с источником питания [Патент РФ №2122689, F24H3/04, F24D13/00, 1998].
Основным недостатком известного воздушного нагревателя является невозможность нагрева воздуха и его подачи без внешнего источника электрической энергии и обусловленное этим ее значительное потребление, что снижает эффективность его работы.
Более близким к предлагаемому изобретению является газовый воздухонагреватель (газовая тепловая пушка), содержащий газосжигающее устройство (горелку), камеры сгорания газа и смешения очищенных продуктов сгорания с нагреваемым воздухом, вентилятор-нагнетатель с электродвигателем, прикрепленный к камере сгорания теплообменный аппарат в форме трубы, на внешней поверхности которой смонтированы сетчатые интенсификаторы, на конце теплообменного аппарата установлен каталитический насадок, на входе в который выполнен газоподающий патрубок для подвода дополнительного объема газа [Патент РФ №2145050, F26B23/02, F24H3/00, 2000].
Основными недостатками известного газового воздухонагревателя являются невозможность подачи воздуха без внешнего источника электрической энергии и регенерации каталитического насадка, что не позволяет использовать его в автономном режиме и снижает экономическую и экологическую эффективность.
Техническим результатом предлагаемого изобретения является увеличение экономической и экологической эффективности автономной тепловой пушки.
Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, снабженный опорами, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания, совмещенная с теплообменником, внутренний торец которой герметически соединен с инжектором, наружный торец выступает на расстояние L от торца корпуса, образуя участок, перфорированный продольными щелями, а между наружной поверхностью цилиндрической камеры сгорания и стенкой цилиндрического корпуса, расположена кольцевая тепловая камера, сзади цилиндрического корпуса расположен насадок для очистки продуктов сгорания, состоящий из наружной и внутренней перфорированных оболочек с полостью между ними, внутренняя оболочка которого выступает своим торцом на расстояние L от наружной оболочки, образуя участок, перфорированный также продольными щелями, который надет на аналогичный участок цилиндрической камеры сгорания, причем вышеупомянутая полость заполнена гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, при этом поверхность цилиндрической камеры сгорания–теплообменника кроме перфорированного участка выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, выполненных из термостойкого диэлектрического материала (например, керамики), внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ, причем термоэлектрические звенья установлены в гнездах таким образом, чтобы большая часть каждого термоэмиссионного преобразователя в рядах омывалась приточным воздухом, подаваемым вентилятором, термоэлектрические звенья у инжектора попарно соединены между собой перемычкой, а перед перфорированным участком электрическим конденсатором, образуя термоэлектрические секции, которые, в свою очередь, последовательно соединены между собой тоже через электрические конденсаторы, образуя термоэлектрический блок в форме разомкнутого кольца, а первый и последний из вышеупомянутых конденсаторов термоэлектрического блока соединены с токовыводами, которые, в свою очередь, соединены через преобразователь и аккумулятор с электродвигателем вентилятора.
На фиг. 1–4 представлены общий вид и разрезы автономной тепловой пушки (АТП), на фиг.5–8–узлы стыковки очистной насадки и термоэлектрических звеньев с камерой сгорания АТП.
Предлагаемая АТП содержит цилиндрический корпус 1, снабженный опорами 2, внутри корпуса по ходу движения воздуха коаксиально установлены вентилятор 3 с электродвигателем 4, горелка 5 с инжектором 6, соединенная с подводящим газопроводом (на фиг. 1–8 не показан), цилиндрическая камера сгорания, совмещенная с теплообменником (КСТО) 7, внутренний торец которой герметически соединен с инжектором 6, наружный торец выступает на расстояние L от торца корпуса трубы 1, образуя участок 8, перфорированный продольными щелями 9, а между наружной поверхностью КСТО 7 и стенкой корпуса 1 расположена кольцевая тепловая камера 10, сзади цилиндрического корпуса 1 размещается насадок для очистки продуктов сгорания 11, состоящий из наружной и внутренней перфорированных оболочек 12 и 13 соответственно, с полостью 14 между ними, внутренняя оболочка 13 которого выступает своим торцом на расстояние L от наружной оболочки 12, образуя участок 15, перфорированный также продольными щелями 9, который надет на участок 8 КСТО 7, причем полость 14 заполнена гранулами металлургической пемзы 16, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, при этом поверхность КСТО 7 кроме участка 8 выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда 17, которые увеличивают внешнюю поверхность КСТО 7 в несколько раз по сравнению с цилиндрической, что значительно увеличивает скорость теплопередачи через стенку КСТО. В гнезда 17 частично утоплены термоэлектрические звенья (ТЭЗ) 18, состоящие из прямоугольных вставок 19, выполненных из термостойкого диэлектрического материала (например, керамики), внутри которых помещены ряды 20, состоящие из расположенных параллельно термоэмиссионных преобразователей (ТЭП) 21. Каждый ТЭП 21 представляет собой пару параллельных проволочных отрезков 22 и 23, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ (значение Δ выбирается из условий надежной изоляции отрезков 22 и 23), причем ТЭЗ 18 установлены в гнездах 17 таким образом, чтобы большая часть каждого ТЭП 21 рядов 20 омывалась приточным воздухом, подаваемым вентилятором 3, причем ТЭЗ 18 у инжектора 6 попарно соединены между собой перемычкой 24, а перед участком 8 электрическим конденсатором 25, образуя термоэлектрические секции (ТЭС) 26, которые, в свою очередь, последовательно соединены между собой тоже через электрические конденсаторы 27, образуя термоэлектрический блок (ТЭБ) 28 в форме разомкнутого кольца, а первый и последний из вышеупомянутых конденсаторов 27 ТЭБ 28 соединены с токовыводами 29 и 30, которые, в свою очередь, соединены через преобразователь и аккумулятор (на фиг. 1–8 не показаны) с электродвигателем 4.
В основу работы предлагаемой АТП положено использование эффекта термоэлектричества для обеспечения работы вентилятора и гранулированного доменного шлака в качестве адсорбента для вредных компонентов выхлопных газов из КСТО 7. Так как в ТЭЗ 18 помещены ряды 19, состоящие из ТЭП 21, изготовленных из проволочных отрезков 22 и 23, выполненных из металлов М1 и М2, спаянных на концах между собой, то при нагреве одних спаянных концов, помещенных в гнезда 17, и охлаждении противоположных приточным воздухом из вентилятора 3, в ТЭЗ 18 возникает термоэлектричество [С.Г. Калашников. Электричество. – М: Наука, 1970, с. 502–506].
Использование гранулированного доменного шлака (металлургической пемзы) 16 в качестве адсорбента основано на высоком значении его модуля основности, который придает гранулам металлургической пемзы 15 основные свойства [Строительные материалы. Справочник. Под ред. Болдырева А. С. и др. –М.: Стройизд.,1989, с. 423; Домокеев А. К. Строительные материалы. – М.: Высш. школа, 1989, с. 163], позволяющие сорбировать на поверхности шлака вещества, обладающие кислыми свойствами, к которым относятся вредные компоненты газообразных продуктов сгорания топлива АТП (природного газа или солярового масла), а именно оксиды азота (NOx), оксиды серы (SOx), оксиды углерода (СО).
Автономная тепловая пушка (АТП), представленная на фиг. 1–8, работает следующим образом. Топливо, например природный газ, из газового баллона или газопровода (на фиг. 1–8 не показаны) поступает в горелку 5, откуда струя газа поступает в инжектор 6, засасывая воздух, необходимый для горения, после чего газовоздушная смесь направляется в КСТО 7, где в начальном участке КСТО 7 происходит ее зажигание и горение, а далее до конечного участка 8 происходит охлаждение образовавшихся горячих выхлопных газов приточным воздухом, подаваемым вентилятором 3, выхлопные газы далее поступают в насадок для очистки продуктов сгорания 11, полость 14 которого заполнена гранулами металлургической пемзы 16, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм. Поток выхлопных газов проходят через отверстия в перфорированной внутренней оболочки 12 насадка 11 и многократно попадают на поверхность гранул 16 и вовнутрь их, затем очищается от вредных примесей (NOx, SOx, СО), которые сорбируются на поверхности и внутри гранул 16. Адсорбированные из отработавших газов оксиды азота и серы в порах гранул 16 обладают повышенной реакционной способностью, обусловленной их взаимодействием с поверхностью адсорбента–гранул 16 шлаковой пемзы [Неницеску К. Общая химия. – М.: Мир, 1968, с. 298], поэтому окисляются кислородом (кислород присутствует в выхлопных газах в результате избытка воздуха, подаваемого на сжигание топлива) со скоростью, большей, чем в газовой фазе, с образованием легко растворимых в воде NO2 и SО3. Полученные оксиды азота и серы, в свою очередь, взаимодействуют с частицами воды, образующейся в порах гранул 16 в результате капиллярной конденсации паров воды, находящихся в выхлопных газах, с образованием соответствующих кислот HNO3 и H2SO4. Кроме того, на поверхности и в порах гранул 16 оседают мелкодисперсные частицы (сажа и пр.), после чего очищенные выхлопные газы через отверстия перфорированной наружной оболочки 13 выбрасываются наружу, где смешиваются с нагретым воздухом, поступающим из КСТО 7. Одновременно приточный воздух, подаваемый вентилятором, движущийся в кольцевой тепловой камере 10, нагревается до требуемой температуры за счет теплопередачи через стенку КСТО 7 горячими газообразными продуктами сгорания и выбрасывается в отапливаемое помещение.
Параллельно вышеописанным процессам охлаждения продуктов сгорания и нагрева приточного воздуха, скорость которых за счет наличия гофр на поверхности КСТО 7 больше в несколько раз по сравнению с цилиндрической, газообразные продукты сгорания нагревают горизонтальные прямоугольные гнезда 17 корпуса КСТО 7, выполненного из коррозионно-стойкого материала с высокой теплопроводностью, и соответственно, спаи термоэмиссионных преобразователей (ТЭП) 21 ТЭЗ 18, противоположные концы которых охлаждаются приточным воздухом, движущимся в кольцевой камере нагрева 10. В результате нагрева спаянных концов проволочных отрезков 22 и 23 ТЭП 21 в рядах 19 ТЭЗ 18, расположенных в гнездах 17, горячими продуктами сгорания и охлаждении других спаянных концов ТЭП 21, расположенных в кольцевой камере нагрева 10, приточным воздухом, в рядах 19 ТЭЗ 18 каждой ТЭС 26 образуется термоэлектричество, которое суммируется в ТЭБ 28 и через токовыводы 29 и 30, преобразователь и аккумулятор (на фиг. 1–8 не показаны) подается в электродвигатель 4. При этом проволочные отрезки 22 и 23 ТЭП 21 рядов 19 изолированы от непосредственного контакта с продуктами сгорания и воздухом слоем диэлектрического коррозионно-стойкого материала прямоугольных вставок 18, что предохраняет металлы М1 и М2 пар 22 и 23 ТЭП 21 от коррозии и появления между ними короткого замыкания. Выполнение вставок 18 прямоугольной формы, утопленных в прямоугольные гнезда 17, обеспечивает их прочную стыковку с поверхностью гнезд 17. Кроме того, включение в конструкции ТЭС 26 и ТЭБ 28 АТП последовательно соединенных между собой через конденсаторы 25 и 27, значительно снижает электрическое сопротивление ТЭБ 28 и, соответственно, увеличивает силу тока на токовыводах 29 и 30.
Регулирование процесса очистки выхлопных газов и режима работы АТП осуществляется изменением живого сечения щелей 9 путем поворота насадка 11 и изменением расхода топлива, подаваемого в горелку 5. Если очистка выхлопных газов не требуется, то АТП можно использовать без насадка 11.
По окончании работы АТП производится регенерация адсорбента – гранулированного доменного шлака 16, для осуществления которой с КСТО 7 снимается насадок 11, после чего адсорбент промывается водой.
Величина разности электрического потенциала на токовыводах 29 и 30 АТП зависит от характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 22 и 23 ТЭП 21, от числа их в ТЭЗ 8, числа ТЭС 26 в ТЭБ 28 и количества ТЭБ 28. Полученный электрический ток обеспечивает работу электродвигателя 4 вентилятора 3 и автономность работы АТП.
Таким образом, предлагаемая автономная тепловая пушка обеспечивает нагрев воздуха для децентрализованного отопления помещений, очистку выхлопных газов и генерацию электрической энергии за счет эффекта термоэлектричества, что позволяет использовать ее в автономном режиме и повышает экономическую и экологическую эффективность.

Claims (1)

  1. Автономная тепловая пушка, включающая цилиндрический корпус, горелку, камеру сгорания газа, теплообменный аппарат в форме трубы, насадок для очистки продуктов сгорания, вентилятор-нагнетатель с электродвигателем, отличающаяся тем, что внутри цилиндрического корпуса по ходу движения воздуха коаксиально установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания совмещена с теплообменником, внутренний торец ее герметически соединен с инжектором, наружный торец выступает на расстояние L от торца корпуса, образуя участок, перфорированный продольными щелями, а между наружной поверхностью цилиндрической камеры сгорания и стенкой цилиндрического корпуса расположена кольцевая тепловая камера, насадок для очистки продуктов сгорания состоит из наружной и внутренней перфорированных оболочек с полостью между ними, внутренняя оболочка насадка выступает своим торцом на расстояние L от наружной оболочки, образуя участок, перфорированный также продольными щелями, который надет на аналогичный участок цилиндрической камеры сгорания, причем вышеупомянутая полость заполнена гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, поверхность цилиндрической камеры сгорания кроме перфорированного участка выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, выполненных из термостойкого диэлектрического материала (например, керамики), внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ, причем термоэлектрические звенья установлены в гнездах таким образом, чтобы большая часть каждого термоэмиссионного преобразователя в рядах омывалась приточным воздухом, подаваемым вентилятором, каждое термоэлектрическое звено у инжектора попарно соединены между собой перемычкой, а перед перфорированным участком соединены электрическим конденсатором, образуя термоэлектрические секции, которые, в свою очередь, последовательно соединены между собой тоже через электрические конденсаторы, образуя термоэлектрический блок в форме разомкнутого кольца, а первый и последний из вышеупомянутых конденсаторов термоэлектрического блока соединены с токовыводами, которые, в свою очередь, соединены через преобразователь и аккумулятор с электродвигателем вентилятора.
RU2015145456A 2015-10-22 2015-10-22 Автономная тепловая пушка RU2611700C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145456A RU2611700C1 (ru) 2015-10-22 2015-10-22 Автономная тепловая пушка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145456A RU2611700C1 (ru) 2015-10-22 2015-10-22 Автономная тепловая пушка

Publications (1)

Publication Number Publication Date
RU2611700C1 true RU2611700C1 (ru) 2017-02-28

Family

ID=58459442

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145456A RU2611700C1 (ru) 2015-10-22 2015-10-22 Автономная тепловая пушка

Country Status (1)

Country Link
RU (1) RU2611700C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656773C1 (ru) * 2017-08-25 2018-06-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет "(ЮЗГУ) Автономный воздухонагреватель
RU2705193C2 (ru) * 2018-02-06 2019-11-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Автономный воздухоподогреватель
RU2777155C1 (ru) * 2021-12-21 2022-08-01 Общество с ограниченной ответственностью "АЛЕТЕЙЯ" Устройство для нагрева воздуха

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2271171A (en) * 1992-10-03 1994-04-06 Roger Arthur Briggs Boilers and steam boilers
RU2145050C1 (ru) * 1998-06-01 2000-01-27 ООО "Теплосервис" Газовый воздухонагреватель
RU2491481C1 (ru) * 2009-05-20 2013-08-27 С.ТРА.ТЕ.Дж.И.Е. С.р.л. Устройство для восстановления тепла
RU150186U1 (ru) * 2013-09-10 2015-02-10 Открытое акционерное общество "Научно-производственное предприятие Квант" Термоэлектрический генератор
RU2561636C2 (ru) * 2011-04-19 2015-08-27 Хоккаидо Токушуширю Кабушикикаиша Камера сгорания, способ сжигания, устройство производства электроэнергии и способ производства электроэнергии на таком устройстве

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2271171A (en) * 1992-10-03 1994-04-06 Roger Arthur Briggs Boilers and steam boilers
RU2145050C1 (ru) * 1998-06-01 2000-01-27 ООО "Теплосервис" Газовый воздухонагреватель
RU2491481C1 (ru) * 2009-05-20 2013-08-27 С.ТРА.ТЕ.Дж.И.Е. С.р.л. Устройство для восстановления тепла
RU2561636C2 (ru) * 2011-04-19 2015-08-27 Хоккаидо Токушуширю Кабушикикаиша Камера сгорания, способ сжигания, устройство производства электроэнергии и способ производства электроэнергии на таком устройстве
RU150186U1 (ru) * 2013-09-10 2015-02-10 Открытое акционерное общество "Научно-производственное предприятие Квант" Термоэлектрический генератор

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656773C1 (ru) * 2017-08-25 2018-06-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет "(ЮЗГУ) Автономный воздухонагреватель
RU2705193C2 (ru) * 2018-02-06 2019-11-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Автономный воздухоподогреватель
RU2777155C1 (ru) * 2021-12-21 2022-08-01 Общество с ограниченной ответственностью "АЛЕТЕЙЯ" Устройство для нагрева воздуха
RU2823196C1 (ru) * 2023-03-09 2024-07-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Способ подготовки самоходного артиллерийского орудия к эксплуатации в условиях низких температур

Similar Documents

Publication Publication Date Title
KR101175003B1 (ko) 인덕션 코일을 이용한 유독성 폐가스 처리장치
KR20070117094A (ko) 플라즈마 토치를 이용한 폐가스 처리장치
CN106233071A (zh) 减少燃料式燃烧装置
RU2611700C1 (ru) Автономная тепловая пушка
CN1963334A (zh) 一种微波加热气体的装置
JPWO2008096466A1 (ja) ガス処理装置及び該装置を用いたガス処理システムとガス処理方法
RU2656773C1 (ru) Автономный воздухонагреватель
CN101478271B (zh) 一种极低热值燃气多孔介质内燃烧温差发电装置
RU2705193C2 (ru) Автономный воздухоподогреватель
RU2347147C2 (ru) Способ утилизации тепла и очистки дымовых газов и устройство для его осуществления
EP3542036B1 (en) Device for abatement of liquid, gaseous and/or solid pollutant substances of various kind, contained into the exhaust smokes, and process for treatment and abatement of such pollutant substances
RU2514810C1 (ru) Устройство нагрева газов
EA038938B1 (ru) Автономная тепловоздушная пушка
EP3354328B1 (en) A system and method for purifying gas
RU2386898C2 (ru) Устройство для сжигания жидких органических радиоактивных отходов
RU2718363C1 (ru) Инфракрасная горелка-электрогенератор
CN2620218Y (zh) 燃水煤浆的导热油炉
CN201461084U (zh) 一种极低热值燃气多孔介质内燃烧温差发电装置
EP3541497A1 (en) Device for abatement of liquid, gaseous and/or solid pollutant substances of various kind, contained in the exhaust smokes and process for the treatment and abatement of such pollutant substances
RU2378573C1 (ru) Рекуперативная горелка для газообразного топлива
CN201126190Y (zh) 常压滑移通孔燃煤气化焚烧炉
RU2728581C1 (ru) Топочное устройство
CN214635273U (zh) 一种处理固废的装置
RU2225964C1 (ru) Подогреватель газа
RU2487301C2 (ru) Полифункциональный стеклоблочный воздухоподогреватель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181023